
Gauss Meets Canadian Traveler: Shortest-Path Problems
with Correlated Natural Dynamics

Debadeepta Dey†, Andrey Kolobov‡, Rich Caruana‡
Ece Kamar‡, Eric Horvitz‡, Ashish Kapoor‡

†Carnegie Mellon University, Pittsburgh, PA 15213 USA
‡Microsoft Research, Redmond, WA 98052 USA

Categories and Subject Descriptors
I.2 [Problem Solving, Control Methods, and Search]:
Plan execution, formation, generation

Keywords
Planning; Canadian Traveler Problem; Gaussian Process;
Aircraft Routing

ABSTRACT
In a variety of real world problems from robot navigation
to logistics, agents face the challenge of path optimization
on a graph with unknown edge costs. These settings can
be generally formalized as the Canadian Traveler Problems
(CTPs) [13]. Although in many applications the edge costs
have dependencies resulting from world dynamics, CTPs
with such structure have received considerably less atten-
tion than those with independent edge costs, largely because
the dependence structure is often problem-specific and diffi-
cult to state compactly. Yet, in a wide variety of navigation
tasks, spatial correlations between edge traversal costs are
governed by natural phenomena such as winds, congestion,
or ocean currents, which are conveniently described with a
well-understood machine learning model — Gaussian Pro-
cess (GP). In this article, we propose a synthesis of CTPs
and GPs, the Gaussian Traveler Problem (GTP). In GTPs,
an agent observes the costs of graph edges when travers-
ing them, and uses the observed costs to adjust its belief
over other edges via Gaussian Process updates. Examples
of GTP instances include aircraft, traffic, and vessel naviga-
tion, to name just a few. Computing optimal agent behavior
for a GTP turns out to be equivalent to solving a Partially
Observable MDP with continuous observation space. We
present an approximate algorithm for solving GTPs with
efficient machine-learning and decision-making components,
whose design is influenced by the challenges of real-world
problems. Despite the intractability of computing an opti-
mal policy, our experiments in the aircraft navigation sce-
nario with real wind data demonstrate that our framework
can significantly improve upon state-of-the-art techniques
for planning airplane routes.

The project was formulated and conducted during an in-
ternship by Debadeepta Dey at Microsoft Research.

Appears in: Proceedings of the 13th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2014), Lomuscio, Scerri, Bazzan, Huhns (eds.), May,
5–9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
An important problem faced by many agents acting in the

physical world is choosing an optimal route in a graph from
a source to a destination in the absence of exact knowledge
about the graph’s edge costs. As one of many examples,
consider a Mars rover attempting to reach the intended lo-
cation of a scientific experiment or generally a robot trying
to move to a designated area over unexplored terrain. The
robot may have very rough information about the terrain’s
treacherous regions that would risk slow it down, and needs
to travel to its objective using only this partial data and the
observations it makes along the way. Scenarios of this kind
can be formalized as Canadian Traveler Problems (CTPs)
[13], also known as stochastic shortest path problems with re-
course [15]. In a CTP, an agent learns about the edge costs
as it is exploring a graph, and dynamically adapts its plans
based on the newly revealed information. Most work on
CTPs has focused on the subclass of these problems where
edge costs are assumed to be independent; upon arriving
at a node, an agent observes the costs of adjacent edges
(such as the firmness of the terrain in a neighborhood of a
location in the above example) but receives no information
about edges elsewhere in the graph. However, in many real
domains, edge costs are statistically dependent; for example,
terrain traversability over sizable regions of the map tends
to be similar. Nonetheless, CTPs with edge cost dependen-
cies have received far less attention in the literature, largely
due to the domain-specific, cumbersome form of the depen-
dencies that complicates the design and analysis of general
algorithms for these problems.

In this paper, we address this need by presenting an ex-
pressive model that can characterize the dependency struc-
ture in a broad class of settings. Our approach makes use
of the observation that in many scenarios involving natu-
ral phenomenon, edge costs are influenced by the natural
dynamics of the world (e.g., physical forces, weather, etc.)
and are dependent only via such natural dynamics. In these
domains, modeling the global natural phenomena is the key
to describing edge cost interrelations. Gaussian Processes
(GPs) [16] is a machine learning framework that fits this
task well. Many of GPs’ successes have come from mod-
eling spatially correlated natural patterns including winds
[7], oceanic currents [6], and traffic volume [19]. GPs offer
an intuitive representation of the dependencies in natural
dynamics and enable efficient prediction of the natural dy-
namics realizations (e.g., wind vectors) at any location, con-
ditioned on observations at other locations. GPs can also be
easily updated with new observations, continually providing
an agent with an accurate idea of what to expect based on
the available data.

In this article, we couple CTPs with GPs and investigate
solutions for the resulting formalism on the example of wind-
aware aircraft navigation. Imagine an aircraft whose pilot is
free to choose any trajectory to a destination and wishes to
minimize flight time. Pilots typically fly their aircraft at a
constant recommended airspeed (speed w.r.t. the surround-
ing air) for most of the flight [1]. At a fixed airspeed and a
given altitude, an aircraft’s flying time depends almost ex-
clusively on the chosen flight path and encountered winds.
Thus, constructing an optimal flight trajectory on an appro-
priately discretized map would be a simple planning problem
if the pilot had access to detailed wind information over the
entire map. Unfortunately, pilots today usually commit to
a flight plan based on the very scarce wind data available at
the beginning of the flight. Modeling wind correlations with
GPs allows an aircraft’s onboard systems to predict winds
in other regions from the local winds in the aircraft’s vicin-
ity and to alter the route accordingly. This turns the flight
planning task into a CTP with edge costs represented by a
GP.

