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ABSTRACT
Weather forecasting is a canonical predictive challenge that
has depended primarily on model-based methods. We ex-
plore new directions with forecasting weather as a data-
intensive challenge that involves inferences across space and
time. We study specifically the power of making predic-
tions via a hybrid approach that combines discriminatively
trained predictive models with a deep neural network that
models the joint statistics of a set of weather-related vari-
ables. We show how the base model can be enhanced with
spatial interpolation that uses learned long-range spatial de-
pendencies. We also derive an efficient learning and infer-
ence procedure that allows for large scale optimization of
the model parameters. We evaluate the methods with ex-
periments on real-world meteorological data that highlight
the promise of the approach.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Machine Learning, Graphical Models, Weather Forecasting

Keywords
Gaussian Processes, Deep Learning

1. INTRODUCTION
Making inferences and predictions about weather has been

an omnipresent challenge throughout human history. Chal-
lenges with accurate meteorological modeling brings to the
fore difficulties with reasoning about the complex dynamics
of Earth’s atmospheric system. Methods have sought to de-
fine weather in terms of sets of fundamental quantities, and
various characterizations have been proposed and employed

∗Research performed during an internship at Microsoft Re-
search.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
c© 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783275.

in forecasting systems. We explore weather as a fundamental
challenge for machine data mining and inference. We intro-
duce methods that show promise for advancing the state of
the art of weather forecasting systems.

In the U.S., the National Oceanic and Atmospheric Ad-
ministration (NOAA) is responsible with providing publicly
available weather forecasts, based on periodic observations.
These measurements are logged in the Integrated Global Ra-
diosonde Archive (IGRA) [4]. Forecasts for winds and tem-
perature are accessible via NOAA’s Winds Aloft program.
To date, the best approaches to weather modeling rely on
mathematical simulations. The methodology centers on the
use of a generative model to capture atmospheric dynam-
ics, where samples are drawn from physical simulations to
make predictions [18, 12]. In contrast, we take a data-centric
approach. Rather than define a generative model, we dis-
criminatively train predictive models from the historic data,
considering a historical data on a core set of variables for
learning and inference about weather: atmospheric pressure,
temperature, dew point, and winds. We use boosted deci-
sion trees as predictors in the studies.

Several challenges must be addressed in taking a data-
centric approach to weather prediction. First, we note that
the set of weather variables under consideration are tightly
coupled. For example, pressure and temperature follow nat-
ural gas laws (i.e., the well-known formula, PV = nRT ).
Similarly, there is a tight relationship between relative hu-
midity and temperature. Consequently, any model that
jointly aims to predict the set of weather variables should
leverage knowledge of the tight statistical couplings that are
based in physics. Secondly, dependencies among the vari-
ables may have long-range influences across space and time.
For instance, wind vectors across large geographic distances
may follow isobaric contours. As another consideration, the
weather phenomena may be affected by local geography and
associated natural processes (e.g. isolated thunderstorms),
as well as shifts in the large-scale structure of atmospheric
phenomena (e.g. shifting of jet streams).

We aim to tackle these challenges via a representation that
jointly predicts winds, temperature, pressure, and dew point
across space and time. The proposed architecture combines
a bottom-up predictor for each individual variable with a
top-down deep belief network that models the joint statisti-
cal relationships. Another key component in the framework
is a data-driven kernel, based on a similarity function that
is learned automatically from the data. The kernel is used
to impose long-range dependencies across space and to en-
sure that the inferences respect natural laws. We present an



efficient procedure for combining inferences from separate
predictors of local phenomena while considering constraints
imposed by the deep belief network such that the predictions
respect the natural regularities expected with the large-scale
phenomena.

The main contributions of this work can be summarized
as follows:

1. We present a novel hybrid model with discriminative
and generative components for spatiotemporal infer-
ences about weather.

2. We design and implement a data-driven kernel func-
tion that shapes predictions in accordance with phys-
ical laws.

3. We provide an efficient inference procedure that en-
ables optimization of the predictive model in accor-
dance with large-scale phenomena.

