
Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

A PROGRAMMER BEHAVIOR BY TASK
The previous statistics in Figure 5 were aggregated across all participants (and hence tasks). We now investigate differences across the tasks
the participants solved. Table 4 shows the acceptance rate of suggestion by task as well as the top 3 CUPS state by time spent. We first notice
that there is variability in the acceptance rate; for example, the difference between the acceptance rate for the ‘Data Manipulation’ and
‘Classes and Boilerplate Code’ tasks is 17.1%. When we look at the most frequented CUPS states for participants in these two tasks, we notice
stark differences: those in the data manipulation task spent 20.63% of their time thinking about new code to write and 16.48% looking up
documentation online, while those in the boilerplate code task spent most of their time verifying suggestions and prompt crafting (=56.36%).
This could be due to the fact the boilerplate code is very suitable for an AI assistant like Copilot while the data manipulation requires careful
transformation of a dataset. However, we find that ’Verifying Suggestion’ is in the top 3 states in terms of time spent in the coding session
for all but two tasks, indicating similar behavior across tasks.

Table 4: Acceptance rate and the top three CUPS states in terms of time spent as a fraction of session time for each of the tasks.
We include standard errors of the acceptance rate aggregated across participants.

Task Name # Suggestions Acceptance Rate % Top 3 States (time %)

Algorithmic Problem 124 30.6 ± 26.6 Verifying Suggestion (25.58)
Writing New Functionality (22.31),
Thinking About New Code To Write (19.23)

Data Manipulation 238 24.8 ± 22.6 Thinking About New Code To Write (20.63)
Looking up Documentation (16.48),
Prompt Crafting (16.38)

Data Analysis 114 29.8 ± 32.3 Debugging/Testing Code (21.23)
Editing Last Suggestion (16.62)
Prompt Crafting (16.00)

Machine Learning 162 33.9 ± 23.7 Looking up Documentation (19.98)
Verifying Suggestion (19.01)
Debugging/Testing Code (12.52)

Classes and Boilerplate Code 112 41.9 ± 34.9 Verifying Suggestion (30.34)
Prompt Crafting (26.02)
Writing New Functionality (13.56)

Writing Tests 83 55.4 ± 49.7 Verifying Suggestion (20.79)
Debugging/Testing Code (19.68)
Writing New Functionality (16.91)

Editing Code 117 23.9 ± 24.6 Verifying Suggestion (30.18)
Editing Last Suggestion (14.65)
Writing New Functionality (14.24)

Logistic Regression 74 55.4 ± 35.1 Verifying Suggestion (30.28)
Editing Last Suggestion (25.60)
Writing New Functionality (15.69)

B PREDICTING CUPS FROM TELEMETRY
Objective. To scale some of our insights, we need to be able to identify and predict programmers’ CUPS state. We discuss how we can use

telemetry data to predict using machine learning classifiers the CUPS state of the programer. This would enable us to accomplish two goals:
1) use the predictive models on the fly to perform interventions in the user interface and 2) use the predictive models to label previously
collected telemetry with CUPS states to perform retrospective analysis such as in section 6.

Setup. The telemetry dataset represented as D = {𝐷𝑖 } collected in our study contains, for each user 𝑖 a list of events occurring in the
corresponding as 𝐷𝑖 . An event is defined as a segment of the telemetry that culminates in a shown, accept, or reject programmer action (refer
to Figure 2). For the purpose of this analysis, we only retain the shown events (labeled as “User Typing or Paused” in Figure 3) 8. The list of
8Note that consecutive shown followed by either accept/reject events share the same suggestion and prompts and so are very difficult to distinguish from only telemetry.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Mozannar et al.

events for programmer 𝑖 is 𝐷𝑖 = {𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 } where 𝑥𝑖 𝑗 is the features for the event 𝑗 and 𝑦𝑖 𝑗 is the CUPS state for the event 𝑗 . Our machine
learning models will aim to predict the label 𝑦𝑖 𝑗 . We extract features 𝑥𝑖 𝑗 for each event as follows: the length of the document, previous
actions, suggestion features (e.g., suggestion length), the confidence reported by Copilot, presence of Python keywords (e.g., import, def try,
etc.), and the output of the Tree-sitter Parser 9. Finally, we extract features of the prompt including its textual features and parser outputs.
It is crucial to note that the model features do not leak any information about the future and can be computed as soon as a suggestion is
generated by Copilot.