More formally, we propose a new framework, called the
Gaussian Traveler Problem (GTP), to model scenarios such
as aircraft, vessel, and traffic navigation. GTPs unite the
strengths of CTPs with GPs. In these problems, edge costs
are functions of a natural dynamics characterized by a GP
(e.g., in the aircraft example, edge costs are traversal times,
which are a function of the wind at different locations). As
we demonstrate, every GTP maps to a goal POMDP [5] with
a continuous observation space. The belief state of such a
POMDP consists of the agent’s geographic location (known
exactly) and the agent’s belief about the costs of every edge
in the graph, induced by the current parameters of the GP.
Belief tracking in this POMDP amounts to performing a GP
update using an observed edge cost. The POMDP’s goal is
any state where the agent’s geographic location matches its
destination.

Continuous observation spaces and the sheer size of the
underlying graph make the optimal solution of optimally
GTP intractable for realistic scenarios. We present approxi-
mate online solution algorithms that combine reasoning about
uncertainty with existing deterministic planning methods to
make decisions in a tractable way. Using the example of the
aircraft navigation problem, we demonstrate that solutions
computed with these sampling-based replanning algorithms
significantly outperform the industry standard on real-world
wind data. We make the following contributions:

• We formulate a new type of CTP with edge cost de-
pendencies, the Gaussian Traveler Problems, that in-
tegrate the modeling power of Gaussian Processes into
the CTP framework.

• We cast a realistic aircraft routing example scenario as
a GTP.

• We describe a procedure for converting GTPs to equiv-
alent POMDPs and show, based on publicly available
historical wind data for the continental US, that ef-
ficient, sampling-based approximate algorithms yield
5-10% shorter flying times than the current state-of-
the-art approach in the aircraft navigation domain.

2. BACKGROUND AND RELATED WORK
This paper relates to three main areas of prior work: Cana-

dian Traveler Problems, Gaussian Processes, and POMDPs.

Before describing the paper’s contributions in more detail,
we review relevant material from these areas.
Canadian Traveler Problems. Canadian Traveler Prob-
lems (CTPs) were originally inspired by the difficulties of
planning routes for trucks in Canada, where road segments
can become snowed over and impassable unbeknownst to
truck drivers, and have been studied in many variants [13,
15, 3]. In general, CTPs are concerned with getting from
a source node v0 to a goal node vg in a graph G = 〈V,E〉,
whose edges have unknown costs and/or traversability. Since
an edge’s impassability can be modeled by assigning the edge
a very high cost, we will discuss CTPs only from the stand-
point of their cost structure.

In most CTP formulations, in order to optimize the cost
of reaching vg from v0, an agent needs to reason about the
joint edge cost realizations possible for the given problem. A
joint edge cost realization C : E → R+ is an assignment of
costs values to all of the graph’s edges. The agent knows the
set R of all possible joint cost realizations before it starts
acting. In addition, it knows a prior probability distribution
P over the set R. P allows the agent to hypothesize apriori
about the costs of different edges. However, with the no-
table exception of CTPs with remote sensing [3], in which
an agent can query costs of remote edges, an agent can find
out an edge’s actual cost only once it is at one of the edge’s
endpoints or attempts to traverse it.

Based on the observed edge cost, the agent updates the
distribution P by eliminating the joint cost assignments that
do not agree with the acquired observation. Thus, a CTP
can be formalized as a tuple 〈V,E, v0, vg, P0,R〉 of the above
components. Solving a CTP entails computing a policy to
reach the destination while incurring the least expected or
worst-case cost. Note that CTPs naturally lend themselves
to adaptive solutions: an agent can choose a path to follow
from v0 based on the knowledge of incident edge costs and
the distribution P , follow the first edge in the path, arrive
at another node v1, learn the costs of surrounding edges,
update P and alter its initial plan accordingly, and so on.

Although the described formulation lets edges have arbi-
trary cost dependencies, most prior work has assumed edge
costs to be independent, since this allows the set R of joint
edge cost realizations to be compactly described as a Carte-
sian product of individual edges’ possible cost sets, and al-
lows the joint distribution P to be factored into the product
of cost distributions for each edge. In contrast, if edge cost
distributions are dependent, in general the distribution P
needs to be specified as an explicit list of joint cost real-
izations R with associated probabilities [15], which grows
exponentially with the number of edges in the graph. This
representation quickly becomes infeasible for realistic sce-
narios, making algorithms for general CTPs inefficient. In
this paper, we propose an alternative, closed-form represen-
tation for the joint edge-cost prior P that is suitable for a
number of practical domains that involve natural dynamics.
We discuss this representation, Gaussian Processes, next.

Gaussian Processes. At the highest level of abstraction,
a Gaussian Process (GP) [16] is a distribution over func-
tions that respect certain smoothness constraints and agree
well with the observed data. GPs have been previously used
to model various spatially correlated natural phenomena [7,
6, 19]. In this paper, we propose to employ them in CTP
scenarios where such natural phenomena govern the world
dynamics and ultimately influence edge costs. In particu-
lar, using wind as our running example, we can view a wind

pattern over a territory as a function mapping geographic
coordinates to wind vectors. We may not know the wind
pattern over the entire map, but with the help of GPs we
can easily express the fact that winds tend to be similar in
nearby regions and represent a distribution of our hypothe-
ses about winds at unobserved locations.

