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Abstract

We discuss representing and reasoning with

knowledge about the time-dependent utility

of an agent's actions. Time-dependent util-

ity plays a crucial role in the interaction be-

tween computation and action under bounded

resources. We present a semantics for time-

dependent utility and describe the use of time-

dependent information in decision contexts.

We illustrate our discussion with examples of

time-pressured reasoning in Protos, a system

constructed to explore the ideal control of in-

ference by reasoners that have limited abilities.

1 INTRODUCTION

Decision-theoretic methods have been considered inap-

plicable for general problem solving because they require

agents to possess a utility function that provides a pref-

erence ordering over outcomes of action, and to have

access to a probability distribution over outcomes assoc-

iated with each decision [Simon et al., 1987]. We have

investigated methods for maximizing utility in reason-

ing systems, given limitations in computational abilities

and information. In particular, we have explored the

problem of computing probability distributions under re-

source constraints. To a lesser extent, we have studied

the assessment and custom-tailoring of utility models for

time-dependent action.

Performing inference to determine a probability dis-

tribution can delay an agent's action. Inference-related

delays can lead to losses stemming from competition

for limited resources, decay of physiological states, and

problems with coordination among independent deci-

sion makers. Endowing an agent with the ability to

trade o� the accuracy or precision of an analysis for

more timely responses can increase the expected value

� In Proceedings of the Seventh Conference on Uncer-

tainty in Arti�cial Intelligence, Los Angeles, CA, pages 151-
158. Morgan Kaufmann, San Mateo, CA, July 1991. Also
Stanford CS Technical Report KSL-91-33.

of that agent's behavior. Recent work by several investi-

gators has addressed such tradeo�s in reasoning systems

[Doyle, 1988, Horvitz, 1988, Boddy and Dean, 1989,

Russell and Wefald, 1989, Breese and Horvitz, 1990].

We constructed the Protos system to experiment with

the use of metareasoning procedures to control inference

approximation methods [Horvitz et al., 1989a]. Protos

determines the length of time it should dwell on an infer-

ence problem before taking action in the world. Protos

iteratively computes a myopic estimate of the expected

value of computation (EVC) by balancing the cost of

delay with the bene�ts expected from additional re�ne-

ment of the probabilities used in a decision problem. The

system makes use of information about the convergence

of approximate results to exact answers, and about the

time-dependent change of the utility of outcomes.

We discuss several aspects of our work on the consid-

eration of time-dependent utility of outcomes. We re-

view background on the Protos system, describe the se-

mantics and assessment procedures for time-dependent

utility, and discuss the custom-tailoring of default time-

dependent utility models given observations. Finally, we

describe the operation of Protos by presenting examples

of the system's behavior.

2 A LIMITED REASONER

Determining the expected value of alternate actions un-

der uncertainty requires assigning belief, p(HjE; �), to

one or more relevant hypotheses, H, given observations,

E, and background information, �. Inference approxi-

mation algorithms produce partial results in the form of

bounds or second-order probability distributions on rel-

evant probabilities. Let us refer to relevant probabilities

as �. If we are forced to act immediately, we should take

an action D that maximizes our expected utility, given

the mean of p(�), <p(�)> [Howard, 1970]. The utility

of this action is equal to the utility of the decision we

would make had belief in � been a point probability at

the mean of p(�). That is,

argmax
D

u(D; p(�)) = argmax
D

u(D;<p(�)>)
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Figure 1: Protos' four components include (1) a metar-

easoner that considers the bene�ts of continuing to com-

pute, (2) an inference base that contains probabilistic

inference procedures, (3) belief networks that represent

domain knowledge; and (4) a problem-speci�c decision

model. Inference and time-dependent utility depend on

observations.

Additional computation can tighten a second-order dis-

tribution. However, the utility of outcomes can diminish

with time. Thus, there is a tradeo� between the bene�ts

of making a decision based on a more precise result and

the costs associated with delay. An EVC analysis com-

pares the expected utility of instantaneous action with

the expected utility of action that might be taken fol-

lowing future computation, including the costs of that

computation.

An exact EVC analysis can consume a signi�cant por-

tion of the total time required to solve an inference

problem. Our investigation on the control of belief-

network inference has focused on the use of tractable

EVC approximations. Approximate EVC analyses in-

clude single-step or myopic analyses. In myopic anal-

yses, the EVC is computed under the assumption that

an agent will take an action in the world after reasoning

for a predetermined increment of time; we undertake a

myopic analysis to determine whether additional anal-

ysis is more valuable than is immediate action. One

approach to computing the expected utility of delaying

action is to consider the set of second-order distributions

expected with additional computation. For each feasible

future distribution, we consider the value of the best ac-

tion, given that distribution, and weight that utility by

the probability of the future distribution.

