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Abstract- We present a method for computing the location of a 
device down to a radius of several miles within a greater 
metropolitan area by analyzing the signal strengths observed 
from commercial FM radio stations. The use of ambient 
commercial radio signals allows for wide coverage, both indoor 
and outdoor reception, client-side computing for privacy, and 
the feasibility of employing inexpensive, low-power 
measurement hardware. Our technique is based on a model for 
computing the likelihood of locations using both received signal 
strengths and information from a simulated signal strength 
map. Using simulated signal strengths relieves the burden of 
manually measuring signal strength as a function of location. 
We account for the inevitable measurement variations among 
devices by comparing rankings of radio stations by signal 
strength. Our experiments show we can measure location down 
to a median error of about 8 kilometers (5 miles) in the greater 
Seattle area by listening to seven different radio stations. 

I. INTRODUCTION 
Accessing information about a user’s location has been a 

central challenge in ubiquitous computing research, as many 
context-sensitive services depend critically on location. We 
have pursued methods for determining a user’s location, both 
indoors and outdoors, that can be supported by inexpensive, 
low-power hardware. We explore in this paper our 
refinements of methods for identifying location from the 
analysis of ambient commercial radio broadcasts. We focus, 
in particular, on developing location services that can be 
supported by a small receiver, configured in a wristwatch 
format. The device, called the Smart Personal Object 
Technology (SPOT) wristwatch, has been developed by 
Microsoft into a product that is targeted at serving as both a 
time piece and receiver of information. Fig. 1 shows one of 
the prototype SPOT devices and sample displays of real time 
data which can include news, weather, traffic, sports, stock 
quotes, and instant messages. The information is transmitted 
on the sidebands of existing, commercial FM radio stations.  

We set out to develop methods that could make this device 
location-aware without requiring extra hardware, 
fundamental new designs, nor additional requirements on 
battery power. Information about a user’s current location 
would enable a number of enhancements for the SPOT 
information service, including the provision of more targeted, 
location-centric services, such as the times of movies playing 
in nearby theaters, specials at proximal restaurants, and street 
maps. 

Unfortunately there is no inexpensive, tiny, low-power, 
add-on circuit that can measure the position of the watch. As 
examples of available wristwatch-sized location systems, 

there are at least three commercially available watches with 
GPS functionality, all of which are much bulkier than normal 
watches, as shown in Fig. 2(a)–(c). Cell phones can also give 
location, but are bulky even when attempts are made to 
minimize their size and providing means for clipping such 
devices to a wrist, as shown in Fig. 2(d). Although we cannot 
measure location as accurately on a SPOT device as is 
common with cell phones, the wristwatch has the advantages 
of easy glancebility and indoor functionality. 

Given that the SPOT watch can already measure signal 
strengths from commercial FM radio stations, our goal was to 
develop a technique that uses signal strengths to provide 
approximate locations for the devices. The advantage of this 
approach is that it uses the device’s existing hardware, 
requiring only the addition of software. The idea of using 
signal strengths for location identification has precedent. For 
instance, the RADAR system [1] uses Wi-Fi signal strengths 
to locate an 802.11 device down to an accuracy of a few 
meters. The SmartMoveX active badge [2] uses short range 
radio signal strengths to localize an active badge inside a 
building. These efforts share with ours the fact that the radio 
signals in question do not contain timing information, leaving 
them to depend on signal strength as the only indication of 
location. 

We reported on our early investigation of the feasibility of 
localization from the analysis of ambient FM signal strengths 
in [3]. That effort showed that we could correctly classify a 
SPOT device into one of six suburbs with a classification 
accuracy of about 80%. The work described in this paper 
extends the earlier results in the following ways: 
• We classify the device into a uniform grid of locations 

rather than seeking to identify one of a few, spatially 
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Fig. 1. The SPOT watch receives digital data encoded on 
the sideband of commercial FM radio stations. It filters the 
received data into customized channels for the user. 
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Fig. 3. If the mobile device's measured rssi is a
monotonically increasing function of input signal
strength, then the signal strength order of inputs will be
preserved. For instance, if CBA << , then these values
transformed through the three different rssi-measuring
functions will stay in the same signal strength order.

separated suburbs. With the finer-grained resolution, we 
measure error in units of distance rather than classification 
accuracy for regions. 