Our main reason for using GPs is that they provide an ap-
pealing probabilistic framework where the uncertainty in the
value of the function output (e.g., wind uncertainty on graph
edges that have not been visited yet) is modeled conditioned
on the observations (of winds on edges that the agent has
traversed). GPs consider the observed wind vector t for a
location x to be a noisy version of a latent variable y. In the
wind example, y can be the true predominant wind strength
and direction at location x during a given time period, and t,
a noisy vector of the wind that is observed directly. Specif-
ically, the relationship between y and the observation t is
characterized by a Gaussian likelihood model.

p(t|y) =
1√

2πσ2
e
− (t−y)2

2σ2 , (1)

where σ2 is the noise model variance. Thus, GPs assume
the observations to be generated from hidden variables by
corrupting these variables’ values with a 0-mean Gaussian
noise.

Crucially, GP imposes a smoothness constraint on the la-
tent variables’ values by defining a probabilistic relationship
between any finite set of locations X = {x1, ..,xn} and the
corresponding latent variables Y = {y1, ..., yn} s.t. the dis-
tribution p(Y|X) gives higher probability to wind vectors
that respect some notion of similarity between locations. In-
tuitively, GPs assume that similar locations should have the
same wind; to reflect this, the similarity between two points
xi and xj is defined via a kernel function k(xi,xj). Using a
kernel function k, GPs implement the smoothness constraint
by letting p(Y|X) be a Gaussian, i.e., p(Y|X) ∼ N (0,K),
where K is an n× n kernel matrix.

Now, suppose we have wind readings tL = {t1, . . . , tm}
for some of the locations x1, . . . ,xm ∈ X, and would like
to update our hypothesis about wind patterns accordingly.
GP makes computing the hypothesis posterior, p(Y|X, tL),
easy by combining the smoothness constraints p(Y|X) im-
posed via the GP prior and the information provided by the
observations via p(tL|Y).

p(Y|X, tL) ∝ p(Y|X)p(tL|Y) = p(Y|X)
m∏
i=1

p(ti|yi). (2)

As this equation shows, the posterior is just a product of
Gaussians and hence is a Gaussian itself. For each unob-
served location xu, the parameters of this Gaussian are given
by [16]

ȳu = k(xu)T (σ2I + KLL)−1tL (3)

Σu = k(xu,xu)− k(xu)T (σ2I + KLL)−1k(xu). (4)

Here, k(xu) is the vector of kernel function evaluations with
the m observed locations in X, KLL = {k(xi,xj)} is the
m×m data covariance over the observed locations, and σ2 is
the noise variance. Moreover, for every unobserved location,
we can also compute a posterior for the observations, which
is also Gaussian and has the form p(tu|X, tL) ∼ N (ȳu,Σu +
σ2) [16].

The assumption of zero mean is for clarity only; GPs triv-
ially handle non-zero-mean beliefs.

The performance of GP-based prediction depends strongly
on the chosen kernel function k and its parameters. There
are many ways to learn these parameters from prior data; we
use evidence maximization by performing gradient descent
[16, 8] for this purpose.

POMDPs. The CTP versions in which the agent gradually
collects information about edge costs as it is navigating the
graph are known to be equivalent to instances of Partially
Observable Markov Decision Processes (POMDPs). Gen-
erally, POMDPs are a framework for describing planning
scenarios where the agent’s objective is to maximize reward
or minimize incurred cost by choosing actions based on par-
tial information about the current world state; in the case
of CTPs, the objective function is the expected cost of get-
ting from the start to the destination node in a given graph.
Formally, the goal-oriented POMDPs [5] that describe such
settings are tuples 〈S,A, T, C,G,Z,O, b0〉, where S is a set
of world states, A is a set of actions the agent can perform,
T : S ×A×S → [0, 1] is a transition function that gives the
probability of transitioning from a state s to a state s′ when
the agent executes action a, C : S × A × S → R+ is a cost
function specifying the cost the agent pays when transition-
ing from s to s′ using a, G ⊆ S is a set of goal states the agent
is attempting to reach, Z is a set of possible observations in-
dicative of the current world state, O : S × A × Z → [0, 1]
is an observation function giving the probability of getting
a particular observation z when the agent executes action a
and ends up in state s, and b0 is a distribution over world
states characterizing the agent’s initial belief about the state
where the agent starts. The agent has no direct knowledge
of world states. It can only infer a belief about them by ana-
lyzing observations it gets when it executes various actions.
Solving a POMDP means finding a (Markovian determinis-
tic) policy π : B → A that recommends actions based on
the agent’s current belief.

The CTP variant we propose in this paper can be con-
verted to a goal-oriented POMDP as well. We describe the
conversion process in the next section, and in the meantime
point out the main purpose of performing such a conversion
is to make CTPs amenable to the vast amount of machinery
that has been developed for solving POMDPs.

An optimal solution for a POMDP can be computed with
dynamic programming, but doing so is PSPACE-complete
[12]. To address this intractability, researchers have pro-
posed various approximate solution methods, e.g., the ap-
proaches derived from point-based value iteration [14, 9] and
Monte-Carlo planning [17, 2]. However, these algorithms fo-
cus on goal-free reward-oriented POMDPs and are not di-
rectly applicable to the problems we consider here. Tech-
niques targeting goal-oriented POMDPs (e.g., [5]) are more
relevant, but Gaussian Traveler Problems studied in this pa-
per have a number of challenges making them difficult even
for these specialized methods. These challenges include con-
tinuous observation space, large number of time steps needed
to reach the goal, and computational limitations imposed
by the real-world problem specifications. In this paper, we
apply determinization to offer tractable approximate solu-
tions to GTPs. Similar ideas have been applied for solving
POMDPs, e.g., in [11].