4. We evaluate the methods with a set of experiments
that highlight the performance and value of the method-
ology.

The rest of the paper is structured as follows: We next dis-
cuss background and related work. In Section 3, we describe
the technical details of our approach, showing the compo-
nents of a comprehensive graphical model that we call a Deep
Hybrid Model. The learning and inference algorithms based
on this model are discussed in Section 4. In Section 5, we
present the results of experiments with the model on real-
world data. We conclude with a brief summary and discuss
future work in Section 6.

2. BACKGROUND AND RELATED WORK
The proliferation of satellites, radar, sensors, coupled with

rapidly decreasing costs of storing and distributing informa-
tion have catalyzed an explosion in quantities of weather
data available for studies. Most work in weather forecasting
to date rely on the use of generative approaches, where the
weather systems are simulated via numerical methods [18,
12, 10], or rely on time-series analysis such as ARIMA mod-
els and simple classifiers based on Artificial Neural Networks
[11, 10, 8, 2, 21] or Support Vector Machines [16, 19]. These
statistical models often make strong assumptions such as
spatial independence to overcome the curse of dimensional-
ity, which do not hold well in practice.

Despite the success of machine learning in a variety of
tasks, applications to the problem of weather forecasting
has been limited. Exceptions include the use of Bayesian
Networks for precipitation forecasts [3] and temporal mod-
eling via Restricted Boltzmann Machines (RBM) [20, 15].
A separate thread of research has also focused on efficient
representation of relational spatiotemporal data in Random
Forests for prediction of severe surface-level weather pro-
cesses, such as droughts and tornadoes [14, 13]. More re-
cently, large-scale wind prediction has been presented [9]
using a Bayesian framework with Gaussian Processes [17].

To date, uses of machine learning for weather prediction
have been limited in several ways. First, almost all methods
consider only one variable at a time and do not explore the
joint spatiotemporal statistic of multiple weather phenom-
ena. Also, to our knowledge, long-range spatiotemporal de-
pendencies have not been modeled explicitly. Thus, models

have been blind to long-range phenomena based on the laws
of nature, such as winds aligning by pressure as captured by
the structure and dynamics of isobars.

We introduce methods that address these limitations, via
introduction of a hybrid representation. With a hybrid rep-
resentation, individual predictors are discriminatively trained
from historic data and local inferences from these models are
combined with a deep neural network that overlays statisti-
cal constraints among key weather variables. We addition-
ally apply a spatial interpolation scheme that respects con-
straints of long-range statistical dependencies. The method-
ology employs covariance matrix for Gaussian Process re-
gression constructed from a large dataset. Here, the co-
variance matrix, also referred to as the kernel, allows us to
enforce smoothness constraints over the weather variables.
By ensuring that the kernel captures the dynamics of the
system as informed by the training data, we are able to
align estimates according to spatial constraints imposed by
natural laws.

3. THE DEEP HYBRID MODEL
We seek a prediction model that respects spatiotempo-

ral dependencies among weather variables induced by atmo-
spheric physics. We test the framework with data drawn
from a continental scale weather corpus composed of data
captured via balloons. In particular, we consider the IGRA
dataset consisting of balloon observations made at 60 sta-
tions across the U.S. These balloons transmit observations
about wind speed and direction, temperature, geopotential
height, dew point, and other weather variables. These ob-
servations are released in real time by the NOAA and later
by the National Climatic Data Center following preprocess-
ing. The data is eventually integrated into the curated
IGRA dataset which is updated daily and contains historical
weather data spanning decades compiled from eleven source
datasets. Any data added to the archive undergoes a cy-
cle of quality assurance to resolve potential inconsistencies
among variables [4, 5].

Formally, we consider four weather variables in the model:
wind velocity, v; pressure, p; temperature, t and dew point,
d. The wind observations are represented as a two-dimensional
vector, v = [vx, vy] while all other weather variables are
scalars. We represent weather stations (where the balloons
are released) as SL = {s1,...,sNs} where Ns is the total num-
ber of weather stations. For each of these stations, we have
historical weather data logged at a frequency of approxi-
mately six hours over several years.

Our approach to building the weather model was governed
by the following guidelines:

1. Temporal mining: Our model should be able to iden-
tify and learn from recurring weather patterns over
time.

2. Spatial interpolation: The dynamic influence of atmo-
spheric laws on weather phenomena need to be ac-
counted for in our predictions.