• Instead of manually training locations as a function of 
signal strength as before, we now use simulated signal 
strength maps that eliminate the need to physically visit 
locations and measure signal strengths for training. 

• We present a principled approach to choosing a good set of 
radio stations to measure, based on analysis of the 
simulated signal strength maps. 
The remainder of this paper is organized as follows: in the 

next section, we discuss the signal strength features and 
describe methods employed in the SPOT device to measure 
signal strength of FM transmitters. Section 3 explains how 
the signal strength maps are generated. Our approach is 
presented in Section 4. In Section 5, we report on a set of 
experiments in the greater Seattle area and summarize with 
results, highlighting the ability to localize position down to a 
few miles. Finally, Section 6 concludes the paper and 
discusses future work. 

II. SIGNAL STRENGTH FEATURES 
We use signal strenths measured from commercial FM 

radio stations for localization. In normal operation, the device 
listens to selected stations that are broadcasting SPOT data on 
their sidebands, given prior agreements between the stations 
and Microsoft on the leasing of these channels. In order to 
find the best SPOT-enabled station, the device scans through 
a preprogrammed list of stations and measures their relative 
signal strengths in order to pick the strongest one. Our 
technique exploits this ability by adding extra radio stations 
to the scan list. These extra stations do not carry SPOT data, 
but instead are used solely to help localize the device. We 
explain in Section 3 how we select the list of radio stations to 
scan. 

The device’s received signal strength indicator (rssi) 
comes from an analogue-to-digital converter (ADC) in the 

device. The raw digital measurements from each frequency 
are scaled and then averaged over 20 readings for 13 
milliseconds. The ADC and associated circuitry are not 
carefully calibrated to measure rssi in any particular units nor 
to be consistent from device to device. This expected 
inconsistency poses a problem for location measurement, 
because we cannot expect that a given location will be 
characterized by a consistent set of signal strengths across 
multiple devices. One solution to such variation is to calibrate 
each device at the factory and add a function on the device to 
compute a canonical signal strength from every measurement. 
We deemed this approach as being too expensive and pursued 
methods that could provide robust training and inference 
without such detailed calibration. 

    
(a) This Casio watch has 
a built-in GPS receiver 
for self-location. 

(b) The Wherify watch is 
designed for tracking children. 
The GPS-derived position is 
broadcast wirelessly and can 
be accessed from a web site. 

(c) This Timex watch is the 
hub of a wireless network of 
devices carried on the body, 
including the larger GPS 
receiver. 

(d) NTT DoCoMo’s 
Wirstomo unclips from a 
wrist to become a 
handheld cell phone. 

Fig. 2. (a) – (c) are three examples of GPS-equipped watches and (d) is an example of a wrist-mounted cell phone. Their 
extra bulk limits their appeal as watches. 
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Fig. 4. Display of the simulated signal strengths of a radio 
station in the Seattle, WA USA area generated by the 
ComStudy program. The effect of terrain is apparent. 

As we cannot assume that different locations are 
characterized by consistent signal strengths, we make the 
weaker assumption that the relative signal strengths will be 
consistent, i.e. that the ordered list of radio stations sorted by 
signal strength will be stable for a given location. More 
precisely, we assume that the relationship between input 
signal strength and measured rssi is monotonically increasing, 
as illustrated in Fig. 3. If this is the case, then the 
transformation between input signal strength and measured 
rssi will preserve the signal strength order of the input. This 
helps our algorithm work for a wide variety of devices in 
spite of device-to-device variations in how they measure 
signal strengths. 

