
SAE 2007 World Congress, April 16-19, 2007, Detroit, MI

Paper Number 2007-01-1102

Map Matching with Travel Time Constraints

John Krumm
Microsoft Research

Julie Letchner
University of Washington

Eric Horvitz
Microsoft Research

Copyright © 2007 SAE International

ABSTRACT

Map matching determines which road a vehicle is on
based on inaccurate measured locations, such as GPS
points. Simple algorithms, such as nearest road
matching, fail often. We introduce a new algorithm that
finds a sequence of road segments which
simultaneously match the measured locations and which
are traversable in the time intervals associated with the
measurements. The time constraint, implemented with a
hidden Markov model, greatly reduces the errors made
by nearest road matching. We trained and tested the
new algorithm on data taken from a large pool of real
drivers.

INTRODUCTION

Automotive navigation systems use map matching to
compute the location of a vehicle on a road based on
noisy sensors, usually including GPS. This is a
challenge, because neither location sensing nor mapped
road positions are always accurate enough for a simple
algorithm like nearest road matching to succeed. An
example of these inaccuracies is illustrated in Figure 1.
This shows three GPS points measured along a longer
trip. The center GPS point is several meters from any
mapped road, due either to inaccuracy in the map,
inaccuracy in the GPS measurement, or some of both.
The goal of map matching is to determine the road that
was actually being driven in spite of these inaccuracies.
Our algorithm computes the gray route as the one that
most likely represents the vehicle’s true path on the
map.

The most frequent application of map matching is as a
prerequisite for giving real time directions, because it
determines the vehicle’s position in the road network.
The navigation system’s internal router then uses this
position to compute directions to the desired destination.
Map matching is also important for post hoc analysis of

GPS tracks, when the goal is to discover which roads
were driven. This is our main motivation, although our
algorithm applies to real time matching as well.

Map matching is not only for pure GPS data. Any form of
measured location and orientation data could serve as
input, including odometry, compass readings,
triangulation from Wi-Fi base stations or cell towers, and
combinations of these. Although we concentrate on pure
GPS data in this paper, our algorithm is applicable to
other, multiple sensors whose location measurements
can be modeled probabilistically.

The key innovation in our algorithm is that it matches
roads based not only on the location measurements, but
additionally on the time stamps of the measurements.
The time constraint means that the sequence of

measured

GPS points

1

2

3

inferred

path

Figure 1: Our algorithm takes inaccurate GPS points

and matches them to nearby roads.

matched roads must be reachable from each other in the
time intervals computed from the measurements’ time
stamps. This additional constraint greatly improves the
accuracy of map matching over a simple nearest road
algorithm.

OUR ALGORITHM IN CONTEXT WITH
PREVIOUS WORK

The most obvious way to match location measurements
to road data is simple nearest road matching. In this
algorithm, a set of candidate nearby road segments is
chosen. For each of these candidates, the algorithm
computes the distance between the measured point and
the nearest point on the segment. The road segment
with the smallest computed distance is declared the
matched road. This algorithm often fails because it
neglects to account for continuity of the driven path. An
example of this failing is shown in Figure 3, where the
measured GPS locations are connected by a black line.
When the vehicle crossed the intersection, the nearest
road algorithm matched to the north/south cross street,
despite the fact that the vehicle continued to travel
across the intersection on the same east/west street as
before. Taken to its logical conclusion, the nearest road
match means that the vehicle would have had to make a
U-turn at the nearest opportunity (shown in gray) to get
back to the original street. Our algorithm instead infers
the route as the white line, preserving continuity.

The nearest road algorithm and others are reviewed in
[1]. One step up in sophistication from the nearest road
algorithm is curve-to-curve matching. Here, a set of

location measurements is matched to candidate routes,
and the minimum error route is chosen as the best
match. This helps fix the continuity problem, but the
number of possible route candidates to match against
can grow quickly when there are many nearby,
branching roads, as in Figure 2, giving an overwhelming
number of candidates to check.