3. Inter-variable interactions: The local interdependen-
cies between weather variables should be captured by
our model.

Accordingly our model can be viewed as having three main
components. The first component is a set of individual pre-



Figure 1: Spatial Interpolation of winds in a static and hybrid field. Filled contours represent temperature
and isobar lines are marked in red. In the hybrid field, the interpolated wind vectors are closely aligned with
the true values. However, the static field fails to account for the long-range dependencies.

dictors for the weather variables that are trained using his-
torical data. A variety of off-the-shelf machine learning pro-
cedures can be applied to the recorded data to build these
individual predictors. The second component works to re-
fine inferences produced by the separate predictors by con-
straining the output to be spatially smooth and aligned with
constraints imposed by physical laws. The interplay of these
constraints is dynamic and hence, we develop a data-centric
approach. The third component consists of a deep belief net-
work which leads to a preference for solutions that respect
the expected joint statistics of the weather variables. We de-
scribe the three key components in detail below and finally
conclude this section with an integrated graphical model of
our framework.

3.1 Base-Level Predictors
The base-level predictors are individual regression func-

tions that are trained using historical data at different tem-
poral granularities. The intuition is that long-term historical
records of weather should provide insights about the weather
at particular locations, given sets of observations in the im-
mediate past. In general, the weather conditions change
gradually over time and also exhibit cyclicity through sea-
sons, consequently enabling some success in predicting the
signals. We need to train different predictors for each sta-
tion and range of altitudes considered as weather conditions
change significantly across the vertical profile.

The performance of the local regressions depends critically
on evidential features. We consider features over short- and
long-term spans of time. For the short-term features, we
consider the values of weather variables over the last seven
days. As observations come at twelve-hour intervals, we con-
sider shorter-term features by time of the day. Such short-
term segmentation can be useful because winds, tempera-
ture, and other weather variables may differ significantly
over day and night due to the influence of solar heating.
We consider separate short-term features for day and night
rather than averaging over the daily variation. Features
spanning longer periods of time incorporate average seasonal
data on weather variables. The long-term features are com-
puted for several years in the past to reduce the influence
of atypical weather phenomena. Given the set of engineered

features, we use an ensemble of boosted decision-tree learn-
ers to make predictions.

3.2 Data-Centric Kernel for Spatial Interpo-
lation

The individual predictors provide predictions only for par-
ticular locations (the weather stations), and we need to in-
terpolate the results across larger spatial regions. To extend
predictions in a smooth manner beyond the weather sta-
tions, we rely on smoothness constraints induced via the
GP prior.

The covariance or kernel matrix K captures the notion of
similarity among data points that are close in space and time
and is the key in determining the accuracy of spatial inter-
polation. While static Radial Basis Function (RBF) kernels
based on distance give reasonable estimates, they fail to cap-
ture the dynamics of the system. For instance, predictions
about wind velocity at location s∗, are not necessarily in-
fluenced similarly by weather at equidistant stations, per
factors such as regional turbulence. We need to have an
ability to capture a preferential bias towards classes of func-
tions that respect certain physical constraints among the
weather variables. The physical constraints include long-
range spatial dependencies, such as wind vectors aligning
with isobars1 and modeling the direct relationship between
pressure, temperature, and dew point due to natural gas
laws.

We use a novel kernel defining a GP prior. For any pair of
locations i and j, if the current pressure, temperature, and
the wind direction are denoted as p, t and θ respectively,
then we define our kernel as:

Ki,j = KD
i,j ·Kθ

i,j · (εKp
i,j + (1− ε)Kt

i,j). (1)

Here, KD
i,j ,K

θ
i,j ,K

p
i,j and Kt

i,j are RBF kernels over geo-
graphic distance, the angle of the wind, pressure and tem-
perature respectively and ε is a tunable parameter such that
0 ≤ ε ≤ 1. The resulting kernel matrix would be positive
semi-definite as the proposed kernel function is a linear com-
bination and Hadamard product of kernels.

1Since we are not doing surface-level predictions, the effect
of friction is negligible.



