Reading Between the Lines: Modeling User Behavior and Costs in Al-Assisted Programming CHI *24, May 11-16, 2024, Honolulu, HI, USA

A PROGRAMMER BEHAVIOR BY TASK

The previous statistics in Figure 5 were aggregated across all participants (and hence tasks). We now investigate differences across the tasks
the participants solved. Table 4 shows the acceptance rate of suggestion by task as well as the top 3 CUPS state by time spent. We first notice
that there is variability in the acceptance rate; for example, the difference between the acceptance rate for the ‘Data Manipulation’ and
‘Classes and Boilerplate Code’ tasks is 17.1%. When we look at the most frequented CUPS states for participants in these two tasks, we notice
stark differences: those in the data manipulation task spent 20.63% of their time thinking about new code to write and 16.48% looking up
documentation online, while those in the boilerplate code task spent most of their time verifying suggestions and prompt crafting (=56.36%).
This could be due to the fact the boilerplate code is very suitable for an Al assistant like Copilot while the data manipulation requires careful
transformation of a dataset. However, we find that *Verifying Suggestion’ is in the top 3 states in terms of time spent in the coding session
for all but two tasks, indicating similar behavior across tasks.

Table 4: Acceptance rate and the top three CUPS states in terms of time spent as a fraction of session time for each of the tasks.
We include standard errors of the acceptance rate aggregated across participants.

Task Name # Suggestions Acceptance Rate % Top 3 States (time %)

Algorithmic Problem 124 30.6 + 26.6 Verifying Suggestion (25.58)
Writing New Functionality (22.31),
Thinking About New Code To Write (19.23)

Data Manipulation 238 24.8 + 22.6 Thinking About New Code To Write (20.63)
Looking up Documentation (16.48),
Prompt Crafting (16.38)

Data Analysis 114 29.8 +323 Debugging/Testing Code (21.23)
Editing Last Suggestion (16.62)
Prompt Crafting (16.00)

Machine Learning 162 33.9 + 23.7 Looking up Documentation (19.98)
Verifying Suggestion (19.01)
Debugging/Testing Code (12.52)

Classes and Boilerplate Code 112 41.9 + 349 Verifying Suggestion (30.34)
Prompt Crafting (26.02)
Writing New Functionality (13.56)

Writing Tests 83 55.4 +49.7 Verifying Suggestion (20.79)
Debugging/Testing Code (19.68)
Writing New Functionality (16.91)

Editing Code 117 23.9 +24.6 Verifying Suggestion (30.18)
Editing Last Suggestion (14.65)
Writing New Functionality (14.24)

Logistic Regression 74 55.4 + 35.1 Verifying Suggestion (30.28)
Editing Last Suggestion (25.60)
Writing New Functionality (15.69)

B PREDICTING CUPS FROM TELEMETRY

Objective. To scale some of our insights, we need to be able to identify and predict programmers’ CUPS state. We discuss how we can use
telemetry data to predict using machine learning classifiers the CUPS state of the programer. This would enable us to accomplish two goals:
1) use the predictive models on the fly to perform interventions in the user interface and 2) use the predictive models to label previously
collected telemetry with CUPS states to perform retrospective analysis such as in section 6.

Setup. The telemetry dataset represented as D = {D;} collected in our study contains, for each user i a list of events occurring in the
corresponding as D;. An event is defined as a segment of the telemetry that culminates in a shown, accept, or reject programmer action (refer
to Figure 2). For the purpose of this analysis, we only retain the shown events (labeled as “User Typing or Paused” in Figure 3) 8. The list of

8Note that consecutive shown followed by either accept/reject events share the same suggestion and prompts and so are very difficult to distinguish from only telemetry.