We compute our rank feature by first scanning though a list 
of n  radio stations, each identified with an index [ ]nK1 . The 
signal strength of station i is denoted is . Measuring the rssi 
of each station results in a set of ordered pairs giving the 
station index and signal strength of each radio station: 
( ) ( ) ( ){ }nsnss ,,,,2,,1 21 K . This set of radio station–strength 

tuples is then sorted by signal strength to get a rank vector. 
For example, suppose 3=n  and the scan results in 
( ) ( ) ( ){ }35,3,30,2,40,1 . Sorting this set of ordered pairs on 

signal strength gives ( ) ( ) ( ){ }40,1,35,3,30,2 . The rank vector is 
then the radio station indices taken in signal strength order, 
i.e. ( )1,3,2=r , indicating that 132 sss << . Equal signal 
strengths are sorted arbitrarily. For n  stations there are !n  
different rank vectors. We assign a unique integer hash code 
to each rank vector for more efficient storage. The hash code 
is computed from an algorithm presented by Knuth [4], which 
maps each rank vector to an integer [ ]1!0 −∈ nr K  using a 
mixed-radix representation of the integers. The next section 
explains how we predict what the rank hash codes will be as a 
function of location, which is used ultimately to localize the 
device. 

III.  SIGNAL STRENGTH MAPS 
To infer a location from a rank hash code, we need to have 

a relationship between location and hash codes. One way to 
ascertain this relationship is to physically visit a grid of 
locations on the ground and record signal strengths. For the 
general case, this is tedious and it requires ongoing 
maintenance if a radio station changes its transmitter’s power 
or location.  

To minimize the need to make a large number of 
measurements by physically visiting locations, we explored 
the value of using high-fidelity simulations of radio signal 
propagation. These simulations are typically used in the 
commercial radio industry for estimating the reach of 
stations. In particular, we experimented with RadioSoft’s 
ComStudy software to generate simulated FM radio signal 
strength maps. Fig. 4 displays such a map. In Section  A, we 
explain how the FM radio maps were generated. Then, in 
Section  B, we discuss how the radio maps were validated 

against actual signal strength measurements. Finally, in 
Section  C, we show how we selected a good subset of radio 
stations for efficient computation of location. 

A. Generating Simulated FM Signal Strength Maps 
The ComStudy software supports many radio propagation 

models that can be used to predict FM radio maps. We chose 
the Longley-Rice model, also known as NBS 1011, for its 
known accuracy. It is generally the most accurate of the 
choices since it incorporates reflection, refraction (bending of 
the rays as they rise through the atmosphere), and several 
types of diffraction (spilling of signal over hills). The model 
uses a terrain map to simulate the effect of hills and valleys. 
The terrain effects are obvious in the simulated rssi map 
shown in Fig. 4. 

ComStudy parameterizes each radio station transmitter by 
its frequency, transmitting power, and location as (latitude, 
longitude). For each transmitter, a field strength matrix is 
generated. The matrix is a grid of points spread over the 
chosen area on the ground, with each point containing the 
signal level information from the transmitter in question. The 
points are 6 arc seconds apart (about 185 meters north-south 
and 124 meters east-west). This is equivalent to having 40 
points per square kilometer. ComStudy then applies the 
chosen propagation model to calculate field strength at each 
point. We generated maps for 28 local FM radio stations. 

                                                           
1 National Bureau of Standards (NBS) Tech Note 101. 
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Fig. 5. Histogram of Spearman's rank correlation between
simulated and actual signal strength rankings shows that
the simulated signal strength maps do a good job of
predicting the actual rankings. 

 
Fig. 6. Compared to the histogram in 5, the reduced set 
of radio stations shows better rank correlation between 
the simulated and measured rankings. 