Multiple kernels are commonly used to integrate similarity
notions from different sources [6]. In our case, the similar-
ity between any two sites is a function of the geographic
distance as well as the similarity in the weather variables.
We note that the kernel Kθ over the wind direction plays
a critical role in inducing long-range dependencies. As an
example, consider two stations A and B with wind vectors
[ax, ay] and [bx, by], respectively. We are performing inter-
polation separately in X and Y directions. Hence, for any
station, e.g., station A, we can assume independence in the
two directions such that a neighboring station B can only
induce an air flow change in ax through bx and similarly,
ay is only influenced by by. Kθ captures this intuition by
defining an RBF over the angles made by the wind vectors
with the corresponding axis for which the kernel matrix is
defined. The balance between the pressure gradient force
and Coriolis effect (geostrophic force) causes the winds to
follow isobars. This implies that stations in close vicinity
having similar pressure will have winds aligned in the same
direction, justifying the contribution of Kp in computing the
similarity.

3.3 Joint Modeling of Weather Variables
Weather variables are influenced heavily by the interac-

tion of several factors. At the most fundamental level, these
dependencies are based in the natural laws of thermody-
namics. Approaches to inferences about weather relying on
numerical simulation seek to characterize these dependen-
cies analytically. However these interdependencies are com-
plex and unpredictable, which explains the limited success
of analytical techniques. At the same time, discriminative
statistical analysis beyond temporal and spatial techniques
described above, does not generalize well for domains with
the dynamism of weather phenomena. For weather, it is nat-
ural to consider architectures that can automatically learn
rich representations from raw data. Hence, we model the
joint distribution between weather variables through a deep
belief network (DBN).

The DBN consists of layers of stacked Restricted Boltz-
mann Machines (RBM) where the connections between any
two layers of a RBM form a bipartite graph. The top layer
of the DBN consists of five units corresponding to the nor-
malized values of the latent weather variables (two units for
representing 2D vector winds). We assume a Gaussian prior
over these variables, such that Wi ∼ N (mi, di), each unit
having a bias ai. The primary level interactions between
the variables give rise to a secondary set of features repre-
sented as the layer 2 hidden units, H. Similarly, we can
have another RBM below to capture the interactions be-
tween H and the layer 3 units, G. The hidden units follow
a Bernoulli distribution and have a biases bj and ck. The
weights between the first two layers are U= [uij ] and the
next two layers are V = [vjk]. Several structural and tun-
able design parameters are involved, which we discuss in the
next section.

3.4 Probabilistic Graphical Model
The graphical model for the proposed approach is shown

in Figure 2. The matrix W is the collection of all the weather
variables wi denoting the true value at each location i. The
observations zi = {vxi , vyi , pi, ti, di} recorded at any of the
sites is simply a noisier version of this true value. We use
plate notation to show observations atNs number of weather
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Figure 2: Deep hybrid model. Probabilistic graphi-
cal model for weather prediction where weather sta-
tions denoted by S, induce a Gaussian process (GP)
prior over the true values of the weather variables
W. Only noisier versions (zi) of the true values are
observed at all the sites and are related via φ. The
forecasts given by the pre-trained predictor are re-
lated to the future observations via the potential
ψ(·). The joint distribution of the true weather vari-
ables is further constrained via a deep belief network
(η(·)). All potentials arise at a test site s∗, except
that there is no pre-trained predictor.

stations. Each weather station has random variables for
wind velocity, dew point, pressure and temperature. Each of
these random variables are constrained via (a) an individual
predictor that is trained on the historical data (ψ(·)), (b) a
Gaussian process prior (GP (·)) and the Gaussian likelihood
function φ(·) that use data dependent prior to impose spatial
and functional smoothness and (c) a deep belief network
that encourages solutions that respect the joint statistics
observed in historical data and that are also aligned with
physical laws.

Similarly, at a test site s∗, we use the GP prior and
the likelihood to first interpolate observations made at the
weather stations. These interpolations are then further con-
strained via the deep belief network to impose the joint sta-
tistical distribution of the weather variables. Formally, we
have the following distribution corresponding to the graph-
ical model:

p(W,Z|S) ∝ GP (W; S)
∏
i∈L∪∗

φ(wi, zi)η(zi)
∏
i∈L

ψ(zi).