CHI ’24, May 11-16, 2024, Honolulu, HI, USA Mozannar et al.

events for programmer i is D; = {x;j, yij} Where x;; is the features for the event j and y;; is the CUPS state for the event j. Our machine
learning models will aim to predict the label y;;. We extract features x;; for each event as follows: the length of the document, previous
actions, suggestion features (e.g., suggestion length), the confidence reported by Copilot, presence of Python keywords (e.g., import, def try,
etc.), and the output of the Tree-sitter Parser °. Finally, we extract features of the prompt including its textual features and parser outputs.
It is crucial to note that the model features do not leak any information about the future and can be computed as soon as a suggestion is
generated by Copilot.

Experimental Results. Using a leave-one-out programmer evaluation strategy where we train on data of 20 programmers and leave out
one programmer for testing, we train an eXtreme Gradient Boosting (XGB) [9] model for this task for each trial (21 total) and evaluate the
accuracy on the test set. The XGB model achieves an average accuracy of 30.8 % + 1.9. In comparison, a baseline that always predicts the
majority state achieves 24.9% + 3.0 accuracy, indicating that the XGB model has non-trivial performance — through there is considerable
room for improvement. Nevertheless, while the accuracy reported is low, if we restrict the task to just predicting the most common state of
Thinking/Verifying Suggestion (the rest is background) we obtain an area under the receiver operating characteristic curve (AUC) of 0.69 =
0.02 which shows good predictive power. This shows that there are signals in the telemetry to be able to predict CUPS states. However, this
XGB model accuracy is not sufficient to power our proposed interventions but perhaps a larger amount of labeled data can help build more
reliable models to execute our proposed interventions. We discuss in the future section other avenues to improve the prediction of CUPS
states from telemetry.

C DETAILS USER STUDY
C.1 Interfaces

8 3913835171 V34 Frompl_Cramng_(v)
79 [3517135295] 124 Prompt_Crafting_(V) - 117!117 f.l_O?% Fomnlleteﬁ) e
80 [35205353.25] 020 Prompt_Crafting_(V)

81 [35325353.521 027 Prompt_Crafting_(V)

82 [3635235036] 584 Prompt_Crafting_(V)

83 [3593636122] 186 Thinking/Verifying_Suggestion_(4)

84 [3612237084] 962 Debugging/Testing_Code_{H)

85 [370.8437161] 07 Debugging/Testing_Code_(H}

86 [371.61397.57] 2596 Debugging/Testing_Code_tH)

87 [30757.41045] 1280 Thinking/Verifying_Suggestion_(~)

88 [410.46459.95] 49.49 Edaiting_Last_Suggestion_(X)

30 [45005493.20] 3834 Edditing_Last_Suggestion_(X)

91 [50058505.83] 525 Edditing_Last_Suggestion_(X)

92 [5058351551] 968 Wiiting_New_Functionality_(Z)

93 [51551517.20] 178 Wiriling_New_Functionality_(Z)
94 [5172951745] 016 Writing_New_Functionality_(Z)

95 [517.45518.12] 067 Writing_New_Functionality_(Z)

9% [5181251825] 014 Thinking/Verifying_Suggestion_(A)
97 [51825518.55] 0.29 Thinking/Veritying_Suggestion_(A)
98 [5185552476] 621 Debugging/Testing_Code_(H)

99 [5247652652] 176 Debugging/Testing_

100 [52652,526.67] 015 Debugging/Testing_Cor

101 [52667527.001 033 Debuaaina/Testina Code (H)

Current Suggestion

Porri]fi] = 0"

Show/Hide Shortcuts/States o

[

What were you doing while the suggestion was being shown? [iype Custom State | submit custom state |

D) G G €

Playback Speed === Navigate Events

3

Stop Replay ‘

Figure 9: Screenshot of Labeling Tool represented in Figure 4

https://tree-sitter.github.io/tree-sitter/

https://tree-sitter.github.io/tree-sitter/

Reading Between the Lines: Modeling User Behavior and Costs in Al-Assisted Programming CHI *24, May 11-16, 2024, Honolulu, HI, USA

Edit Selection View Go Run Terminal Help

sklearn.model selection

’

load(file)

fFib(n-1) + fib(n-2)

TERMINAL

Lradineg narcanal and sustam arafilas tank 4720me

Figure 10: Screenshot of Virtual Machine interface with VS Code

C.2 Task Instructions

The tasks are shown to participants as image files to deter copying of the instructions as a prompt.