Protos makes use of myopic EVC analyses. Protos has

four major components, pictured schematically in Figure

1: (1) a metareasoner; (2) an inference base containing

inference procedures; (3) a domain-speci�c knowledge

base in the form of belief networks; and (4) a problem-
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Figure 2: Lottery for assessing time-dependent utilities.

We query a decision maker for the probability p of in-

stant, painless death that would make him indi�erent

between his future life lottery when treated at time t,

and having a 1�p chance of continuing his life as though

the challenge facing him had not occurred.

speci�c decision model. At run time, a decision problem

containing alternate actions, outcomes, and utilities is

passed to Protos. Given a decision problem, Protos ini-

tiates an iterative cycle of reasoning and metareasoning.

Object-level inference is interleaved with metareasoning

about the value of performing additional inference.

At the start of each cycle, Protos computes the EVC

associated with continuing object-level computation for

an additional increment of time. If the metareasoner

indicates that the EVC associated with the next incre-

ment of reasoning is zero or negative, computation ceases

and the system takes an action indicated by the mean of

the second-order probability distribution. Depending on

the computational hardware, the structure of the time-

dependent utility model, and the expected re�nement

of the second-order probability distribution by an infer-

ence algorithm, Protos may (1) take an immediate reex

action, (2) dictate a best action after some partial infer-

ence, or (3) take an action it proves to be dominant.

Decision dominance can be proved before inference is

completed with the use of a probability bounding algo-

rithm. A decision dominates others when a single action

is indicated for the range of probabilities in the interval

bordered by an upper and lower bound on the probabil-

ity.

We have experimented with a tractable myopic ap-

proximation named EVC/BC (for EVC{bounds categor-

ical) to control probabilistic bounding. With this form of

EVC, we compute the value of tightening categorical up-

per and lower bounds on a probability. EVC/BC hinges

on interpreting upper and lower bounds as a second-

order probability distribution. The measure is based on

a least-commitment interpretation of bounds as a uni-

form distribution between the upper and lower bounds,

with a mean at the midpoint of the bounds interval. The

small amount of time required for the EVC/BC analysis

is included in the EVC analysis itself. Details of the na-



ture, limitations, and use of EVC/BC are described in

[Horvitz, 1990].

3 TIME-DEPENDENT UTILITY

Let us consider the use of Protos to solve time-pressured

medical problems. We have worked to represent in

Protos the cost of delaying treatment as a function of

the time a patient has remained in an untreated acute

pathophysiological state. Physicians delivering emer-

gency medical care often rely on knowledge about the

cost of delay in treating a patient.

3.1 Semantics and Representation of Time

Dependency

In answer to a query for assistance, Protos propa-

gates observations about a patient's symptomatology

through a belief network. The system deliberates about

whether to make a treatment recommendation immedi-

ately, based on a partial analysis, or to defer its action

and to continue inference, given its knowledge about the

costs of delay.

We represent time-dependent action by considering a

continuum of decisions, each de�ned by initiating an ac-

tion at a progressively later time, and by assessing the

change in utility of the outcome as a function of this

time. We use AiHj; t to refer to an action, Ai, taken

at time t when state Hj is true. We de�ne t in terms

of an initial time, to, the time a physiological challenge

begins. We de�ne the utility of u(AiHj; t) at di�erent

times t, with an acute-challenge lottery. To assess the

cost of delaying a treatment, we ask a decision maker

to consider a time-pressured problem that he might face

in a decision context. Next, we imagine that there is a

treatment that can rid him instantly of the acute a�ic-

tion with probability 1 � p. Unfortunately, with prob-

ability p, the treatment will kill him, immediately and

painlessly. We assume that, if a patient wins this lottery,

he will continue his life as though the acute incident had

not occurred; that is, he faces his preincident future life

lottery. To assess the utility, u(AiHj; t), at progressively

later times t for action, we ask a decision maker for the

probability p of instant, painless death that would make

him indi�erent to accepting the uncertain outcome of be-

ing treated for an acute illness at time t or having a 1�p

chance of continuing his life as though the acute incident

facing him had never occurred. We take the di�erence

in the probabilities of death for action at time t and at

a later time t0 as the loss in utility. We can measure the

cost of delay in terms of micromorts. A micromort is a

10�6 chance of immediate, painless death. Alternatively

we can assign dollar values to the risks incurred with de-

lay. We can use the worth- numeraire model introduced

by Howard [Howard, 1980] to convert small probabilities

of death to dollars in terms of dollars per micromort.