Here, Z is the collection of random variables representing
the observations at any of the locations. The terms GP (·)
and φ(·) enforce the smoothness constraints as defined by
the data dependent kernel (described in section 3.2). The
potential term η(·) arises due to the deep belief network
component (Section 3.3). Finally, the term ψ(·) applies only
to the weather station sites and enforces consistency with
the prediction of the pre-trained regression functions. In
particular, the observations are related to the output of an
individual predictor via a simple Gaussian function: e.g.
ψ(p) = N(µp, κ

2), where µp is the individual prediction for
the pressure variable.



Algorithm 1 Deep hybrid model learning.

procedure TrainWeatherModels

B Boosted Decision Trees for Every Location, Variable
for all x ∈ {v, p, t, d} do

for all s ∈ S do
trainData ← getTrainData(x, getHistData(s))
param ← getBestParam(trainData)
BstDecTree[x, s] ← TrainBDTree(param)

end for
end for

B GP Hyperparameters for Every Weather Variable
for all x ∈ {v, p, t, d} do

hyParam← getBestHParam(x, getAllHistData())
end for

B DBN joint model training through CD
DBNmodel← ContDivergence(getAllHistData())

end procedure

4. ALGORITHMIC DETAILS
To make the Deep Hybrid Model work in practice, we need

to learn several parameters pertaining to the three compo-
nents and design an efficient inference procedure for test-
ing. Here we note that since we operate our model in batch
mode, we can afford to have an elaborate learning procedure.
Specifically, the deep belief network component indeed has
high training time requirements. On the other hand, since
our forecasts are made in real time, inference at test time
needs to be extremely efficient. We now discuss the learning
and inference algorithms which achieve these objectives.

4.1 Learning
Given the historical observations at various weather sta-

tions, we train the various components of our model in order
to get the best predictive capability. We perform piecewise
training of individual components, where the individual pre-
dictors, the parameters of the DBN and the kernel hyper-
parameters of the GP kernel are estimated. A simplified
workflow for the training procedure is given in Algorithm 1.

In particular, we trained Boosted Tree-based Learners us-
ing the set of short- and long-term features described previ-
ously and used the best models that were obtained for each
weather station in the U.S. for a range of altitudes from 3000
feet up to 39000 feet with an interval of 3000 feet. The opti-
mal parameters with regard to the number of leaves, number
of iterations, and the learning rate, were obtained through
analysis with a 10-fold cross-validation study.

Similarly, the hyperparameters of the data driven kernel
were set via 10-fold cross validation and the final values of
the kernel bandwidths were set to 150, 0.1, 0.05 and 1 for
distance, wind angle, temperature and pressure respectively
and ε was set to 0.2. Finally, the DBN component of our
model was trained via a standard contrastive divergence pro-
cedure [7]. We explored the following parametric ranges: the
learning rate (0.1-0.01), the number of greedy iterations of
convergence divergence (1-100) and the batch size (10-1000).
The structural properties of the neural net such as the num-
ber of hidden layers (1-3) and the number of neurons in each
hidden layer (50-500) were also experimented with. The con-

Algorithm 2 Deep hybrid model inference.

procedure ForecastWeatherVariable(x, s∗,Z)
B Prediction Variable: x, Test Site: s∗, Observations: Z

if s∗ ∈ S then
tmp∗ ← getBDTreePred(x, s∗,Z)

B uses corresponding BstDecTree model from Alg. 1

else
for all si ∈ S do

tmpi ← getBDTreePred(x, si,Z)

wi ← DBNinference(x, tmpi)
B uses DBN model from Alg. 1

Append wi to w
end for

tmp∗ ← GPinterpolate(x, s∗,w,Z)
end if

w∗ ← DBNinference(x, tmp∗)
return w∗

end procedure

figurations yielding best cross validation results comprised
of two stacked RBMs consisting of 50 and 150 hidden neu-
rons, trained with a learning rate close to 0.1, batch size of
100 and 20 greedy iterations. The limitation to these set of
parameters is purely because of the high computational re-
quirements and engineering effort in training deep networks,
and indeed, the gains could be potentially more significant
if the deep belief network is trained over a richer range of
parameters.

