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ABSTRACT 

Map matching determines which road a vehicle is on 
based on inaccurate measured locations, such as GPS 
points. Simple algorithms, such as nearest road 
matching, fail often. We introduce a new algorithm that 
finds a sequence of road segments which 
simultaneously match the measured locations and which 
are traversable in the time intervals associated with the 
measurements. The time constraint, implemented with a 
hidden Markov model, greatly reduces the errors made 
by nearest road matching. We trained and tested the 
new algorithm on data taken from a large pool of real 
drivers. 

INTRODUCTION 

Automotive navigation systems use map matching to 
compute the location of a vehicle on a road based on 
noisy sensors, usually including GPS. This is a 
challenge, because neither location sensing nor mapped 
road positions are always accurate enough for a simple 
algorithm like nearest road matching to succeed. An 
example of these inaccuracies is illustrated in Figure 1. 
This shows three GPS points measured along a longer 
trip. The center GPS point is several meters from any 
mapped road, due either to inaccuracy in the map, 
inaccuracy in the GPS measurement, or some of both. 
The goal of map matching is to determine the road that 
was actually being driven in spite of these inaccuracies. 
Our algorithm computes the gray route as the one that 
most likely represents the vehicle’s true path on the 
map. 

The most frequent application of map matching is as a 
prerequisite for giving real time directions, because it 
determines the vehicle’s position in the road network. 
The navigation system’s internal router then uses this 
position to compute directions to the desired destination. 
Map matching is also important for post hoc analysis of 

GPS tracks, when the goal is to discover which roads 
were driven. This is our main motivation, although our 
algorithm applies to real time matching as well. 

Map matching is not only for pure GPS data. Any form of 
measured location and orientation data could serve as 
input, including odometry, compass readings, 
triangulation from Wi-Fi base stations or cell towers, and 
combinations of these. Although we concentrate on pure 
GPS data in this paper, our algorithm is applicable to 
other, multiple sensors whose location measurements 
can be modeled probabilistically. 

The key innovation in our algorithm is that it matches 
roads based not only on the location measurements, but  
additionally on the time stamps of the measurements. 
The time constraint means that the sequence of 
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Figure 1: Our algorithm takes inaccurate GPS points 

and matches them to nearby roads. 



matched roads must be reachable from each other in the 
time intervals computed from the measurements’ time 
stamps. This additional constraint greatly improves the 
accuracy of map matching over a simple nearest road 
algorithm. 

OUR ALGORITHM IN CONTEXT WITH 
PREVIOUS WORK 

The most obvious way to match location measurements 
to road data is simple nearest road matching. In this 
algorithm, a set of candidate nearby road segments is 
chosen. For each of these candidates, the algorithm 
computes the distance between the measured point and 
the nearest point on the segment. The road segment 
with the smallest computed distance is declared the 
matched road. This algorithm often fails because it 
neglects to account for continuity of the driven path. An 
example of this failing is shown in Figure 3, where the 
measured GPS locations are connected by a black line. 
When the vehicle crossed the intersection, the nearest 
road algorithm matched to the north/south cross street, 
despite the fact that the vehicle continued to travel 
across the intersection on the same east/west street as 
before. Taken to its logical conclusion, the nearest road 
match means that the vehicle would have had to make a 
U-turn at the nearest opportunity (shown in gray) to get 
back to the original street. Our algorithm instead infers 
the route as the white line, preserving continuity. 

The nearest road algorithm and others are reviewed in 
[1]. One step up in sophistication from the nearest road 
algorithm is curve-to-curve matching. Here, a set of 

location measurements is matched to candidate routes, 
and the minimum error route is chosen as the best 
match. This helps fix the continuity problem, but the 
number of possible route candidates to match against 
can grow quickly when there are many nearby, 
branching roads, as in Figure 2, giving an overwhelming 
number of candidates to check. 

One of the more sophisticated classes of map matching 
algorithms accounts explicitly for the road topology. In 
[1], their version of the topology algorithm limits the next 
match in time to roads that are reachable from the 
current match. Hummel[2] uses a hidden Markov model 
to eliminate transitions between unconnected road 
segments. This is similar to our algorithm, except that we 
use a probabilistic travel time constraint instead of pure 
topology. This constraint implicitly accounts for topology 
and also disallows temporally unlikely paths. For 
instance, in Figure 4, the GPS data seems to indicate an 
excursion onto a side road, which would have to be 
followed by a U-turn to get back to the subsequent GPS 
points. In evaluating possible paths, our algorithm finds 
one whose computed traversal time approximates the 
actual traversal time, thus picking a topologically 
consistent solution that accounts for the elapsed time 
between measured points as well as the locations of the 
measured points. We compute candidate travel times 
with a standard route planner. 