B. Validating the Simulated Signal Strength Maps 
Before we used the simulated signal strength maps for 

location inference, we had to be confident that the maps 
accurately predicted the rank vectors. To address this 
concern, a SPOT watch was programmed to measure signal 
strengths of the same 28 FM radio stations for which we had 
generated maps. We drove to locations within this area with 
the device, logging the signal strengths of all 28 stations, 
taking one 28-station scan per second, resulting in about 6290 
readings for each station. We simultaneously logged (latitude, 
longitude) from a GPS receiver in the same vehicle. To assess 
the accuracy of the simulation, we calculated the Spearman 
rank correlation [5] between the ranked radio stations from 
the measured signal strengths and from the simulated signal 
strengths, using the GPS readings to determine which 
simulated strengths to use from the maps. We chose the 
Spearman rank correlation instead of Kendall’s because 
differences between data values ranked further apart are 
given more weight with Spearman. Both correlations range 
over [-1 … 1], with “1” indicating equivalent rankings and “-
1” indicating opposite rankings.  

Fig. 5 shows a histogram of Spearman’s correlations 
between the measured signal strength and the simulated 
signal strength. The histogram shows that more than 95% of 
the measured rankings were correlated with the simulated 
rankings with a factor of at least 0.6 on a scale of [-1 … 1]. 
We considered this as a sign that the simulated results are 
potentially accurate enough for determining the location of a 
SPOT watch. In the next section, we show that even better 
correlation exists if the number of stations is reduced. 

C. Reducing the Number of Radio Stations 
With 28 available radio stations, we have 28! ≈ 3.05x1029 

different rank vectors. Considering all of these signals as 
independent would clearly demand infeasible computation 
and storage. However, many of the stations are broadcast 
from the same tower with some having similar transmission 

power. Measuring signal strengths from co-located, similarly 
powered stations is redundant. To eliminate these 
redundancies, we divided the 28 stations into groups of 
approximately similar stations. We used the following criteria 
to assess similarity: 
1. Calculate Pearson’s correlation coefficient [5] between all 

pairs of stations based on spatially corresponding points 
on the simulated signal strength maps. Pearson’s 
correlation coefficient is the standard linear correlation 
coefficient, not a rank correlation. 

2. Find groups of stations that are correlated with each other 
greater than a certain threshold ρ . For our 
implementation, we used 95.0=ρ . 

3. From each correlated group, select the station with the 
highest average signal strength to represent the group. 

Applying the above criteria to the simulated signal strength 
maps of the Seattle area, we found that there are seven groups 
of correlated stations with Pearson’s correlation factor of at 
least 0.95. 

Applying the above criteria, the number of stations was 
reduced from 28 to 7. This means instead of having 28! 
different ranking vectors, we had just 7! = 5040, a reduction 
of 25 orders of magnitude. This has a significantly positive 
effect on the computational and memory performance of the 
technique used for location determination. This is particularly 
important for the resource-limited devices we are targeting. 
Fig. 6 shows a histogram of Spearman’s correlations between 
the measured signal strength and the simulated signal strength 
of the seven chosen stations. The figure shows a significant 
improvement over the similar figure with 28 stations (Fig. 5), 
with an even higher correlation between the measured and 
simulated signal strengths. More than 95% of the measured 
signal strength rank vectors are correlated with the simulated 
signal strength with a factor of 0.8 or above. This further 
emphasizes that the simulated results are valid to use for 
determining the location of a SPOT watch. 
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Fig. 7. Our test area and simulated signal strength maps 
covered this area around Seattle, WA. The dark loop near 
the center shows the path of our test drive. The grid size in 
this image has square cells with width 8 km. 

IV.  LOCATION ESTIMATION FROM RANK HISTOGRAMS 

Each point in the simulated signal strength maps was 
converted to a rank hash code, which was ultimately used for 
inferring location from measured rank hash codes. This 
section describes our inference process, starting with our 
technique for producing a smoothed likelihood function 
giving the probability of a rank hash code as a function of 
location. We then show how we use a Bayesian inference 
technique to infer the location of the device. 

A. Rank Hash Code Likelihood as a Function of 
Location 

Our simulated signal strength maps were generated on a 
grid with points about 124 meters apart east-west and 185 
meters apart north-south. This is near the limit of the 
ComStudy’s maximum simulation resolution, and it is much 
finer than we need for our device’s intended purpose. 
Furthermore, this fine resolution means we have 442,806 
points (811 east-west by 546 north-south) to represent our 
test area around Seattle. The rank hash code ranges over [0 … 
7!-1], meaning that each fine point needs a 13-bit integer to 
represent its hash code. The radio map would then need 811 x 
546 x 13/8 ≈ 0.7 MB to represent the fine grid of hash codes 
for our test area. This is too much for our device, and we 
would likely never achieve the location resolution of these 
small cells anyway. 