Beyond assessing utilities for each moment of action,

we can model the utility of action at progressively later
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Figure 3: A graphical representation of the utility of two

actions under uncertainty. The lines indicate the utilities

of action A1 and action A2 as a function of the proba-

bility of hypothesis H1. The lines cross at a threshold

probability of hypothesis H1 called p
�.

times with functions that encode a micromort ux for

each outcome. The micromort ux is the number of

micromorts we incur with each second of delay. We ex-

perimented with parametric utility equations and found

several to be useful for summarizing the time dependency

of alternate outcomes. Two functions we used to model

losses with time are the linear and exponential forms,

u(AiHj; t) = u(AiHj; to)e
�kat

u(AiHj; t) = u(AiHj; to)� cbt where u(AiHj; t) � 0

where ka and cb are parameter constants derived through

�tting of a series of micromort assessments to a func-

tional form or are assessed directly. Our language

for assessing and representing mathematical models of

time dependence allows decision makers to encode lower

bounds on utility over time, and to make statements

about the chaining of sequences of functions.

3.2 Utility of Action in Time-Pressured

Contexts

Given time-dependent utilities, we can compute the

expected value of di�erent actions, Ai, in terms of the

likelihood of alternative outcomes, Hj. The expected

utility (eu) of taking action Ai at time t is

eu(Ai; t) =

nX

j=1

p(HjjE; �)u(AiHj; t)

Consider the simple case of a binary time-dependent de-

cision problem. We have two states of the world (e.g.,

diseases) H1 and H2, and two best actions (treatments)

A1 and A2 to address each state. As an example, the

states can be the presence and absence of a disease,

and the ideal actions can be treating and not treating

for the disease. Under uncertainty, we must consider

the utilities of four outcomes: u(A2H2; t), u(A1H2; t),



u(A1H1; t), and u(A2H1; t). If H1 and H2 are mutu-

ally exclusive states, the expected utilities of the actions

eu(A1; t) and eu(A2; t) are

eu(A1; t) = p(H1jE; �) (u(A1H1; t)� u(A1H2; t))

+u(A1H2; t);

eu(A2; t) = p(H1jE; �) ((u(A2H1; t)� u(A2H2; t))

+u(A2H2; t)

The expected utilities of actions A1 and A2, as a function

of the probability of H1, are graphed in Figure 3. Note

that the equations specify the expected utility of two ac-

tion as lines intersecting at a threshold probability ofH1,

denoted p�. As we increase the probability of p(H1) from

0 to 1, the decision with the greatest expected utility

shifts, at p�, from A1 to A2. If we must act immediately,

we take an action dictated by the mean of the second-

order distribution: We take action A1 if the mean of the

second-order distribution over p(H1jE; �) is greater than

p
�; otherwise, we take action A2.

A computational agent rarely is forced to act imme-

diately. An agent can pause to continue inference, or to

reect about the costs and bene�ts of delaying an action

to compute a better decision. The dynamics of reason-

ing about belief and action under bounded resources are

highlighted in Figure 4. The �gure shows how the util-

ity of outcome A1H1; t might diminish with delay. The

dashed line shows the expected utility of taking action

A1 in the context of hypothesis H1 at an initial time, to.

The adjacent solid line indicates the diminished expected

utility of taking the action at a later time t, given the

truth of hypothesis H1. Note that, as the utility of tak-

ing action A1 falls, the decision threshold, p�, increases.

In a time-pressured setting, the utilities of one or more

outcomes decay with delay. At the same time, inferen-

tial processes may be underway to re�ne bounds or a

second-order distribution over probabilities of interest.

Figure 4 shows the concurrent tightening of upper and

lower bounds by a bounding algorithm. As the utility

lines pivot or sweep down at rates dictated by the decay

functions for each outcome, approximate inference con-

tinues to tighten the bounds, yielding a time-dependent

dynamics of belief and action.