Experimental Results. Using a leave-one-out programmer evaluation strategy where we train on data of 20 programmers and leave out
one programmer for testing, we train an eXtreme Gradient Boosting (XGB) [9] model for this task for each trial (21 total) and evaluate the
accuracy on the test set. The XGB model achieves an average accuracy of 30.8 % ± 1.9. In comparison, a baseline that always predicts the
majority state achieves 24.9% ± 3.0 accuracy, indicating that the XGB model has non-trivial performance – through there is considerable
room for improvement. Nevertheless, while the accuracy reported is low, if we restrict the task to just predicting the most common state of
Thinking/Verifying Suggestion (the rest is background) we obtain an area under the receiver operating characteristic curve (AUC) of 0.69 ±
0.02 which shows good predictive power. This shows that there are signals in the telemetry to be able to predict CUPS states. However, this
XGB model accuracy is not sufficient to power our proposed interventions but perhaps a larger amount of labeled data can help build more
reliable models to execute our proposed interventions. We discuss in the future section other avenues to improve the prediction of CUPS
states from telemetry.

C DETAILS USER STUDY
C.1 Interfaces

Figure 9: Screenshot of Labeling Tool represented in Figure 4

9https://tree-sitter.github.io/tree-sitter/

https://tree-sitter.github.io/tree-sitter/


Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 10: Screenshot of Virtual Machine interface with VS Code

C.2 Task Instructions
The tasks are shown to participants as image files to deter copying of the instructions as a prompt.

Figure 11: Data Manipulation Task.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Mozannar et al.

Figure 12: Algorithmic Problem Task.



Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 13: Data Analysis Task.

Figure 14: Classes and Boilerplate Code Task.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Mozannar et al.

Figure 15: Logistic Regression Task

Figure 16: Editing Code Task



Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 17: Machine Learning Task

Figure 18: Writing Tests Task



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Mozannar et al.

C.3 Survey Questions Results

0 1 2 3 4 5 6 7
Number of Participants

6 to 10 years professional programming experience

0 to 2 years professional programming experience

3 to 5 years professional programming experience

More than 16 years professional programming experience

11 to 15 years professional programming experience

Which best describes your programming experience?

0 2 4 6 8 10
Number of Participants

Intermediate – I can design and implement whole programs

Advanced – I can design and implement a complex system architecture

Beginner – I can write a correct implementation for a simple function

How proficient are you with Python?

0 2 4 6 8 10
Number of Participants

Agree

Strongly Agree

Neither Agree or Disagree

I learned from the suggestions CodeRec showed me today.

0 1 2 3 4 5 6 7 8
Number of Participants

Disagree

Neither Agree or Disagree

Strongly Disagree

Agree

Strongly Agree

I spent a lot of effort to understand the suggestions CodeRec showed me today.

0 2 4 6 8 10
Number of Participants

Neither Agree or Disagree

Agree

Strongly Agree

Disagree

The code I wrote today is better than the code I would have written without CodeRec.

Figure 19: User Study Survey results (1)



Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

0 2 4 6 8
Number of Participants

Disagree

Agree

Neither Agree or Disagree

Strongly Disagree

Strongly Agree

I was concerned about the quality of my code when using CodeRec.

0 2 4 6 8 10
Number of Participants

Agree

Strongly Agree

Neither Agree or Disagree

Strongly Disagree

By using CodeRec in this coding session, I felt less frustrated.

0 2 4 6 8 10
Number of Participants

Strongly Agree

Agree

Neither Agree or Disagree

Disagree

By using CodeRec in this coding session, I completed the task faster.

0 2 4 6 8 10
Number of Participants

Strongly Agree

Agree

Neither Agree or Disagree

Disagree

By using CodeRec in this coding session, I was more productive.

0 2 4 6 8 10 12
Number of Participants

Strongly Agree

Agree

Disagree

Neither Agree or Disagree

By using CodeRec in this coding session, I spent less time searching for information or examples.

Figure 20: User Study Survey results (2)



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Mozannar et al.