In matching location measurements to roads, we 
compute a compromise between a path that matches the 
location measurements and a path that is feasible with 
respect to the measurements’ time stamps. This requires 
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Figure 3: Nearest road matching fails in this 
example. The black line connects the measured 
GPS points. When the path crosses the 
north/south street, nearest road matching 
matches it, ignoring the path’s continuity and 
implying an eventual U-turn, shown in gray. Our 

algorithm gives the white route. 

 
Figure 2: There are many possible candidate sets 
of roads to match against in this example, making 
curve-to-curve matching expensive. Based on the 
GPS points connected by the black line, our 
algorithm finds the white route that cuts through 

all the other candidates. 



a principled notion of the error in GPS measurements 
and the error in our estimates of path traversal times. 
We optimize over these two sources of error with a 
hidden Markov model (HMM). The HMM solution is a 
path that simultaneously stays close to the location 
measurements and whose road segments are 
traversable in the time it actually took to drive the path. 

The HMM is based on probability distributions 
representing GPS error and trip time estimation error. 
We compute these distributions based on a large survey 
of drivers carrying GPS receivers, detailed in the next 
section. 

MULTIPERSON LOCATION SURVEY 

We trained and tested our algorithm on GPS data from 
187 volunteer drivers in the Microsoft Multiperson 
Location Survey (MSMLS)[3]. These subjects 
volunteered to place one of our 55 GPS receivers in their 
vehicle for two weeks (and occasionally longer) as they 
drove normally. Nearly all the subjects live in the Seattle, 
WA USA area, and they include employees of our 
institution and their family members. The GPS receivers 
were Geko 201 models, capable of recording up to 
10,000 time-stamped (latitude, longitude) coordinates. 
Each subject was given a cable to supply GPS power 
from the vehicle’s cigarette lighter. Using a simple 
hardware modification, we altered the GPS receivers so 
they would automatically turn on whenever power was 
supplied. This meant that the drivers did not have to 
remember to turn the receivers on or off, and could 
instead just set the receiver on the dashboard and 
neglect it for the entire survey period. Because some 

vehicles’ cigarette lighters are powered even when the 
vehicle is off, we used a mode on the GPS receivers that 
only recorded points when the receiver is in motion, 
eliminating the accumulation of points when the vehicles 
were parked. 

We gathered a total of 1,351,669 (latitude, longitude) 
points for an average of 7,228 points per person. The 
points were separated by a median distance of 64.4 
meters and 6 seconds. We also gathered demographic 
data from each subject: 72% were male, 75% had a 
domestic partner, 37% had children, and the average 
age of drivers was 37. 
 

LOCATION ACCURACY 

Our computed paths are a compromise between the 
measured GPS points and temporal feasibility. In order 
to trade off these two factors, we must know how much 
error is associated with each one. For GPS, we assume 
that all the receivers in our study have similar error 
characteristics, since they are all identical models. 
Furthermore, there is likely some error in the mapped 
locations of the roads, which contributes to the deviation 
between the measured location and the location on the 
map. We modeled the error in (latitude, longitude) as a 
2D, circular Gaussian with zero mean[4]. This means we 

must have an estimate of the standard deviation, g , of 

the distance between the measured location and the 
actual point on the map. We computed this by assuming 
that, for most of the GPS points, the nearest road was 
actually the correct road. This is borne out by our 
informal observations of nearest road matching. With 

this assumption, we computed g  using a robust 

estimator of standard deviation, the median absolute 
distance (MAD)[5]. 

Detailing this procedure, we represent the measured 

location points as 2D vectors 
)(i

gx  for Ni 1 , with 

N  equal to the number of measured GPS points in our 

database. For each measured GPS point, we find the 

nearest on-road point, 
)(i

rx . If we assume that the actual 

location was the nearest on-road point, then the 
combination of GPS error and map error is the distance 

between 
)(i

gx  and 
)(i

rx : 
)(id . Since these are (latitude, 

longitude) coordinates, we compute the distance using 
the Haversine formula. Our road network data came 
from NAVTEQ™, accessed through an API developed at 
our institution for an upcoming map product. In this 
dataset, roads segment splits generally occur wherever 
there is a junction such as an intersection, exit, or 
entrance. 