One of the more sophisticated classes of map matching
algorithms accounts explicitly for the road topology. In
[1], their version of the topology algorithm limits the next
match in time to roads that are reachable from the
current match. Hummel[2] uses a hidden Markov model
to eliminate transitions between unconnected road
segments. This is similar to our algorithm, except that we
use a probabilistic travel time constraint instead of pure
topology. This constraint implicitly accounts for topology
and also disallows temporally unlikely paths. For
instance, in Figure 4, the GPS data seems to indicate an
excursion onto a side road, which would have to be
followed by a U-turn to get back to the subsequent GPS
points. In evaluating possible paths, our algorithm finds
one whose computed traversal time approximates the
actual traversal time, thus picking a topologically
consistent solution that accounts for the elapsed time
between measured points as well as the locations of the
measured points. We compute candidate travel times
with a standard route planner.

In matching location measurements to roads, we
compute a compromise between a path that matches the
location measurements and a path that is feasible with
respect to the measurements’ time stamps. This requires

U-turn implied by

nearest road matches

Nearest road algorithm

mismatches to north/south

cross street here

Figure 3: Nearest road matching fails in this
example. The black line connects the measured
GPS points. When the path crosses the
north/south street, nearest road matching
matches it, ignoring the path’s continuity and
implying an eventual U-turn, shown in gray. Our

algorithm gives the white route.

Figure 2: There are many possible candidate sets
of roads to match against in this example, making
curve-to-curve matching expensive. Based on the
GPS points connected by the black line, our
algorithm finds the white route that cuts through

all the other candidates.

a principled notion of the error in GPS measurements
and the error in our estimates of path traversal times.
We optimize over these two sources of error with a
hidden Markov model (HMM). The HMM solution is a
path that simultaneously stays close to the location
measurements and whose road segments are
traversable in the time it actually took to drive the path.

The HMM is based on probability distributions
representing GPS error and trip time estimation error.
We compute these distributions based on a large survey
of drivers carrying GPS receivers, detailed in the next
section.

MULTIPERSON LOCATION SURVEY

We trained and tested our algorithm on GPS data from
187 volunteer drivers in the Microsoft Multiperson
Location Survey (MSMLS)[3]. These subjects
volunteered to place one of our 55 GPS receivers in their
vehicle for two weeks (and occasionally longer) as they
drove normally. Nearly all the subjects live in the Seattle,
WA USA area, and they include employees of our
institution and their family members. The GPS receivers
were Geko 201 models, capable of recording up to
10,000 time-stamped (latitude, longitude) coordinates.
Each subject was given a cable to supply GPS power
from the vehicle’s cigarette lighter. Using a simple
hardware modification, we altered the GPS receivers so
they would automatically turn on whenever power was
supplied. This meant that the drivers did not have to
remember to turn the receivers on or off, and could
instead just set the receiver on the dashboard and
neglect it for the entire survey period. Because some

vehicles’ cigarette lighters are powered even when the
vehicle is off, we used a mode on the GPS receivers that
only recorded points when the receiver is in motion,
eliminating the accumulation of points when the vehicles
were parked.

We gathered a total of 1,351,669 (latitude, longitude)
points for an average of 7,228 points per person. The
points were separated by a median distance of 64.4
meters and 6 seconds. We also gathered demographic
data from each subject: 72% were male, 75% had a
domestic partner, 37% had children, and the average
age of drivers was 37.

LOCATION ACCURACY

Our computed paths are a compromise between the
measured GPS points and temporal feasibility. In order
to trade off these two factors, we must know how much
error is associated with each one. For GPS, we assume
that all the receivers in our study have similar error
characteristics, since they are all identical models.
Furthermore, there is likely some error in the mapped
locations of the roads, which contributes to the deviation
between the measured location and the location on the
map. We modeled the error in (latitude, longitude) as a
2D, circular Gaussian with zero mean[4]. This means we

must have an estimate of the standard deviation, g , of

the distance between the measured location and the
actual point on the map. We computed this by assuming
that, for most of the GPS points, the nearest road was
actually the correct road. This is borne out by our
informal observations of nearest road matching. With

this assumption, we computed g using a robust

estimator of standard deviation, the median absolute
distance (MAD)[5].