To alleviate this storage problem and to represent the hash 
codes at a reasonable resolution, we created a coarse grid of 
cells over the fine grid of points and represented each cell as 
a histogram of rank hash codes from its underlying points. 
We varied the size of the cells, with a typical size is 8 km x 8 
km which covers 43 x 64 = 2752 points. 

Each cell’s histogram was normalized to give an estimate 
of the probability distribution of rank hash codes for the cell. 
Mathematically, this likelihood estimate is ( )icrP′ , where 

[ ]1!0 −∈ nr K  represents the rank hash code of the n  radio 
stations and [ ]mici K1, ∈  represents one of the m  cells. 

In practice, the histograms are sparsely populated because 
of the large number of possible rank hash codes. Due to 
noise, orientation of the device, and radio propagation effects 
that are not well simulated, we often measured rank hash 
codes in a cell for which the simulated likelihood ( )icrP′  
was zero. We thus chose to smooth our likelihood estimate to 
fill in the gaps. Unfortunately simple smoothing over the rank 
hash codes r  was not reasonable, since adjacent hash codes 
do not necessarily represent similar rank vectors. Instead, we 
smoothed by replacing the value in each histogram bin by the 
maximum value over all bins whose Spearman correlation 
coefficient with the bin in question was above a chosen 
threshold sρ . In equation form, the (non-normalized) 
smoothed likelihood was computed as 

( )
( )

( )crPcrP
srrSru ′′=

≥′′ ρ,:
max  

Here ( )rrS ′,  is the Spearman correlation coefficient 
between the rank vectors represented by the hash codes r  
and r′ . ( )iu crP  was then normalized over r  into ( )icrP  to 
give the smoothed likelihood function of a rank hash code 
given a cell. Intuitively, sρ  serves as a smoothing parameter, 
with lower values giving more smoothing. We evaluate the 
effect of this parameter in the results section. 

B. Location via Bayesian Inferenece  
Given a measured rank hash code r , the probability of 

being in a cell kc  is given by Bayes rule: 

( ) ( ) ( )
( ) ( )∑

=

= m

i
ii

kk
k

cPcrP

cPcrP
rcP

1

 

Given r , this denominator is constant, and we make no a 
priori assumptions on which  of the m  cells the device is in, 
meaning ( ) mcP k

1= . Thus we take the maximum likelihood 

estimate as the location of the device:  

[ ]
( )k

mkc
crPc

k K1:
maxarg

∈
=  

In actual practice, we smooth these results by taking the 
most frequently inferred cell over the last K  signal strength 
scans. This helps keeps the location inference from jumping 
unreasonably from place to place, although an excessive 
value of K  can cause the inference to be too “sticky”. The 
next section shows the results of this algorithm on real data, 
including the effect of different values of K . 

For deploying to an actual device, the watch would 
monitor radio stations delivering digital SPOT data. (There 
are usually two such stations for every U.S. metropolitan 
area.) This data already includes coarse location information 
to enable local weather reports. If the coarse location 
changed, then the watch would use the same digital feed to 
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Fig. 10. The relation between correlation threshold sρ
and median error for 8=w  kilometers and 30=K . We
used 97.0=sρ . 
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Fig. 8. The relation between grid cell width ( w ) and
median error for 97.0=sρ  and 30=K . We used 8=w
kilometers. 

download discretized versions of the smoothed likelihood 
functions ( )icrP , which would be transmitted periodically 
along with other SPOT data. 