The MAD gives a valid estimate of the standard 
deviation of a set of values even if up to half those 
values are outliers. This is why, even if up to half the 
nearest road points are wrong, we can still compute a 

reasonable estimate of g . The MAD formula is 

 
Figure 4: The measured GPS points along the 
black line indicate an excursion and U-turn along 
a side road, giving the gray route. Our algorithm 
ignores this distraction and returns the white 
route, because the excursion would take more 

time than the time-stamped GPS points indicate. 
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Here, since we assume that GPS error has zero mean, 

we replace  )(median id  with zero. The factor of 1.4826 

makes the estimate consistent for Gaussian 

distributions. We computed 6386.7g  meters. 

The measured location accuracy g is ultimately used to 

compute the probabilities of sets of candidate road 
matches for each measured point. In particular, for each 

measured location 
)(i

gx , we search for the 10 nearest 

road segments in a radius of 200 meters. The number of 
road segments we actually find can be less than 10, and 

we call this number iR , corresponding to the i
th
 location 

measurement. We aim to compute the observation 

probability  )(

,

i

gji xrP , which is the probability that jir , , 

iRj 1 , is the correct road segment out of the iR  

candidate roads given that the measured location was 
)(i

gx . We can compute this with Bayes rule: 
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The likelihood  )(

,

i

gji xrp  is a zero-mean, one-

dimensional Gaussian with standard deviation g  

evaluated at jid , , which is the distance between the 

measured location 
)(i

gx  and the nearest point on road 

candidate jir , .  
jirP ,  is simply 

iR
1 , an uninformative 

prior probability reflecting the fact that we have no 
upfront bias about which is the correct road to match. 
Simplifying Equation ( 2 ) with this likelihood and prior, 
we get 
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In summary, this gives the observation probability that 

road jir ,  is the correct match for location measurement 

)(i

gx . If we neglected all other factors, maximizing this 

probability at every location measurement would result in 

simply matching to the nearest on-road point. We know 
this method frequently fails (e.g. Figure 3 and Figure 4), 
so we introduce a temporal constraint in the next 
section. 

 

TEMPORAL ACCURACY 

Counteracting the tendency to match each measured 
point to the nearest road, we introduce a constraint on 
the traversal time between measured points. In looking 
at the next measured location in a sequence, two 
candidate road segment matches can be close together 
in distance but relatively far apart in time. One example 
is the opposing lanes on a highway: while the lanes can 
be physically adjacent, legally moving from one to the 
other requires a time-consuming U-turn. Paying attention 
to the temporal consistency of a set of candidate 
matches helps enforce the continuity of driver’s path and 
smoothes over errors in location measurements. Our 
goal in this section is to assess the accuracy of the 
computed traversal time between candidate road 
segments. This implicitly governs how much weight we 
should assign to the temporal constraint vs. the 
measurement error discussed in the previous section. 

Each location measurement comes with an accurate 
time stamp. In addition, we can predict the traversal time 
between any two points on any two road segments using 
a conventional route planner. Our route planner gives 
traversal time estimates based on the assumption that 
the driver will take the minimum time route. The route 
planner computes the traversal time from the speed 
limits and lengths of the road segment(s) between the 
two points. The computed paths are quite short, as we 
are considering road segment matches based on 
sequential location measurements, which are separated 
by a median distance of only 64.4 meters. 

In evaluating the probability of a transition between two 
road candidates, we compare the actual time spent 
driving between the two points against the estimated 
driving time between the two points. Any deviation is 
attributed to a combination of the natural variation of 
driving times and the error in the traversal time estimate. 
The goal of this section is to develop a formula 
representing the accuracy of our route planner’s 
traversal time estimates. We assume that the deviations 
have a Gaussian distribution, and we estimate the 
parameters of this Gaussian using a robust estimator as 
in the previous section. 