4.2 Inference
Given the trained components, we seek to determine the

posterior distribution over the set of observations z∗ at the
test site s∗. Exact inference in the proposed model is hard
due to the presence of potential functions η(·) induced via
the deep belief network. We apply piecewise approximate
inference as illustrated in Algorithm 2. For the trivial case,
when the prediction needs to be made at a weather station
site, we invoke the pre-trained predictor models to provide a
forecast which is then refined using the deep belief network.
If, however, we need to make a prediction at an arbitrary test
site, the refined estimates computed for all weather stations
are interpolated. These refined estimates are then interpo-
lated to the test site via the Gaussian Process component.
We note that, since the kernel function is data driven, we use
simple interpolated values of the weather variable at the test
site in order to compute the kernel. Given the interpolated
values at the test site, we then carry out a last refinement
of prediction in order to resolve the estimates with the joint
statistical constraints imposed by the deep model.

At the heart of the inference scheme, we employ an itera-
tive procedure that aligns the predicted estimates with the
potential induced via the deep model. We use a variational
approximation to resolve and refine the posterior distribu-
tion over the observations z. Formally, we denote the ap-
proximation of the refined posterior by q(zi) ∼ N (µi, σi).
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Figure 3: True versus interpolated wind plots for
static and hybrid kernel. Static interpolation shows
high deviations from true winds. Atmospheric dy-
namics are more effectively captured with use of a
hybrid data-centric kernel.

Additionally, we also approximate the posterior over the la-
tent variables and q(Hj) ∼ Bern (γj) and q(Gk) ∼ Bern (βk)
for the two hidden layers respectively. The following varia-
tional updates are then used to estimate the parameters of
the distribution (lth component):

Layer 1 to 2: 1/γt+1
l = 1 + e

−[bl+
∑
i
µt
iuil]

Layer 2 to 3: 1/βt+1
l = 1 + e

−[cl+
∑
j
γt+1
i vjl]

Layer 3 to 2: 1/γt+1
′

l = 1 +
1− γt+1

l

γt+1
l

e
−[bl+

∑
k
βt+1
k

vlk]

Layer 2 to 1: µt+1
l = (ml + d2l al + d2l

∑
j

γt+1
′

j ulj)/(1 + d2l )

σt+1
l = dl/

√
1 + d2l

The mean parameters µl are initialized to the estimates
ml, while γ and β are initialized randomly. The parame-
ter dl corresponds to the variance in the initial estimates
and signifies our confidence in those predictions. We set
these variances via a cross-validation procedure over histor-
ical data. The derivation for the above update equations
follows from the application of prior work in variational in-
ference [1] to deep belief networks.

5. EXPERIMENTAL EVALUATION
We performed a set of experiments to evaluate the pro-

posed methodology. In the experiments, we explored three
main questions. First, we compare and highlight the advan-
tage of the spatial interpolation procedure that relies on a
data-centric dynamic kernel matrix to the more commonly
used static kernel matrix. Second, we seek to compare the
proposed model with a baseline approach. Third, we explore
the importance of modeling the joint statistics of predictive
variables via the deep belief network. Finally we compare
the wind forecast results with those of state-of-the-art sys-
tems.

The experiments were based on five years of historical
data, from 2009 to present, extracted from the IGRA dataset.
The data consists of balloon observations recorded at 60 lo-
cations across the continental US.

5.1 Interpolation in a Hybrid Field
To illustrate the efficacy of a hybrid kernel in handling

long-range spatial dependencies among weather variables,

we considered a cluster of stations spread across the central
U.S. (states demarcated by black lines in Fig. 1) and in-
terpolated winds via Gaussian Process regression at these
stations, considering the wind measurements from the rest
of the U.S. stations. Thus, each station served as an inde-
pendent test point, whose value is interpolated using a GPR
model and compared against the true winds shown in Fig. 1
(a). Fig. 1 (b) shows the interpolated wind vectors when a
static kernel matrix is used. Here an entry Ki,j in the matrix
is simply a decreasing exponential in the geographical dis-
tance between two stations i and j. In contrast, the hybrid
approach, as illustrated in Fig. 1 (c), captures the similarity
between each pair of stations such that every entry Ki,j of
the matrix is computed dynamically at training time using
the formula given in Eq. 1. The pressure, temperature, and
angle θ between the wind vectors are the known values for
the current time step.