V.  RESULTS 
In this section, we summarize our experiment and discuss 

the effect of different parameters on the accuracy of the 
inference algorithm. We performed the experiment in the 
greater Seattle area. A SPOT watch was programmed to 
measure the signal strengths of the reduced set of 7 local FM 
radio stations, as discussed in Section 3.C. We drove around 
the area with the watch, logging the signal strengths of all 7 
stations, taking one 7-station scan per second, resulting in 
about 6290 readings for each station. We simultaneously 
logged (latitude, longitude) from a GPS receiver in the same 
vehicle. Meanwhile, a simulated radio map for the 7 stations 
was generated, as discussed in Section 3.A. Fig. 7 shows the 
drive path along with the grid with cell width of 8 km that 
was used for inferring the location. The drive path includes 
both highways and local roads.  

We explored the parameter space of correlation threshold 
sρ , temporal window size K, and grid cell width w, testing 

the median error resulting from different settings. We took 
the inferred location as the center of the most likely cell. Our 
experiment showed that we can determine a device’s location 
down to a median error of about 8 kilometers (5 miles) using 
the technique described in Section 4. The distribution of 
cumulative error probabilities is shown in Fig. 9 for the 
optimal settings of the parameters. We found that the best 
parameter settings were a cell width of 8=w  kilometers, a 
histogram-smoothing correlation threshold of 97.0=sρ , and 
a temporal window of 30=K . 

Our experiment shows that the grid cell width w is the 
most important parameter in terms of affecting the accuracy 
of the location inference. Increasing the cell width has the 
advantage of having more simulated points in the histogram 
estimate of ( )crP′  and hence more information about the 
ranking probability distributions. Also, increasing the cell 

width decreases the overall number cells in the grid and thus 
reduces the computational overhead. However, as the cell 
width increases, the location resolution naturally decreases. 
The relation between cell width and median error is shown in 
Fig. 8. 

The second factor that affects the accuracy of the inference 
algorithm is the correlation smoothing threshold sρ . As 
discussed in Section 4.A, the correlation threshold was 
introduced to smooth our likelihood estimate. Therefore, 
decreasing sρ will result in filling more gaps in the 
histogram-based estimate of ( )icrP′ . However, decreasing 

sρ below a certain value will result in too much smoothing, 
decreasing the distinguishability of different locations. The 
plot in Fig. 10 shows the relation between sρ and median 
error. The plot shows that there a minimum of the median 
error at sρ = 0.97. 

The last factor that affects the accuracy is the temporal 
window size K. Because we scanned radio stations at 1 Hz, K 
corresponds to the number of seconds of data we used to infer 
position. Clearly, increasing K will enhance the accuracy; 
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however, it will increase memory storage and computational 
power. Fig. 11 shows the relation between the window size 
and median error. It is clear that we can get a median error of 
8 kilometers with a window size K ≥ 30. 

VI. CONCLUSIONS AND FUTURE WORK 
We have described a method for inferring the location of a 

device based on FM radio signal strengths. The advantages of 
the method include the wide coverage of FM radio, spanning 
indoor and outdoor locations, and the readiness of the target 
SPOT device for measuring radio signal strengths. For our 
applications, an accuracy of several miles is adequate. We 
made the technique robust to measurement differences 
between devices by basing our inferences on rankings of 
radio stations rather than on their absolute signal strengths. 
Our method requires no manual survey of signal strength as a 
function of location, because we use simulated signal 
strengths whose validity we verified against actual 
measurements. Using smoothed histograms of rank hash 
codes, we can infer a device’s location down to accuracy of 
about 8 kilometers (5 miles). We believe this method has 
potential for widespread use in small, wearable devices. 

Our future work in this area will include using natural 
constraints on where and how fast people can move, with an 
HMM being a likely candidate for imposing such constraints. 
Computerized route-planning software will be a good source 
of these constraints. This may lead to an alternate 
representation instead of a grid of cells. For instance, a 
natural representation of peoples’ location might be islands of 
high population connected by networks of roads. Other 
constraints could be derived from querying users about where 
they normally go or do not go. For instance, a user could 
indicate that he or she rarely spends time on water and hardly 
ever visits certain suburbs. 
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