3.3 Run-Time Modi�cation of Criticality

Most of our work on Protos has relied on the use of �les of

utilities assessed for prototypical situations. The utility

information is represented in tuples that contain the util-

ity of immediate action, and functions that describe time

dependent decay, indexed by AiHJ pairs. We also have

explored the construction of models of time-dependent

utility. With the modeling approach, we assess utilities

that represent preferences for canonical situation, then

apply a mathematical model to custom-tailor average

case utilities and time dependencies to a speci�c decision

maker and situation. To handle time-pressured medical
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Figure 4: Graph of how the utility of an outcome may

decay as a function of time. In this case, the utility

of taking action A1, in the context of H1, diminishes

with delay. The utility associated with immediate action

(broken line) and delaying action (adjacent solid line) is

displayed. The decision threshold, p�, is also a function

of time; here, p� increases as the utility of A1H1; t de-

creases.

decisions, we elicit from an expert decision maker|in

our case, an emergency-room physician1|functions that

modify the micromort ux of relevant outcomes, in re-

sponse to arguments of discrete and real-valued patient

vital signs. We experimented with functions that pro-

vide time-dependency parameters as a function of the

patient's age, heart rate, blood pressure, and partial

pressure of oxygen in the blood (PaO2). In practice, Pro-

tos makes use of default time-dependent utility models

if no vital signs are observed. Given the observation of

vital signs, and the availability of information about the

speci�c class of decision problem, the initial utility and

time dependence are custom-tailored.

Our work on the tailoring of time-dependent utility

through constructing models of criticality parallels work

in the medical decision-analysis community on tools for

assisting physicians to induce the utility functions of pa-

tients by identifying key features of patients' person-

alities [McNeil et al., 1982, Jimison, 1990]. Our exper-

imentation with deterministic functions for modifying

utility models is a modest initial approach to custom-

tailoring default time-dependent models. In the general

case, modeling the utility of decision makers, such as

patients receiving time-critical therapy, is a problem of

diagnosis under uncertainty.

1One of the authors (G.R.) served as the source of
emergency-medicine expertise.
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Figure 5: (a) Protos display of the convergence of the

upper and lower bounds (ub, lb) on a probability of in-

terest and the time-dependent decision threshold (p�).

The vertical line indicates the time for action. (b) The

time-dependent utilities for four possible outcomes.

4 PROTOS IN ACTION

We now examine the behavior of Protos in solving

several simpli�ed time-dependent decision problems in

medicine. In the examples, we determine the ideal time

to perform inference with the bounded-conditioning ap-

proximation strategy [Horvitz et al., 1989b], given time-

dependent changes in the utility of outcomes.

Bounded conditioning is based on the method of con-

ditioning [Pearl, 1988]. The method works by decom-

posing a belief-network inference problem into a set

of simpler, singly connected belief networks, and solv-

ing these subproblems in order of their contribution

to upper and lower bounds on a probability of inter-

est. The greater the number of subproblems solved,

the tighter the bounds. We shall examine decisions

based on inference with Dxnet and ALARM, multiply

connected belief networks that were assessed for reason-

ing about acute medical problems [Beinlich et al., 1989,

Rutledge et al., 1989].2 We note that several ap-

proximation algorithms and exact algorithms (such as

the clique-tree method of Lauritzen and Spiegelhalter

[Lauritzen and Spiegelhalter, 1988]) can solve inference

problems with these networks faster than bounded con-

ditioning can perform a complete analysis. However,

the incremental and well-characterized convergence of

bounds by bounded conditioning gives us the opportu-

nity to explore fundamental interactions between time-

dependent belief and utility, and, more generally, to de-

velop principles for optimizing the value of actions taken

by an agent that has limited inferential abilities. Princi-

ples of utility- directed control promise to be most valu-

able for controlling probabilistic inference in larger belief

networks, such as the evolving QMR-DT network for in-

ternal medicine [Shwe et al., 1990].

Figure 5(a) displays the time-dependent decision

threshold, p�, and the convergence of the upper and

2ALARM is a 37-node belief network; Dxnet has 81 nodes.
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Figure 6: The utility (crossing solid lines) of treating

for hypothesis H1 (Util(A1)) and for H2 (Util(A2)), as a

function of the probability of H1. Broken lines indicates

the utilities of acting at to. The vertical line (p) displays

the value of the exact probability, computed after the

decision to take action A2 was made.