Detailing this procedure, we represent the measured

location points as 2D vectors
)(i

gx for Ni 1 , with

N equal to the number of measured GPS points in our

database. For each measured GPS point, we find the

nearest on-road point,
)(i

rx . If we assume that the actual

location was the nearest on-road point, then the
combination of GPS error and map error is the distance

between
)(i

gx and
)(i

rx :
)(id . Since these are (latitude,

longitude) coordinates, we compute the distance using
the Haversine formula. Our road network data came
from NAVTEQ™, accessed through an API developed at
our institution for an upcoming map product. In this
dataset, roads segment splits generally occur wherever
there is a junction such as an intersection, exit, or
entrance.

The MAD gives a valid estimate of the standard
deviation of a set of values even if up to half those
values are outliers. This is why, even if up to half the
nearest road points are wrong, we can still compute a

reasonable estimate of g . The MAD formula is

Figure 4: The measured GPS points along the
black line indicate an excursion and U-turn along
a side road, giving the gray route. Our algorithm
ignores this distraction and returns the white
route, because the excursion would take more

time than the time-stamped GPS points indicate.

)()(medianmedian4826.1 ii

g dd
(1)

Here, since we assume that GPS error has zero mean,

we replace)(median id with zero. The factor of 1.4826

makes the estimate consistent for Gaussian

distributions. We computed 6386.7g meters.

The measured location accuracy g is ultimately used to

compute the probabilities of sets of candidate road
matches for each measured point. In particular, for each

measured location
)(i

gx , we search for the 10 nearest

road segments in a radius of 200 meters. The number of
road segments we actually find can be less than 10, and

we call this number iR , corresponding to the i
th
 location

measurement. We aim to compute the observation

probability)(

,

i

gji xrP , which is the probability that jir , ,

iRj 1 , is the correct road segment out of the iR

candidate roads given that the measured location was
)(i

gx . We can compute this with Bayes rule:

iR

k

ki

i

gki

ji

i

gjii

gji

rPxrp

rPxrp
xrP

1

,

)(

,

,

)(

,)(

,

(2)

The likelihood)(

,

i

gji xrp is a zero-mean, one-

dimensional Gaussian with standard deviation g

evaluated at jid , , which is the distance between the

measured location
)(i

gx and the nearest point on road

candidate jir , .
jirP , is simply

iR
1 , an uninformative

prior probability reflecting the fact that we have no
upfront bias about which is the correct road to match.
Simplifying Equation (2) with this likelihood and prior,
we get

iR

k g

ki

g

ji

i

gji

d

d

xrP

1

2

,

2

,

)(

,

5.0exp

5.0exp

 (3)

In summary, this gives the observation probability that

road jir , is the correct match for location measurement

)(i

gx . If we neglected all other factors, maximizing this

probability at every location measurement would result in

simply matching to the nearest on-road point. We know
this method frequently fails (e.g. Figure 3 and Figure 4),
so we introduce a temporal constraint in the next
section.

TEMPORAL ACCURACY

Counteracting the tendency to match each measured
point to the nearest road, we introduce a constraint on
the traversal time between measured points. In looking
at the next measured location in a sequence, two
candidate road segment matches can be close together
in distance but relatively far apart in time. One example
is the opposing lanes on a highway: while the lanes can
be physically adjacent, legally moving from one to the
other requires a time-consuming U-turn. Paying attention
to the temporal consistency of a set of candidate
matches helps enforce the continuity of driver’s path and
smoothes over errors in location measurements. Our
goal in this section is to assess the accuracy of the
computed traversal time between candidate road
segments. This implicitly governs how much weight we
should assign to the temporal constraint vs. the
measurement error discussed in the previous section.