3. PROBLEM FORMULATION
Our primary motivation comes from the insight that in

many CTP scenarios, including the aircraft navigation ex-
ample studied in this paper, the only source of non-deterministic

dependencies among costs of edges are the natural dynam-
ics governed by phenomena such as winds. We extend the
notion of natural dynamics from its original meaning in
robotics [10] to refer to any phenomenon that interferes with
an agent’s actions and that it cannot control. For a broad
range of problems, their natural dynamics can be success-
fully described by a Gaussian Process, a model easy both
to formulate and to update. Thus, although stochastic re-
lationships among edge costs in general CTPs are hard to
characterize concisely, GPs address this issue in many inter-
esting and practically important cases. In this section, we
present a novel class of CTPs that exploits this characteris-
tic by having GPs as an inherent component of the problem
definition.

Letting GP(0, k, σ2) denote a Gaussian Process with zero
mean, kernel function k, and observation noise variance σ2,
we can define our new CTP subclass as follows:

Definition. Gaussian Traveler Problem. A Gaussian
Traveler Problem (GTP) is a tuple 〈V,E, v0, vg,W, k, σ2, C〉,
where

• V , E, v0, and vg are as in the CTP definition;

• W is a set of joint natural dynamics realizations W :
E → Rn, each of which maps all edges to the values
of natural dynamics on those edges (e.g., true wind
magnitude and direction on the edges);

• k : E ×E → R is a kernel function encoding the simi-
larity between any two edges;

• σ2 is the variance of the natural dynamics observation
noise;

• C : (E → Rn) → (R+)|E| is an invertible dynamics-
dependent cost function that maps joint natural dy-
namics realizations to joint assignments of positive costs
to all the edges;

Solving a GTP means finding a policy π with the least ex-
pected cost of leading the agent from v0 to vg, given that the
prior distribution over joint edge cost realizations is C(W),
where W ∼ GP(0, k, σ2) is a random variable with domain
W.

The GTP definition differs from that of CTP only in the
formalization of the prior belief over joint edge cost real-
izations. In particular, GTP views an edge cost realization
(e.g., edge traversal times) as being generated from a real-
ization W (e.g., wind vectors in the vicinity of every edge),
which, in turn, is generated by the GP-governed natural
dynamics of the problem (the probabilistic model that de-
scribes wind correlations at different locations).

As in many existing CTP flavors, we assume that a par-
ticular natural dynamics realization (e.g., wind vectors on
all edges), and hence a joint edge cost realization, has been
“chosen” by nature by the time an agent starts acting and
remains fixed until the agent reaches the goal. Thus, the
agent only needs to “uncover” the chosen cost realization
by observing costs on various edges (which are guaranteed
to remain unchanged once observed) and updating the GP
that describes the underlying natural phenomenon. Note,
however, that in order to update the GP using an edge cost
observation, an agent needs to infer the value of wind on
that edge from the observed edge cost. The requirement of
the cost function’s invertibility in the GTP definition guar-
antees that this is possible.

Although GPs provide a convenient tool for representing
beliefs about true edge costs, they don’t provide a policy
that tells an agent how to act depending on these beliefs.
We formalize decision-making in GTPs as a goal POMDP
and then adapt POMDP algorithms to compute approxi-
mate GTP solutions:

Theorem. Every GTP can be converted into a goal POMDP
with continuous observation space.

Proof. The theorem holds because GTPs are a subclass
of CTPs. However, we present an explicit GTP-to-POMDP
conversion procedure because it shows how the properties
inherent to GTPs translate to the properties of the result-
ing POMDPs. Given a GTP, the state of the corresponding
POMDP at any given point is uniquely described by the
combination of the graph node where the agent is at the
moment and the world’s joint natural dynamics realization
(unavailable to the agent). The goal of the POMDP is any
state in which the agent is at the graph’s goal node. To
get to that node, the agent travels along the graph’s acces-
sible edges, i.e., each accessible edge maps to a POMDP
action. Crucially, by our assumption, the natural dynamics
realization component of the POMDP state never changes
— it remains the same in any state the agent visits from the
state where the agent starts. The POMDP’s cost function
is fully determined by the joint natural dynamics realization
implanted into the state. The POMDP’s belief states, like
its actual states, consist of two parts: the agent’s current
node, which is known to the agent exactly, and the agent’s
GP belief about the edge costs. Initially, the agent’s belief
is given by GP(0, k, σ2). However, the agent can update
it by receiving an observation (an edge traversal cost), in-
verting the GTP cost function to find the natural dynamics
realization for that edge, and using Equations 3 and 4 to
re-estimate the GP’s covariance matrix and means for all
other edges.