lower bounds (ub, lb) on a probability computed by

bounded conditioning with the ALARM network. As-

sume that we are employing inference to determine the

probability of a life-threatening respiratory pathophysi-

ology (H1), requiring dangerous ventilation therapy, ver-

sus a minor acute respiratory reaction that resolves in

most cases with minor treatment. We assume that we

shall not gather additional information; we shall base

our action on only the information already collected. A

vertical line through the bounds in Figure 5(a) indicates

Protos' decision to halt inference after 20 seconds. At

this time, the EVC becomes nonpositive. Figure 5(b)

displays the time-dependent utilities of four outcomes,

constructed as the product of actions and states of the

world: We treat the patient (A1) or do not treat the

patient (A2) with dangerous therapy, and the patient

either has (H1) or does not have (H2) the severe respi-

ratory problem. The time-dependent threshold, p�, is

a function of the utilities, which were assessed from an

expert. In this case, the utility of outcome A1H1,t|

the utility of acting to treat the patient for the severe

respiratory problem|decays signi�cantly with delay.

Figure 6 displays a graph of the utility of actions A1

and A2 at the time action was recommended, as a func-

tion of the probability of H1. The broken line, adjacent

to the solid utility lines, indicates the utility of A1 at

to, allowing us to inspect the e�ect that delay has had

on the value of the time-dependent outcome. The graph

displays the upper and lower bounds (ub, lb) at halt-

ing time, the mean value between these bounds, and the

decision threshold p
� at the time Protos recommended

action A2. The graph also displays the �nal point prob-

ability of H1, computed after the the entire inference

problem is solved. The value of the point probability
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Figure 7: (a) Here, decision dominance is proved as the

upper bound moves below the decision threshold. (b)

The time-dependent utilities for the four outcomes. (c)

Graphical analysis of the bounds and utility at halting

time.

indicates that, in this case, an instantaneous complete

analysis would have recommended the same action.

To demonstrate the sensitivity of Protos' analysis to

changes in time-dependent utilities, we consider the same

decision problem with a smaller micromort ux for the

utility of outcome, A1H1,t. Figure 7(a) displays, for the

revised problem, the convergence of bounds on belief and

the trajectory of the decision threshold. The reduced

time dependence of utilities of the outcome are displayed

in Figure 7(b). With the revised utility model, which

represents a less critical situation, Protos now reasons

for 40 seconds before making a recommendation not to

treat for H1. The EVC/BC remains positive until the

upper bound passes beneath p
�, proving the dominance

of A2. Figure 7(c) displays graphs of the utilities and

bounds at the time action was taken.

Let us now examine Protos' performance on a cardiac

decision problem with a focus on the use of default and

custom-tailored utility models. Consider the case where

Protos is challenged with recommending action for a pa-

tient who suddenly demonstrates extremely low blood

pressure and tachycardia (an extremely fast heart rate).

Assume the problem has been narrowed to two mutu-

ally exclusive syndromes: congestive heart failure (H1)

and hypovolemia (H2). Congestive heart failure (CHF)

is a serious condition in which the pumping ability of

the heart is decreased; like hypovolemia, it causes low

blood pressure and poor oxygenation of tissues. Hypo-

volemia is a dangerous state of decreased blood volume

caused, for example, by dehydration or bleeding. Al-

though hypovolemia and CHF share salient symptoma-

tology, the treatments for these pathophysiological states

conict with each other. The treatment for hypovolemia

(A2) is to give the patient uids to restore blood volume

to a normal level. In contrast, the primary treatment

for CHF (A1) is to reduce the quantity of liquids in the

body by administering a diuretic. Erroneously treating

a patient who has CHF with uid-replacement therapy,

or treating a patient who has hypovolemia with diuretic

therapy, are both life-threatening actions.

In Protos' default time-dependent utility model for the

average-case situation, the cost of delaying the treatment

of CHF is described by an exponential decay constant

that is 10 times larger than the constant used to charac-

terize the cost of delay in treating hypovolemia. Protos

computes the probability of CHF by propagating obser-

vations in the Dxnet belief network. Figure 8(a) shows a

trace of the update of the probability of CHF. Here, Pro-

tos is considering a new �nding that a measure of blood

pressure in the lungs is normal. The vertical line indi-

cates Protos' decision to halt after 115 seconds. At this

point, the system recommends that the patient should

be treated for CHF. The dominance of this decision is

proved when the lower bound crosses the decision thresh-

old p�.