Each location measurement comes with an accurate
time stamp. In addition, we can predict the traversal time
between any two points on any two road segments using
a conventional route planner. Our route planner gives
traversal time estimates based on the assumption that
the driver will take the minimum time route. The route
planner computes the traversal time from the speed
limits and lengths of the road segment(s) between the
two points. The computed paths are quite short, as we
are considering road segment matches based on
sequential location measurements, which are separated
by a median distance of only 64.4 meters.

In evaluating the probability of a transition between two
road candidates, we compare the actual time spent
driving between the two points against the estimated
driving time between the two points. Any deviation is
attributed to a combination of the natural variation of
driving times and the error in the traversal time estimate.
The goal of this section is to develop a formula
representing the accuracy of our route planner’s
traversal time estimates. We assume that the deviations
have a Gaussian distribution, and we estimate the
parameters of this Gaussian using a robust estimator as
in the previous section.

Referring to our database of time-stamped location
measurements, we look at adjacent measurements in

time,
)(i

gx and
)1(i

gx . Because we are using robust

estimators, we will again assume that the nearest on-
road matches are correct. From these matches, we
compute the estimated traversal time and then compute
the deviation from the actual traversal time. The median
of these errors is our robust estimate for the mean of the

Gaussian error distribution, and the MAD is our estimate
for the standard deviation. Based on our data, these

estimates are 5690.0t seconds and

7725.2t seconds. The negative mean indicates

that the traversal time computation is underestimating
the actual traversal time. This could be due to traffic
conditions, for which the route planner does not account.

The transition probably we need to compute is
)1,(

,

ii

kj ,

which represents the probability of the driver

transitioning from road candidate jir , corresponding to

measured point
)(i

gx to road candidate kir ,1

corresponding to measured point
)1(i

gx . If the actual and

estimated traversal times are approximately equal, this
transition probability should be higher than if the times
are far apart. The temporal error between the actual

traversal time and the estimated traversal time is
)1,(

,

 ii

kjt

. The transition probabilities using the Gaussian
assumption are

1

1

2
)1,(

,

2
)1,(

,

)1,(

,

5.0exp

5.0exp

iR

l t

t

ii

lj

t

t

ii

kj

ii

kj

t

t

 (4)

Intuitively, this says that the transition probability
between two road candidates decreases with increasing
deviation between the measured time interval and the
estimated time interval for the candidates in question.
The denominator normalizes the transition probabilities
to one. Referring to Figure 3, the transition probability
would be small leading into the excursion off the correct

road to the U-turn, because this would take much longer
than the elapsed time between the measured points.

An illustration of the various probabilities is shown in
Table 1. Here there are two location measurements,
each with an associated set of candidate roads. Each
candidate has an observation probability computed from
Equation (3). There is a transition probability between
each of the candidates associated with the first
measurement and those associated with the second
measurement, computed from Equation (4).

MAP MATCHING WITH TRAVEL TIME
CONSTRAINTS

The problem now is to find a sequence of road segment
candidates that give an optimal compromise between
the measured locations and the traversal times between
the candidates. For each measured location, we have a
list of up to 10 nearby, candidate on-road points, each
on a different road segment, as illustrated in Figure 5.
Associated with each of these on-road points is an
observation probability based on our estimated GPS
error distribution. For every pair of sequential location
measurements, we have transition probabilities between
each of the candidate road segments, based on the
difference between the actual traversal time and
computed traversal time.