0 1 2 3 4 5 6 7 8
Number of Participants

Agree

Strongly Agree

Neither Agree or Disagree

Disagree

Strongly Disagree

Using CodeRec in this coding session helped me stay in the flow.

0 2 4 6 8 10
Number of Participants

Never

Every day

A few times a week

Less than once a month

How often do you use CodeRec outside of today’s session?

0 1 2 3 4 5 6 7
Number of Participants

Yes

No

Thinking of your experience using CodeRec outside of today’s session, do you think that
your session today reflects your typical usage of CodeRec?

0 1 2 3 4 5
Number of Participants

Agree

I feel more fulfilled with my job when using CodeRec.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of Participants

Agree

Neither Agree or Disagree

I can focus on more satisfying work when using CodeRec.

Figure 21: User Study Survey results (3)



Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Participants

Agree

Strongly Agree

While working with an unfamiliar language, I make progress faster when using CodeRec.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Participants

Agree

Disagree

Strongly Disagree

While working with a familiar language, I make progress more slowly when using CodeRec.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of Participants

Agree

Strongly Agree

I complete repetitive programming tasks faster when using CodeRec.

0 2 4 6 8 10
Number of Participants

Disagree

Strongly Disagree

Neither Agree or Disagree

Agree

Using CodeRec was distracting in this coding session.

Figure 22: User Study Survey results (4)



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Mozannar et al.

C.4 Full User Timelines
3

14
8

15
8

19
6

21
9

23
6

25
9

27
1

36
4

37
6

40
0

40
5

43
7

45
0

48
4

48
8

2 47 81 95 14
8

18
0

19
6

21
3

23
2

27
4

28
3

28
9

29
9

45
3

46
3

47
4

51
2

53
6

59
3

3 35 47 54 64 73 80 16
7

18
0

18
6

24
0

24
4

27
2

30
8

32
7

33
6

40 92 11
3

15
8

21
8

22
7

27
6

33
4

34
1

35
2

36
4

36
9

39
0

41
0

41
4

42
2

1 21 30 41 68 77 86 12
1

17
0

18
6

20
3

21
3

25
0

25
6

26
1

28
5

31
1

33
7

34
4

35
1

36
1

37
1

39
7

41
0

49
8

50
5

51
5

52
6

54
0

57
3

9 59 64 77 10
7

11
1

13
3

14
1

17
0

18
8

28
8

34
2

34
6

36
1

36
6

38
4

41
9

42
3

47
0

48
2

49
6

51
7

1 32 93 11
9

14
3

17
2

18
9

20
0

22
7

27
3

32
2

32
6

36
5

43
6

44
4

45
0

45
7

48
7

49
6

55
1

58
2

59
3

59
7

1 8 21 25 44 58 11
4

12
1

14
5

15
8

16
4

19
0

22
6

28
9

30
0

30
5

32
2

32
9

36
3

46
8

47
3

49
3

50
1

50
5

51
9

53
2

54
5

1 56 65 72 79 88 10
3

10
7

11
7

12
4

13
1

13
7

14
2

17
5

18
0

18
6

19
3

20
1

21
0

21
9

22
6

26
0

28
4

28
9

29
6

30
2

30
7

33
6

34
6

35
1

35
6

36
6

39
0

41
6

44
3

44
7

47
2

48
2

52
1

55
1

55
5

56
7

57
7

4 27 46 59 14
6

15
9

17
6

20
2

28
0

31
1

36
6

37
7

39
5

43
2

54
7

56
0

Time (s)
Debugging/Testing Code (H)
Deferring Thought For Later (D)
Edditing Last Suggestion (X)
Editing Written Code(C)
IDK (I)

Looking up Documentation (N)
Prompt Crafting (V)
Thinking About New Code To Write (F)
Thinking/Verifying Suggestion (A)
Waiting For Suggestion (G)

Writing Documentation (B)
Writing New Functionality (Z)
Suggestion Rejected
Suggestion Accepted

Figure 23: Participants timelines for the first 10 minutes of their sessions (P1 to P10)



Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

4 60 69 78 92 17
0

18
0

18
8

27
6

28
1

29
9

32
3

36
4

37
1

38
1

38
7

39
4

40
3

42
4

46
0

47
1

2 55 61 14
6

16
9

17
7

18
9

25
3

26
3

27
8

41
6

59
0

59
8

5 20 37 11
9

12
6

31
9

33
8

36
7

39
7

49
6

50
5

51
4

53
8

54
3

56
5

57
2

57
9

85 14
3

15
3

15
7

21
5

22
6

23
6

24
9

26
7

31
1

31
5

37
5

38
3

47
8

48
6

49
7

51
2

53
9

55
1

57
2

58
1

58
8

59
7

1 6 20 45 65 75 80 10
3

12
4

13
1

13
6

14
4

15
0

15
4

40
0

42
1

43
4

46
3

48
6

50
3

53
8

54
4

58
2

58
7

59
2

4 38 58 64 12
3

15
5

16
1

16
9

18
0

18
8

20
2

21
1

22
0

23
1

24
7

25
8

29
5

30
4

31
5

33
1

47
0

47
5

48
0

50
4

52
1

56
1

57
8

58
6

59
0

14 30 35 46 54 61 73 79 84 90 99 11
2

16
7

21
5

23
0

26
1

26
9

27
9

31
6

33
3

34
2

35
6

36
8

40
0

40
9

43
7

47
9

48
9

0 86 12
5

13
2

17
7

19
6

20
2

20
6

21
2

23
6

25
5

28
1

33
4

38
1

38
6

48
0

49
7

50
2

50
7

51
2

51
6

52
6

53
6

55
5

3 7 42 47 63 67 75 79 99 10
7

11
7

13
8

15
5

17
0

24
7

26
9

28
4

29
0

29
5

41
2

42
9

4 79 91 11
7

15
7

17
8

24
9

28
2

32
5

33
1

34
2

34
7

51
9

52
5

53
1

54
0

58
0

58
7

59
9

42 51 56 24
8

25
4

26
6

27
9

40
8

41
8

57
0

57
6

58
0

Time (s)

Debugging/Testing Code (H)
Deferring Thought For Later (D)
Edditing Last Suggestion (X)
Editing Written Code(C)
IDK (I)

Looking up Documentation (N)
Prompt Crafting (V)
Thinking About New Code To Write (F)
Thinking/Verifying Suggestion (A)
Waiting For Suggestion (G)

Writing Documentation (B)
Writing New Functionality (Z)
Suggestion Rejected
Suggestion Accepted

Figure 24: Participants timelines for the first 10 minutes of their sessions (P11 to P21)



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Mozannar et al.

C.5 Full CUPS Graph

Debugging/Testing
Code

Deferring Thought
For Later

Editing Last
Suggestion

Editing Written
Code

Looking up
Documentation

Not Thinking

Prompt Crafting

Thinking About
New Code To Write

Thinking/Verifying
Suggestion

Waiting For
Suggestion

Writing
Documentation

Writing New
Functionality

Figure 25: CUPS diagram with all transitions shown that occur with probability higher than 0.05


	Abstract
	1 Introduction
	2 Background and Related Work
	3 Copilot System Description
	3.1 Influences of CodeRec on Programmer's Activities
	3.2 Programmer Activities in Telemetry Segments

	4 A Taxonomy for Understanding Programmer-CodeRec Interaction: CUPS
	4.1 Creating the Taxonomy
	4.2 Taxonomy of Telemetry Segments

	5 CUPS Data Collection Study
	5.1 Procedure
	5.2 Participants

	6 Understanding Programmer Behavior with CUPS: Main Results
	6.1 Aggregated Time Spent in Various CUPSs
	6.2 Patterns in Behavior as Transitions Between CUPS States 
	6.3 Programmers Often Defer Thought About Suggestions
	6.4 CUPS Attributes Significantly More Time Verifying Suggestions than Simpler Metrics
	6.5 Insights About Prompt Crafting
	6.6 Post-Study Survey Answers

	7 Limitations, Future Work and Conclusion
	7.1 Limitations
	7.2 Future Work
	7.3 Conclusion

	Acknowledgments
	References
	A Programmer Behavior by Task
	B Predicting CUPS from Telemetry
	C Details User Study
	C.1 Interfaces
	C.2 Task Instructions
	C.3 Survey Questions Results
	C.4 Full User Timelines
	C.5 Full CUPS Graph