For this decision problem, the micromort ux assoc-

iated with delaying treatment for CHF is represented as

a function of the patient's blood pressure. Let us lower

the blood pressure and reevaluate the case. In response

to a signi�cant drop in blood pressure, Protos increases

the exponential decay of the value for the outcome of

treating for CHF, when CHF is indeed present. In this

case, the decay of u(A1H1,t) is increased from e
�0:001t to

e
�0:008t. Figure 8(b) shows the same probabilistic anal-

ysis with the use of the revised time-dependent utility

model. Protos now recommends that the patient should

be treated for CHF after it performs only 30 seconds of

computation. In the more critical case, action is indi-

cated before a decision threshold is reached, because the

EVC becomes nonpositive before a probability bound

crosses the decision threshold.

5 DISCUSSION

We have made several observations about Protos' be-

havior. We have found that, in many cases, a utility-

directed analysis of probabilistic inference dictates that

actions should be taken after only a small fraction of

an analysis has been performed. Thus, even approxi-

mation methods with relatively slow convergence can be

more valuable than are faster exact algorithms. Two

salient examples of this behavior are displayed in Figure
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Figure 8: (a) Bounds convergence and decision thresh-

old for decision dilemma involving treatment for CHF

(A1) versus treatment for hypovolemia (A2). (b) Same

decision problem with increased decay of the outcome of

treating for CHF when CHF is present.

9. In such cases, the ideal decision is determined in the

�rst few seconds of an analysis. More generally, we have

found that decisions about the ideal length of time to de-

liberate and the ideal action to take are sensitive to the

details of the time-dependent utilities of outcomes, the

information about the convergence of an approximation

strategy, and the trajectory of partial results generated

by approximate inference.

We observed behaviors that highlight the complex-

ity of the interplay between time-dependent utility and

time-consuming inferential processes. Some of the be-

haviors are explained by the limitations associated with

the use of a myopic measure of EVC. We found that

dependencies between time-dependent utility and infer-

ential processes can make computation time and rec-

ommended actions sensitive to small changes in a time-

dependent utility model. In some cases, small changes

in the time dependencies in a utility model change the

ideal recommended action.3 We found that increasing

the time-dependent decay of the utility of an outcome

can increase the duration of reection. In these cases, the

trajectory of converging bounds surrounds and \keeps

step with" an increasing or decreasing p
�. We observed

situations where an agent applying a myopic EVC es-

timate may be in the unlucky situation of continuing,

for several steps, to observe a positive EVC, yet see its

expected utility continue to diminish with delay. We

identi�ed cases where the EVC/BC returns to a positive

value after it had a 0 or negative value. Such nonmono-

tonicity in the EVC motivated us to implement looka-

head analyses that consider two or more future steps of

computation. We are experimenting with more advanced

lookahead techniques. More generally, we are pursuing

the development of methods to monitor and modify be-

havioral patterns that have roots in the myopic EVC

evaluation, and for identifying cases where the results

3Related problems with an optimal decision changing with
delay for analysis have been identi�ed previously in the con-
text of decision analysis [McNutt and Pauker, 1987].
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Figure 9: (a) Bounds convergence and decision thresh-

old in the ALARM network for treating possible left-

ventricular failure. (b) Bounds convergence and decision

threshold in reasoning within the Dxnet belief network

to support a decision about treating for a pulmonary

embolism.

of an analysis are sensitive to small uctuations in the

trajectory of time-dependent utilities or probabilities.

We stress that we have addressed the assignment of

belief and utilities by limited agents; we have not dis-

cussed the automated construction of decision models.

In the current version of Protos, preconstructed decision

problems are passed to the system, in reaction to salient

observations. We foresee that ongoing work on proce-

dures for constructing decision models [Wellman, 1988,

Breese, 1990, Heckerman and Horvitz, 1990] will foster

the development of more comprehensive agents that can

build as well as solve decision problems under bounded

resources.

6 SUMMARY

We described the assessment and use of time-dependent

utility in limited computational agents that are charged

with taking ideal action in time-critical contexts. Anal-

yses with Protos have demonstrated that the duration

of computational analysis and choice of the ideal deci-

sions to make in the world can be sensitive to the time-

dependent utilities of relevant outcomes. We discussed

the generalization of lottery-based assessment techniques

to mathematical models that represent the decay of util-

ity of outcomes with delay. After describing the prob-

lem of custom-tailoring the time-dependency of default

utility models in response to observations, we presented

examples of Protos' behavior on time-pressured medical

decision problems. Finally, we discussed potential prob-

lems with the use of myopic EVC analysis and described

ongoing work on the development of nonmyopic inference

monitoring and control procedures.
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