More formally, consider a GTP 〈V,E, v0, vg,W, k, C〉. To
build a corresponding POMDP, define the POMDP’s state
space S to be the set V ×W, i.e., the cross product of graph
node set and the set of all possible natural dynamics real-
ization. The goal set G consists of all POMDP states whose
agent location component equals vg. Define the POMDP’s
action space A by creating an action for every edge e ∈ E
accessible from a given node. Since an agent’s actions do
not alter the world’s natural dynamics realization in GTPs
and merely cause the agent to travel from one node to the
next, the POMDP’s transition function T follows naturally
as T (s, ae, s

′) = 1 if s = 〈v,W 〉 and s′ = 〈v′,W ′〉 are s.t.
W = W ′ and action ae corresponds to edge e connecting v
and v′ in the GTP. In all other cases, T (s, ae, s

′) = 0. Sim-
ilarly, the POMDP’s cost function C(s, ae, s

′) = Ce(W) for
any states s = 〈v,W ′〉 and s′ = 〈v′,W ′′〉, where Ce(W) de-
notes the cost of edge e under natural dynamics realization
W , W = W ′ = W ′′, e connects v and v′ in the GTP, and
ae is the POMDP’s action corresponding to edge e. In all
other cases, C(s, ae, s

′) is infinite or undefined. The set Z
of the POMDP’s possible observations equals R+, the set of
all possible edge cost values. This is because once an agent
executes an action (traverses an edge), the only observation
it gets is the cost of that edge. The POMDP’s observa-
tion function O is defined as O(s, ae, z) = 1 if z = Ce(W),
where s =< v,W > and action ae corresponds to edge e,
and 0 otherwise. Finally, the POMDP’s initial belief state
is 〈v0, GP (0, k, σ2)〉. In general, the POMDP’s belief space

consists of all pairs whose first component is a node in V
and whose second component is a multivariate Gaussian in
|E| dimensions, with some dimensions possibly collapsed to
Dirac delta functions.

By construction, there is a one-to-one mapping between
the policies in the original GTP and the described POMDP
that preserves the ranking of the policies in terms of their
expected cost of reaching the goal [5]. Thus, a policy is op-
timal for the GTP if and only if its counterpart is optimal
for the POMDP, completing the proof. �

The continuous observation space and large state spaces of
GTP instances arising from real-world scenarios render the
existing POMDP solution algorithms infeasible for tacking
GTP-derived POMDPs. We discuss these challenges and
ways of circumventing them in Section 5, but first give a
detailed example of a real problem GTPs can model, aircraft
navigation.

4. AIRCRAFT NAVIGATION EXAMPLE
A central challenge for each of the 30, 000 flights taking

off in U.S. every day is arriving to a goal location from the
departure location with minimal time and fuel spent during
the flight. Since aircraft primarily cruise at a predetermined
constant speed relative to the surrounding air [1], the pri-
mary factor affecting the duration of a flight is wind patterns
along the chosen route. Commercial aviation aircraft usu-
ally fly between the altitudes of 23000 to 41000 feet. In
this altitude range, wind patterns can vary significantly in
direction and in magnitude between 30 knots to 120 knots
[4]. The true wind realizations (i.e., wind speeds and direc-
tions) are not known at the time of flight planning. Instead,
the National Atmospheric and Atmospheric Administration
(NOAA) of U.S. issues wind reports at 176 weather stations
spread out over the country every 6 hours. These readings
are known as the“Winds Aloft”data. They give wind speeds
and magnitudes are obtained with weather balloons for al-
titudes up to 39000 feet over the mean sea level. Currently,
aircraft routes are planned based on the Winds Aloft data
at the time of take-off. Since there are only 176 stations
for all of the U.S., this data is very sparse, and modern day
route planners estimate wind at any location by linearly in-
terpolating the winds at the nearest wind stations [1]. We
term this approach Linear Interpolation.

To represent this navigation scenario as a GTP, we dis-
cretized the appropriate area of the map (e.g., the North
American continent) into a regularly spaced grid (with nodes
spaced 1 degree longitude and latitude apart) and connect-
ing them to d of their nearest neighbors (d = 8 was used
in our experiments). To compute the cost of traversing an
edge e that connects nodes r miles away from each other for
a fixed airspeed of l knots along the edge and the wind vector
in the edge’s vicinity being ~w, we computed the projection
we of ~w onto the vector representing the edge e, and let the
edge cost be Ce = r

l−we
. To avoid negative costs, we as-

sumed that the wind magnitude never exceeds the aircraft’s
airspeed—an assumption that holds well in practice.

Before presenting a general algorithm for solving GTPs
via converting them to goal POMDPs and using it for the
aircraft navigation scenario, we explore simpler approaches
to this special case. They will serve as baselines for our ex-
periments in this domain. The first of them is directly based
on the aforementioned Linear Interpolation technique. It
uses the interpolation on the initial weather station readings

Figure 1: This 8-connected graph was used as the un-

derlying graph for all experiments. The weather loca-

tions are marked with green markers and start and goal

locations are marked with orange markers.

and a deterministic shortest-path algorithms such as A∗ or
Dijkstra’s to construct a plan that is used without modifica-
tions throughout the flight. An alternative approach, which
we call No Replan, is similar to the Linear Interpolation
method, but differs in using the GP model to generate pre-
dictions about wind patterns. It trains the GP kernel with
the available Winds Aloft reports, takes the GP’s mean wind
predictions to produce a cost (traversal time) estimate for
every edge, and also uses A∗ or Dijkstra’s to find a path to
follow for the whole flight.

Both the Linear Interpolation and No Replan algorithms
fail to take into account all the wind measurements that
the aircraft gathers as it traverses the edges on its way to
the destination. The Replan by Mean scheme addresses this
shortcoming by incorporating observations the aircraft ac-
quires on its way to the goal. It keeps updating the GP
every time a wind is measured by the aircraft, re-predicting
the edge wind vectors in the graph, and replanning a new
path from the current location to the goal. Although this
approach can incorporate newly acquired observations into
the planning process, it still suffers from a crucial deficiency:
it fails to take into account the uncertainty of GP’s wind
predictions at every edge, reflected in GP’s variance param-
eter. Our approach, described in the next section, rectifies
this weakness.