Now consider the following stations: Topeka (Kansas),
Omaha (Nebraska), Springfield (Missouri) and Norman (Ok-
lahama), referred to in Fig. 1 as stations P, A, B and C, re-
spectively. For a static interpolation of winds at P, a higher
contribution would come from B than C, as B is geograph-
ically closer. However, the temperature and pressure con-
ditions at C are closely aligned to that of P and end up
contributing more in the hybrid approach. We observe that
KP,A is maximum in both cases. Hence, the hybrid ker-
nel does not ignore distance as a similarity criteria. How-
ever, in cases involving a tradeoff between distance and other
weather variables, their combined contribution might alter
the relative importance of a particular neighboring station,
as in the aforementioned case. The quantitative gains in
predication accuracy are displayed in the RMS plots in Fig.
3 (a, b).

Weather Variable RMS Error Reduction (in %age)
X Y Overall

6 hours 2.17 2.05 2.11
12 hours 1.05 1.01 1.03
24 hours 1.05 0.97 1.01

Table 1: Improvement in performance obtained us-
ing the deep belief network. The final step of re-
finement uses the DBN results to further improve
prediction accuracy.

5.2 Dynamic Prediction and Deep Learning
In another experiment, we evaluate the performance gains

due to the final refinement step of the deep belief network.
The percentage reduction in error for wind forecasts for three
time steps in the future are shown in Table 1. We see that
the DBN leads to an additional 1-2% error reduction and
clearly, modeling the joint statistics of the weather variables
helps in making better predictions. We observed a per-
formance improvement of similar magnitude for the other
weather variables as well.

After establishing the superiority of the data-centric ker-
nel and the DBN independently, we evaluate the prediction
accuracy of the full deep hybrid model for each weather vari-
able2, aggregated over all stations in the continental U.S.,
where current and historical data is available.

2The IGRA dataset provides the geopotential height and
dew point at roughly constant pressures. These quantities,



B: Typical Prediction Model
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Figure 4: Results on predicting weather variables for different approaches. The temporal predictors that
employ a hybrid data-centric scheme for interpolation and use DBNs for modeling the joint relationship
among weather variables show significant improvements over the baselines.

The accuracy of the proposed model is compared with
two baseline models in Fig. 4 for three future time steps
as before. The baseline prediction, marked as A in Fig.
4, uses the current values as estimates for the future; the
intuition with using current values to predict the future is
that weather conditions typically do not change greatly over
a day. For the second baseline (marked B), we construct
a typical spatiotemporal prediction model, where baseline
boosted decision tree predictors are augmented with a static
interpolation scheme. We observe that the deep hybrid
model (marked C) comprising of a dynamic data-driven in-
terpolation scheme and a DBN in addition to the boosted
decision tree predictors used in B, significantly outperforms
both the baselines. In a couple of cases involving short-
term temperature forecasts, B marginally outperformed the
DHM, suggesting limited interdependences between temper-
ature and other variables for short-term predictions.

5.3 Comparison with State of the art
Apart from winds, forecasts for other variables across the

vertical atmospheric profile are not available for comparative
analyses. We compare the wind predictions of the proposed
model against two forecast systems. The first one proposed
by [9] makes predictions using a static GPR interpolation
scheme, coupled with relative velocity data obtained through
airplanes. Our second set of comparisons is with the Winds
Aloft forecast, released by NOAA every six hours, for three

under reasonable assumptions, serve as proxies for pressure
and specific humidity, respectively.

Time Step Model RMS Error (in knots)
X Y Overall

6 hours Deep Hybrid Model 2.29 1.33 1.81
Kapoor et al. 2014 3.94 2.16 3.05

NOAA 3.18 3.44 3.31
12 hours Deep Hybrid Model 4.44 2.59 3.56

Kapoor et al. 2014 5.03 3.93 4.48
NOAA 5.13 4.34 4.88

24 hours Deep Hybrid Model 6.57 3.82 5.19
Kapoor et al. 2014 8.93 5.24 7.08

NOAA 8.79 6.37 7.58

Table 2: Comparison of the proposed methodology
with state of the art in wind prediction. Results
summarized here are for weather stations in Wash-
ington for a period of one month. We observe that
the new model results in significantly lower errors
than competitive models. The best performance is
indicated in bold.

time steps into the future: 6, 12 and 24 hours. Table 2
show the accuracy of the two forecast systems for the Seat-
tle station. The results summarize the predictions made for
the weather stations in the state of Washington for a pe-
riod of one month. We observe that, while Kapoor et al.
2014 achieve better performance than NOAA, the proposed
method shows significantly better performance than both of
the competitors.