Referring to our database of time-stamped location 
measurements, we look at adjacent measurements in 

time, 
)(i

gx  and 
)1( i

gx . Because we are using robust 

estimators, we will again assume that the nearest on-
road matches are correct. From these matches, we 
compute the estimated traversal time and then compute 
the deviation from the actual traversal time. The median 
of these errors is our robust estimate for the mean of the 



Gaussian error distribution, and the MAD is our estimate 
for the standard deviation. Based on our data, these 

estimates are  5690.0t  seconds and 

7725.2t  seconds. The negative mean indicates 

that the traversal time computation is underestimating 
the actual traversal time. This could be due to traffic 
conditions, for which the route planner does not account. 

The transition probably we need to compute is 
)1,(

,

ii

kj , 

which represents the probability of the driver 

transitioning from road candidate jir ,  corresponding to 

measured point 
)(i

gx  to road candidate kir ,1  

corresponding to measured point 
)1( i

gx . If the actual and 

estimated traversal times are approximately equal, this 
transition probability should be higher than if the times 
are far apart. The temporal error between the actual 

traversal time and the estimated traversal time is 
)1,(

,

 ii

kjt

. The transition probabilities using the Gaussian 
assumption are 
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Intuitively, this says that the transition probability 
between two road candidates decreases with increasing 
deviation between the measured time interval and the 
estimated time interval for the candidates in question. 
The denominator normalizes the transition probabilities 
to one. Referring to Figure 3, the transition probability 
would be small leading into the excursion off the correct 

road to the U-turn, because this would take much longer 
than the elapsed time between the measured points. 

An illustration of the various probabilities is shown in 
Table 1. Here there are two location measurements, 
each with an associated set of candidate roads. Each 
candidate has an observation probability computed from 
Equation ( 3 ). There is a transition probability between 
each of the candidates associated with the first 
measurement and those associated with the second 
measurement, computed from Equation ( 4). 

 

MAP MATCHING WITH TRAVEL TIME 
CONSTRAINTS 

The problem now is to find a sequence of road segment 
candidates that give an optimal compromise between 
the measured locations and the traversal times between 
the candidates. For each measured location, we have a 
list of up to 10 nearby, candidate on-road points, each 
on a different road segment, as illustrated in Figure 5. 
Associated with each of these on-road points is an 
observation probability based on our estimated GPS 
error distribution. For every pair of sequential location 
measurements, we have transition probabilities between 
each of the candidate road segments, based on the 
difference between the actual traversal time and 
computed traversal time. 

The observation and transition probabilities fit well with a 
hidden Markov model (HMM)[6]. An HMM models a time 
series as a sequence of discrete-time, noisy 
measurements of a set of discrete states. In our case, 
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Table 1: This shows the roles of the observation 
and transition probabilities associated with two 
sequential location measurements and their 

respective road candidates. 
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Figure 5: The hidden Markov model has a set of 
possible road segments for each location 
measurement. The Viterbi algorithm finds the 
optimal sequence of road segments considering 
both the measurement errors and transition 

probabilities. 



the noisy measures are the location measurements, and 
the discrete states are the road segments. In fact, the 
terminology we have used in the previous two sections 
fits exactly with conventional HMM terminology: 
observation probabilities and transition probabilities. The 
only necessary element to add is a probability 
distribution over the initial set of road segments 
corresponding to the initial location measurement. 
Lacking any prior knowledge, we made the initial 

distribution uniform, i.e. 01 R . One slight difference 

between a conventional HMM and ours is that the state 
space associated with each observation in our HMM 
changes from observation to observation, depending on 
which road segments are nearby. 

The solution to the map matching problem is to find the 
path through the states that maximizes the probability of 
the sequence of road segments with respect to the 
observations and transition probabilities. The Viterbi 
algorithm uses dynamic programming methods to 
efficiently accomplish this, resulting in path through the 
candidate road segments, as illustrated in Figure 5. 

The results we show in the next section come from 
applying Viterbi to the entire sequence of location 
measurements for each subject. In a real time scenario 
such as a vehicle’s navigation system, Viterbi would be 
applied to location measurements up to and including 
the most recent, perhaps starting at the beginning of the 
trip or starting at some preset time into the past. In our 
experience, looking ahead in time, as we effectively do 
in our computations, only slightly improves the results. 

Given a set of location measurements for a driver, the 
recipe for our algorithm is 

1. For each location measurement, search for the 
nearest road segments and compute the nearest 
point on each. Stop searching at 10 road segments 
or when the distance from the location 
measurements exceeds 200 meters. 