5. ALGORITHMS FOR SOLVING GTPs
In Section 3, we showed that every GTP can be con-

verted to a goal POMDP with continuous observation space.
The question is then: can we solve this problem with stan-
dard techniques from the POMDP literature? The opti-
mal POMDP solution methods operate iteratively, where
the complexity of every iteration depends on the number
of possible observations in the problem [18]. Since in GTP
POMDPs the number of observations is infinite, these al-
gorithms cannot be used in their basic form to solve these
problems. Point-based methods, the state of the art in solv-
ing POMDPs approximately, appear to be more feasible,
but they, too, fail to scale to GTP POMDPs that model
realistically-sized scenarios. The ultimate reason is the min-
imum number of edges an agent needs to traverse in order
to get from v0 to vg in these settings, which can reach 200
for moderately-sized aircraft navigation settings. Perform-
ing belief state backups for this many steps is very intensive
computationally, even if the issue of continuous belief state
can be circumvented.

Instead, we take a determinization-based approach. Note

Figure 2: The wind pattern used in experiments pre-

sented in wind station randomization experiments.

that GPs that we are using to model the underlying natu-
ral dynamics reduce to multivariate Gaussian distributions
for graphs with finite numbers of edges. Such a distribution
can be easily sampled. Each sample from this Gaussian is
a joint natural dynamics realization, i.e., a wind vector for
every edge. Converting a sample’s winds to costs (time of
travel along the edge) for a fixed aircraft airspeed yields a
deterministic planning problem on the same graph. By gen-
erating many such samples from the GP representing the
current belief about the winds and solving them (an inex-
pensive operation, since deterministic planners are very ef-
ficient), we can can estimate the expected cost-to-goal for
each available action choice at the aircraft’s current node.
We can then choose the action (edge) with the least ex-
pected cost-to-goal estimate, transition to another node via
the corresponding edge, measure wind on that edge, update
the GP, and repeat the process.

Algorithm 1 lays down the details of this approach, which
we call Replan by Sampling. Replan by Sampling interleaves
planning and execution. The inputs to the algorithm are the
components of a GTP, including a GP with a kernel trained
initially using the available weather stations, and the num-
ber of samples n to be generated at each step. At the initial
node, the algorithm samples the GP n times to produce n
separate natural dynamics realizations in the set {W} (line
3). Then, each available immediate action’s (edge’s) Q-value
is estimated by running a deterministic shortest path algo-
rithm on each sampled realization (lines 4-6). The action
with the least estimated cost-to-goal is chosen for execu-
tion (line 8) in the real world. A new wind measurement z
is obtained in line 9 and the GP is updated with the new
observation in line 10 using Equations 3 and 4. This pro-
cess is repeated until the goal node vg is reached. Due to
its probabilistic nature, Replan by Sampling accounts for
the uncertainty in wind prediction naturally modeled by the
GP. Instead of following a fixed policy, this algorithm con-
tinuously replans throughout execution by incorporating the
new wind observations the aircraft makes along the way.

6. EXPERIMENTS
We developed a simulation platform to evaluate the per-

formance of the proposed method and to analyze the benefits
gained from replanning approaches in various settings. The
simulations enable us to understand how different factors,
such as the number of weather stations available, their lo-
cations and wind characteristics, influence the efficiency of
flight planning.

Our simulations are performed on a grid roughly corre-
sponding to 1

4
of the continental US, covering the US west

Algorithm 1 Replan by Sampling

Require: vo, vg, V , E, k, C, GP(0, k, σ2), n
1: v = vo
2: while v 6= vg do
3: {W} = Sample(GP(0, k, σ2), n)
4: for each a in NeighboringEdges(v) do
5: Q(v, a) = EstimateQ({W}, v, a)
6: end for
7: a∗ = argmina Q(v, a)
8: v = Traverse(a∗, v)
9: z = ReceiveNewObservation(v)

10: GP(0, k, σ2) = UpdateGP(GP (0, k, σ2), z)
11: end while

Algorithm 2 EstimateQ

Require: {W}, v, a, vg
1: Q = 0
2: for each C(W) in {W} do
3: v′ = Neighbor(a, v)
4: q = Dijkstra(v′, vg, C(W))
5: Q = Q+ q
6: end for
7: return Q = Q

|{W}| + c(v, v′)

coast and part of Mexico (Figure 1). The grid nodes are
spaced 1 degree of longitude and latitude apart, and each is
connected to its 8 closest neighbors. In our experiments, one
corner of the graph, Mexico City, is the start location and
the opposite corner, Seattle, is the goal. The aircraft speed
was set at 250 m/s (560 mph), representative of the cruising
speed of a commercial jet airliner. Weather stations provide
information about the wind patterns on the map before the
plane takes off and collects observations. The number of
weather stations available and their locations determine the
amount of information available prior to a flight. In our sim-
ulations, we vary the number of weather stations between 5
and 50 and put them on the map randomly in different trials
to observe their effect on planning.

In our simulations, we used a 2D polynomial equation
to generate wind patterns on the map. As shown in pre-
vious work [4], wind patterns are primarily a function of
temperature and pressure at high altitudes, and a quadratic
polynomial gradient is a well-fitting representation of this
dynamic. In our simulations, we vary the wind speed be-
tween 30 and 120 knots at the altitudes of 23000 and 41000
to agree with the observations of real wind speeds at alti-
tudes where commercial aircraft fly [4]. By randomly per-
turbing the 2D polynomial’s coefficients, we created wind
patterns whose directional distributions were different but
whose magnitude distributions lay in the range from 30 to
120 knots and resembled those shown in [4].