The observation and transition probabilities fit well with a
hidden Markov model (HMM)[6]. An HMM models a time
series as a sequence of discrete-time, noisy
measurements of a set of discrete states. In our case,

1,ir

2,ir

3,ir

iRir ,

road match

candidates

observation

probabilities

)(

1,

i

gi xrp

)(

2,

i

gi xrp

)(

3,

i

gi xrp

)(

,

i

gRi xrp
i

measurement
)(i

gx

1,1ir

2,1ir

3,1ir

1,1 iRir

road match

candidates

observation

probabilities

)1(

1,1

i

gi xrp

)1(

2,1

i

gi xrp

)1(

3,1

i

gi xrp

)1(

,1

i

gRi xrp
i

measurement
)1(i

gx

)1,(
1,3
ii

)1,(
2,3
ii

)1,(
,3 1

ii
Ri

)1,(
, 1

ii
RR ii

transition

probabilities

Table 1: This shows the roles of the observation
and transition probabilities associated with two
sequential location measurements and their

respective road candidates.

measured

locations

road

match

candidates

Figure 5: The hidden Markov model has a set of
possible road segments for each location
measurement. The Viterbi algorithm finds the
optimal sequence of road segments considering
both the measurement errors and transition

probabilities.

the noisy measures are the location measurements, and
the discrete states are the road segments. In fact, the
terminology we have used in the previous two sections
fits exactly with conventional HMM terminology:
observation probabilities and transition probabilities. The
only necessary element to add is a probability
distribution over the initial set of road segments
corresponding to the initial location measurement.
Lacking any prior knowledge, we made the initial

distribution uniform, i.e. 01 R . One slight difference

between a conventional HMM and ours is that the state
space associated with each observation in our HMM
changes from observation to observation, depending on
which road segments are nearby.

The solution to the map matching problem is to find the
path through the states that maximizes the probability of
the sequence of road segments with respect to the
observations and transition probabilities. The Viterbi
algorithm uses dynamic programming methods to
efficiently accomplish this, resulting in path through the
candidate road segments, as illustrated in Figure 5.

The results we show in the next section come from
applying Viterbi to the entire sequence of location
measurements for each subject. In a real time scenario
such as a vehicle’s navigation system, Viterbi would be
applied to location measurements up to and including
the most recent, perhaps starting at the beginning of the
trip or starting at some preset time into the past. In our
experience, looking ahead in time, as we effectively do
in our computations, only slightly improves the results.

Given a set of location measurements for a driver, the
recipe for our algorithm is

1. For each location measurement, search for the
nearest road segments and compute the nearest
point on each. Stop searching at 10 road segments
or when the distance from the location
measurements exceeds 200 meters.

2. For each of the points on the nearby road segments,
compute the observation probability using Equation (
3).

3. For each location measurement, compute the
transition probabilities from its nearby road
segments to those of the next location measurement
using Equation (4).

4. Apply the Viterbi algorithm to the observation
probabilities and transition probabilities to compute
the maximum probability sequence of road
segments.

MAP MATCHING RESULTS

We ran our algorithm on all our GPS data, resulting in a
road segment associated with each GPS point. As part
of our algorithm, we compute the road segment that is
nearest each measured location, effectively giving
results from the naive nearest road map matching
algorithm. We display our results by mapping the
sequence of computed road segments. In some cases,
the computed road segments for sequential location
measurements are not connected. This can be due to
widely separated location measurements or to
topologically improbable matches from the naïve nearest
road algorithm, e.g. jumping into an opposing lane of
traffic on a highway. When we encountered gaps, we
filled them by planning a route between the
disconnected segments.

A typical example of our results is shown in Figure 6.
Here the measured locations are connected by a black
line, showing the driver crossing a bridge over a
highway. The result of our map matching algorithm is
shown as the thicker white path, which in this case
corresponds well to the measured locations. The nearest
road algorithm gives the gray path, which includes the
segments necessary to fill in the gaps. This algorithm
mistakenly matched one of the points on the bridge to
the highway underneath. But in order to switch from the
bridge to the highway, the driver would need to find the
nearest highway onramp. Once this mistaken match is
satisfied, the driver must pick up the next matched road
segment back on the overpass road, requiring an exit
from the highway and a loop back. Looping onto and off
the highway is clearly wrong. Our algorithm rejected this
hypothesis because it would take much longer than the
measured time stamps indicate. Although the matched
road segments are not the ones nearest the location
measurements, they are consistent with the combination
of location measurements and time stamps.