6. CONCLUSION AND FUTURE WORK
We presented a weather forecasting model that makes

predictions via considerations of the joint influence of key
weather variables. We introduced a data-centric kernel and
showed how using GPR with such a kernel can effectively in-
terpolate over space, taking into account weather phenom-
ena such as turbulence. We performed temporal analysis
using short- and longer-term features within a gradient-tree
based learner. We augmented the system with a deep be-
lief network and tuned the parameters to model the depen-
dencies among weather variables. A set of experiments on
real-world data shows that the new methodology can pro-
vide better results than NOAA benchmarks, as well as re-
cent research that had demonstrated improvements over the
benchmarks.

Future work includes projecting weather predictions to
more distant times into the future. We are also interested in
exploring the use of computations of the value of information
to guide sensing at weather stations. We note that airplanes
in flight can serve as sensors of wind speeds, as explored in
[9]. We wish to investigate the boosts in predictive power
that might be achieved via integrating such additional data
into the hybrid model.
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Automated Generation of Reduced Stochastic
Weather Models I: simultaneous dimension and model
reduction for time series analysis. Multiscale Modeling
& Simulation, 6(4):1125–1145, 2008.

[9] A. Kapoor, Z. Horvitz, S. Laube, and E. Horvitz.
Airplanes aloft as a sensor network for wind
forecasting. In Proceedings of the 13th international
symposium on Information Processing in Sensor
Networks (IPSN), pages 25–34. IEEE Press, 2014.

[10] V. M. Krasnopolsky and M. S. Fox-Rabinovitz.
Complex hybrid models combining deterministic and
machine learning components for numerical climate
modeling and weather prediction. Neural Networks,
19(2):122–134, 2006.

[11] R. J. Kuligowski and A. P. Barros. Localized
precipitation forecasts from a numerical weather
prediction model using artificial neural networks.
Weather and Forecasting, 13(4):1194–1204, 1998.

[12] G. Marchuk. Numerical methods in weather prediction.
Elsevier, 2012.

[13] A. McGovern, D. John Gagne, N. Troutman, R. A.
Brown, J. Basara, and J. K. Williams. Using
spatiotemporal relational random forests to improve
our understanding of severe weather processes.
Statistical Analysis and Data Mining: The ASA Data
Science Journal, 4(4):407–429, 2011.

[14] A. McGovern, T. Supinie, I. Gagne, M. Collier,
R. Brown, J. Basara, and J. Williams. Understanding
severe weather processes through spatiotemporal
relational random forests. In 2010 NASA conference
on intelligent data understanding, 2010.

[15] R. Mittelman, B. Kuipers, S. Savarese, and H. Lee.
Structured Recurrent Temporal Restricted Boltzmann
Machines. In Proceedings of the 31st International
Conference on Machine Learning (ICML), pages
1647–1655, 2014.

[16] Y. Radhika and M. Shashi. Atmospheric temperature
prediction using support vector machines.
International Journal of Computer Theory and
Engineering, 1(1):1793–8201, 2009.

[17] C. E. Rasmussen. Gaussian processes for machine
learning. 2006.

[18] L. F. Richardson. Weather prediction by numerical
process. Cambridge University Press, 2007.

[19] N. I. Sapankevych and R. Sankar. Time series
prediction using support vector machines: a survey.
Computational Intelligence Magazine, IEEE,
4(2):24–38, 2009.

[20] I. Sutskever, G. E. Hinton, and G. W. Taylor. The
Recurrent Temporal Restricted Boltzmann Machine.
In Advances in Neural Information Processing
Systems, pages 1601–1608, 2009.

[21] C. Voyant, M. Muselli, C. Paoli, and M.-L. Nivet.
Numerical Weather Prediction (NWP) and hybrid
ARMA/ANN model to predict global radiation.
Energy, 39(1):341–355, 2012.