To create an upper baseline to compare with our planning
algorithms, we created an ”oracle” policy which could see
true winds everywhere in the graph. Since no algorithm can
even theoretically beat it, we report the results of all the
other approaches as losses w.r.t. this baseline.

To isolate the influence of weather stations and wind pat-
terns, we conduct two sets of experiments, each focusing on
one of these factors. In the first set, we randomly vary the
location of the weather stations while keeping the ground-
truth wind pattern constant. The objective of these experi-
ments is analyzing the sensitivity of different approaches to

0	 5	 10	 15	 20	

Lo
ss
	 o
ve
r	 O

ra
cl
e	
(%

)	

Average	 Time	 to	 Goal	
Replan	 by	 Sampling	 Replanning	 by	 Mean	

No	 Replanning	 Linear	 Interpola?on	

Figure 3: Comparison of the performances of different

approaches in terms of the percentage loss (extra time

taken) over the oracle policy.

the apriori information provided by weather stations. The
second set of experiments focuses on measuring the efficacy
of replanning approaches against the baselines over a wide
variety of wind patterns. It also lets us characterize the
kind of conditions under which replanning has more gains
over the baseline approaches.

Randomization over Wind Station Locations. In these
experiments, we randomly vary the locations of 5 weather
stations 400 times to explore their effect on planning ap-
proaches, while keeping the same ground-truth wind pat-
tern. This pattern, shown in Figure 2, is chosen to have suf-
ficient variance to showcase the benefits of replanning and
be fairly realistic. All approaches had access to the same
wind information provided by the randomly located weather
stations prior to planning. In addition, Replan by Sampling
and Replan by Mean approaches updated their plans accord-
ing to the additional true wind observations collected as the
aircraft traversed the grid’s edges.

Figure 3 shows the average flying times resulting from the
plans computed by different approaches relative to the “or-
acle” planner’s flying time as the percentage loss. In each
trip, the oracle took 9845 seconds to get from the start to
the goal in this particular graph. The average flying time
for Replan by Sampling is 11% worse than the“Oracle”while
the average time for “Replan by Mean” is 13.8% worse. The
average times for Linear-interpolation and “No Replan” are
18.3% and 17.3% worse, respectively. On average, Replan
by Sampling ’s routes are 275 seconds shorter than Replan
by Mean’s and 1801 seconds shorter than Linear Interpola-
tion’s, potentially leading to significant fuel savings as well.

Randomization over Wind Patterns. In this set of
experiments, we focus on investigating the performance of
different approaches under a variety of wind patterns. We
generated 500 random patterns, where each one represents
different a combinations of wind directions and magnitudes.
The start and goal locations were kept constant. We first ran
all the approaches with 5 randomly selected initial weather
stations held constant for all wind patterns. Figure 4 shows
the average loss in time of each approach w.r.t. the “oracle”
planner’s average flight time. On average, Replan by Sam-
pling outperforms Replan By Mean’ by 43 seconds and beats
Linear Interpolation and No Replan by 673.4 seconds.

In order to better understand where Replan by Sampling
performs better than Replan by Mean, we binned the 500
runs by average speed of the true wind by every 5 m/s (9.7
knots). All the runs for which the average true wind speed
fell into a particular bin were averaged and the mean loss

0	 100	 200	 300	 400	 500	 600	 700	

Lo
ss
	 o
ve
r	 O

ra
cl
e	

(s
ec
on

ds
)	

Average	 Time	 to	 Goal	

Replan	 by	 Sampling	 Replanning	 by	 Mean	

No	 Replanning	 Linear	 Interpola?on	

Figure 4: With 5 initial weather stations Replan by Sam-

pling is better than Replan by Mean by 43 seconds on

average while being 673.4 seconds better than Linear In-

terpolation and No Replan baselines.

0	 200	 400	 600	

Lo
ss
	 o
ve
r	 O

ra
cl
e	

(s
ec
on

ds
)	

Average	 Time	 to	 Goal	

Replan	 by	 Sampling	 Replanning	 by	 Mean	

No	 Replanning	 Linear	 Interpola?on	

Figure 5: Performance comparison when 50 weather sta-

tions are available.

over oracle was plotted in Figure 6. The general trend is that
both replanning based approaches perform increasingly bet-
ter than No-replan and Linear Interpolation as the average
true wind speed increases. In particular, at wind speeds of
about 120 knots, some of the highest encountered by com-
mercial aircraft at their cruising altitudes, Replan by Sam-
pling saves ∼ 200 seconds compared to “Replan by Mean”
and ∼ 800 seconds compared to the other two baselines.

Figure 5 shows the algorithms’ performance as the num-
ber of initial wind stations is increased to 50. As expected,
due to richer initial data GP can better model the wind, and
the benefit from replanning decreases compared to the case
of only 5 initial stations. Since there is less benefit in replan-
ning due to more accurate prior information, the benefit of
the approximate replanning approaches hinges on how well
they can choose actions by taking the prior information and
world uncertainty into account. Our results show that even
in this case Replan by Sampling manages to perform bet-
ter than Replan by Mean and the no-replanning approaches.
They also show that Replan by Mean on average fails to
provide any advantage compared to the no replanning ap-
proaches, since it cannot reason about uncertainty over wind
patterns adequately.