We give several more results in Figures 7-13, using the
same drawing convention as Figure 6. The results in

Figure 6: The GPS points are connected by a
black line. Our algorithm gives the path in white,
while the naive nearest road algorithm gives the
path in gray.

these figures are grouped by the type of distraction (e.g.
crossover roads, parallel roads), showing how our
algorithm avoids the pitfalls made by the nearest road
algorithm. While we have no way of knowing for certain
the ground truth for our GPS data, it is clear in these
figures that our algorithm is giving a result much closer
to the truth than the naïve algorithm.

CONCLUSIONS AND FUTURE WORK

Our map matching algorithm accurately matches
measured locations to roads. It is based on finding an
optimal compromise between measured locations and
traversal times, implicitly accounting for the topology of
the road network and speed limits. This tradeoff is
accomplished with a hidden Markov model. We compute
the parameters of the model in a principled way using
data taken from a large set of actual drivers. Tests show
many situations where our algorithm successfully
ignores complex distractions to find the correct path.

Future work on this algorithm should include a more
careful characterization of the travel time constraint.
While our algorithm is based on expected travel times, it
may be more accurate to enforce only a minimum travel
time, accounting for the fact that drivers may slow, stop,
or park, meaning there is no upper bound on how much
time a driver may spend between two candidate road
segments.

ACKNOWLEDGMENTS

Thank you to Kelli McGee of Microsoft Research for
administering our GPS study.

REFERENCES

1. White, C.E., D. Bernstein, and A.L. Kornhauser,
Some Map Matching Algorithms for Personal

Navigation Assistants. Transportation Research
Part C, 2000. 8: p. 91-108.

2. Hummel, B., Map Matching for Vehicle
Guidance, in Dynamic and Mobile GIS:
Investigating Space and Time, J. Drummond
and R. Billen, Editors. 2006, CRC Press: Florida.

3. Krumm, J. and E. Horvitz, The Microsoft
Multiperson Location Survey. 2005, Microsoft
Research (MSR-TR-2005-103): Redmond, WA
USA.

4. Diggelen, F.v., GPS Accuracy: Lies, Damn Lies,
and Statistics, in GPS World. 1998. p. 41-45.

5. Rousseeuw, P.J. and C. Croux, Alternatives to
the Median Absolute Deviation. Journal of the
Americal Statistical Association, 1993. 88(424):
p. 1273-1283.

6. Rabiner, L.R., A Tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition. Proceedings of the IEEE, 1989.
77(2): p. 257-286.

CONTACTS

John Krumm and Eric Horvitz
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA
{jckrumm, horvitz}@microsoft.com

Julie Letchner
University of Washington
Computer Science and Engineering
Box 352350
Seattle, WA 98195 USA
letchner@cs.washington.edu

Figure 7: Crossover distractions. The measured points along the black line cross over another road. The
nearest road route in gray is pulled off the actual route and forced to loop back to the correct road. Our
algorithm's path is shown in white.

Figure 8: GPS problems. Our technique gives good results in spite of inaccurate and under-sampled GPS.

Figure 9: Parallel road distraction. Parallel roads or lanes of opposing traffic often distract the nearest road
algorithm, while ours stays on a more likely path.

Figure 10: Spur distraction. Our algorithm successfully ignores spurs off the traveled road that distract the
nearest road algorithm.

Figure 11: Spaghetti cut. So-called “spaghetti” junctions have many distracting roads, but our algorithm cuts
through successfully.

Figure 12: Spaghetti bypass. Our algorithm avoids being drawn into complex interchanges when the actual
route passes by.

Figure 13: Spaghetti loop. Our algorithm successfully negotiates loops through interchanges.