2. For each of the points on the nearby road segments, 
compute the observation probability using Equation ( 
3 ). 

3. For each location measurement, compute the 
transition probabilities from its nearby road 
segments to those of the next location measurement 
using Equation ( 4 ). 

4. Apply the Viterbi algorithm to the observation 
probabilities and transition probabilities to compute 
the maximum probability sequence of road 
segments. 

MAP MATCHING RESULTS 

We ran our algorithm on all our GPS data, resulting in a 
road segment associated with each GPS point. As part 
of our algorithm, we compute the road segment that is 
nearest each measured location, effectively giving 
results from the naive nearest road map matching 
algorithm. We display our results by mapping the 
sequence of computed road segments. In some cases, 
the computed road segments for sequential location 
measurements are not connected. This can be due to 
widely separated location measurements or to 
topologically improbable matches from the naïve nearest 
road algorithm, e.g. jumping into an opposing lane of 
traffic on a highway. When we encountered gaps, we 
filled them by planning a route between the 
disconnected segments. 

A typical example of our results is shown in Figure 6. 
Here the measured locations are connected by a black 
line, showing the driver crossing a bridge over a 
highway. The result of our map matching algorithm is 
shown as the thicker white path, which in this case 
corresponds well to the measured locations. The nearest 
road algorithm gives the gray path, which includes the 
segments necessary to fill in the gaps. This algorithm 
mistakenly matched one of the points on the bridge to 
the highway underneath. But in order to switch from the 
bridge to the highway, the driver would need to find the 
nearest highway onramp. Once this mistaken match is 
satisfied, the driver must pick up the next matched road 
segment back on the overpass road, requiring an exit 
from the highway and a loop back. Looping onto and off 
the highway is clearly wrong. Our algorithm rejected this 
hypothesis because it would take much longer than the 
measured time stamps indicate. Although the matched 
road segments are not the ones nearest the location 
measurements, they are consistent with the combination 
of location measurements and time stamps. 

We give several more results in Figures 7-13, using the 
same drawing convention as Figure 6. The results in 

 
Figure 6: The GPS points are connected by a 
black line. Our algorithm gives the path in white, 
while the naive nearest road algorithm gives the 
path in gray. 



these figures are grouped by the type of distraction (e.g. 
crossover roads, parallel roads), showing how our 
algorithm avoids the pitfalls made by the nearest road 
algorithm. While we have no way of knowing for certain 
the ground truth for our GPS data, it is clear in these 
figures that our algorithm is giving a result much closer 
to the truth than the naïve algorithm. 

CONCLUSIONS AND FUTURE WORK 

Our map matching algorithm accurately matches 
measured locations to roads. It is based on finding an 
optimal compromise between measured locations and 
traversal times, implicitly accounting for the topology of 
the road network and speed limits. This tradeoff is 
accomplished with a hidden Markov model. We compute 
the parameters of the model in a principled way using 
data taken from a large set of actual drivers. Tests show 
many situations where our algorithm successfully 
ignores complex distractions to find the correct path. 

Future work on this algorithm should include a more 
careful characterization of the travel time constraint. 
While our algorithm is based on expected travel times, it 
may be more accurate to enforce only a minimum travel 
time, accounting for the fact that drivers may slow, stop, 
or park, meaning there is no upper bound on how much 
time a driver may spend between two candidate road 
segments. 
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Figure 7: Crossover distractions. The measured points along the black line cross over another road. The 
nearest road route in gray is pulled off the actual route and forced to loop back to the correct road. Our 
algorithm's path is shown in white. 

 

   

   
Figure 8: GPS problems. Our technique gives good results in spite of inaccurate and under-sampled GPS. 



   

   
Figure 9: Parallel road distraction. Parallel roads or lanes of opposing traffic often distract the nearest road 
algorithm, while ours stays on a more likely path. 

 

   

   
Figure 10: Spur distraction. Our algorithm successfully ignores spurs off the traveled road that distract the 
nearest road algorithm. 



   

   
Figure 11: Spaghetti cut. So-called “spaghetti” junctions have many distracting roads, but our algorithm cuts 
through successfully. 

 

   

   
Figure 12: Spaghetti bypass. Our algorithm avoids being drawn into complex interchanges when the actual 
route passes by. 



   

   
Figure 13: Spaghetti loop. Our algorithm successfully negotiates loops through interchanges. 

 