7. CONCLUSION AND FUTURE WORK
We introduced the Gaussian Traveler Problem (GTP) for

optimizing paths for domains with unknown edge costs that
have dependencies governed by natural dynamics modeled
by a Gaussian Process. We also presented a scalable approx-
imate online algorithm for solving these problems. Casting
the realistic domain of aircraft navigation as a GTP and
comparing solutions for it yielded by the proposed algorithm
and several baselines, showed that using GTPs in this set-

Figure 6: Performance loss over oracle as a function

of average true wind speed. Replan by Sampling outper-

forms other methods for most of the wind speed values

(lower bars denote better performance).

Figure 7: The path in black is the oracle plan from start

(lower right corner) to goal (upper left corner), red is the

Replan by Sampling plan which comes close to the oracle

plan, orange is the Replan by Mean plan which in this case

is worse than Replan by Sampling by 236 seconds. The

green path is the plan taken by Linear Interpolation and

No Replan which are both happen to be going straight

for the goal in this example.

ting can lead to significant savings in fuel consumption and
travel time.

We are currently exploring several directions for extend-
ing this work. We have focussed on planning approaches
that use determinism for scalability, but there is opportu-
nity for more sophisticated approaches such as Monte-Carlo
planning to better represent the nature of sequential evi-
dence collection while preserving algorithmic efficiency. We
are working on generating more realistic simulations that
are based on the trips of real-world aircraft. Moreover, our
current model assumes that wind conditions do not change
within the planning time horizon. In reality, during trips
lasting several hours, predicted winds can change signifi-
cantly. We plan to extend GTPs to handle time-varying
natural dynamics by encoding temporal dependencies into
the GP kernel, either explicitly with a time variable or im-
plicitly by accounting for the agent’s average travel time
between different locations when learning spatial dependen-
cies. We would also like to enable the agent’s weather esti-
mates to benefit from real-time observations made by other
agents, e.g., aircraft overflying different parts of the conti-
nent. While incorporating these observations is as simple
as updating the GP, the issue is that other agents may not
be willing to share them voluntarily. For instance, weather
readings are presently not shared between aircraft in a sys-
tematic way, and air traffic participants may charge for them.
GTPs need an additional cost-benefit analysis mechanism to

reason about this aspect. Finally, we are studying the chal-
lenges that arise from the deployment of these ideas for real-
world flight planning. We believe that machine learning and
planning techniques offer new opportunities for increasing
the efficiency of existing practices in a wide array of practi-
cal domains, with the flight planning scenario presented in
this paper being only one example.

8. REFERENCES
[1] Private Pilot Manual. Jeppesen Sanderson, 2001.
[2] A. G. Barto, S. Bradtke, and S. P. Singh. Learning to

act using real-time dynamic programming. Artificial
Intelligence, 72(1):81–138, 1995.

[3] Z. Bnaya, A. Felner, and S. E. Shimony. Canadian
traveler problem with remote sensing. In IJCAI, 2009.

[4] L. Boccia, P. Pace, G. Amendola, and G. Di Massa.
Low multipath antennas for gnss-based attitude
determination systems applied to high-altitude
platforms. GPS Solutions, 2008.

[5] B. Bonet and H. Geffner. Solving POMDPs:
RTDP-Bel vs. point-based algorithms. In IJCAI, 2009.

[6] G. Hollinger, A. Pereira, V. Ortenzi, and
G. Sukhatme. Towards improved prediction of ocean
processes using statistical machine learning. In
Robotics: Science and Systems Workshop on Robotics
for Environmental Monitoring, 2012.

[7] X. Jiang, B. Dong, L. Xie, and L. Sweeney. Adaptive
gaussian process for short-term wind speed
forecasting. In ECAI, 2010.

[8] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell.
Gaussian Processes for object categorization. In IJCV,
2009.

[9] H. Kurniawati, D. Hsu, and W. Lee. Sarsop: Efficient
point-based POMDP planning by approximating
optimally reachable belief spaces. In RSS, 2008.

[10] T. McGeer. Passive dynamic walking. IJRR,
9(2):62–82, 1990.

[11] A. Olsen. Pond-hindsight: Applying hindsight
optimization to partially-observable markov decision
processes. Master’s thesis, Utah State University, 2011.

[12] C. H. Papadimitriou and J. N. Tsitsiklis. The
complexity of markov decision processes. Mathematics
of operations research, 12(3):441–450, 1987.

[13] C. H. Papadimitriou and M. Yannakakis. Shortest
paths without a map. Theoretical Computer Science,
84(1):127–150, 1991.

[14] J. Pineau, G. Gordon, and S. Thrun. Point-based
value iteration: An anytime algorithm for pomdps. In
IJCAI, volume 3, pages 1025–1032, 2003.

[15] G. H. Polychronopoulos and J. N. Tsitsiklis.
Stochastic shortest path problems with recourse.
Networks, 27:133–143, 1996.

[16] C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. MIT Press, 2006.

[17] D. Silver and J. Veness. Monte-carlo planning in large
pomdps. In NIPS, pages 2164–2172, 2010.

[18] E. Sondik. The Optimal Control of Partially
Observable Markov Decision Processes. PhD thesis,
Stanford University, 1972.

[19] Y. Xie, K. Zhao, Y. Sun, and D. Chen. Gaussian
processes for short-term traffic volume forecasting.
Journal of the Transportation Research Board,
2165:69–78, 2010.