Step 1:

First split the data into a train-test split with 80-20 split. Use the train_test_split function from sklearn

Step 2:

value of each feature. Do this with just numpy operations.

Then impute the train and test data matrices by using the a

[t=]

Step 3:

natrices to train a model. We will now do some feature engineeering. We will code from sratch the creation of quadratic features.

Then, use the train and test

Transform the data to include quadratic features, i.e. suppose we had a feature vector

we want to transform it to:

If the previous feature dimension was d, it will now become 2d + —5—

Transform beth train and test splits and store them in a different data matrix

Figure 11: Data Manipulation Task.

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Step 1

Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target.
You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

Example 1:

Input: nums = [2,7,11,15], target = 9 Output: [0,1] Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].

Step 2

Given an integer array nums, return all the triplets [nums[i], nums[jl, nums[k]] such thati!= j,i!= k, and j != k, and nums[i] + nums[j] + nums[k] =

Notice that the solution set must not contain duplicate triplets.

Step 3

Given an array nums of n integers, return an array of all the unique quadruplets [nums[a], nums[b], nums[c], nums[d]] such that:
0<=a,b,c d<na,b,c andd are distinct. nums[a] + nums[b] + nums|[c] + nums[d] == target You may return the answer in any order.
Example 1:

Input: nums = [1,0,-1,0,-2,2], target = 0 Output: [[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]

Figure 12: Algorithmic Problem Task.

Mozannar et al.

Reading Between the Lines: Modeling User Behavior and Costs in Al-Assisted Programming CHI *24, May 11-16, 2024, Honolulu, HI, USA

Compute correlations between all features in X

Step 2

Pick out the two features that are the most highly correlated

Step 3

Plot on a graph, where one axis is one feature and the other axis is the other feature.

Step 4

Plot a linear trend between the two features.

Figure 13: Data Analysis Task.

Step 1

Define a class for a node (call it Node) that has attributes: text (string), id (integer), location(string), time (float).
The class should have a constructor that can set all 4 values and has methods that set the value of each attribute to user specified value.

Furthermore, create a method that adds a certain value to the time attribute.

Step 2

Define a class for a graph (call it Node) that has as attribute a list of nodes.
Create a method that appends an element to the list of nodes.
Create a method that calculates the total time for all the nodes in the Graph.

Create a method that prints the name of all the nodes in the graph.

Figure 14: Classes and Boilerplate Code Task.

CHI ’24, May 11-16, 2024, Honolulu, HI, USA Mozannar et al.

Logistic Regression

We will implement a custom logistic regression classifier with |2 regularization for this task.
Recall: logsitic regression we learn a weight vector wr £ R?and b € R, and predict the probability of the label being 1 as Tl[u‘b’l where this is the sigmoid functic applied to w® + b
To learn the weights, we use gradient descent:

for each iteration we do the update:

W W+ e * (z Ti* (Y, — sigmoid(w] + b)) — ZAw)

and

beb+ax (Y (Y — sigmoid(uw; +b)))

i
Implement a logistic regression that can handle custom number of iterations, specified learning rate alpha, specified regularization parameter lambda.
Fit the model on the training data.
Compare the accuracies on the test sets,

Try for 100 iterations, 0.1 learning rate and 1e-5 for lambda.

Figure 15: Logistic Regression Task

Editing Existing Code

Given the following class, this class is a Retreiver which given a set of numerical vectors and a paramter k, can return the k-nearest neighbors of a given vector.
Perform the following edits to the code:
* write a method that returns the least similar k vectors
* write a methed that given a set of query vectors, returns the top k vectors for each of the query vectors
* create a method to append new vectors to the already vectors in Retreiver
* create a new distance function that instead of norm we make it a weighted distance as follows:
Compute maximum scale of each feature on the training set:

scales = [max(X,;),---, max(Xy;),]

Then let the distance function be:

d-c'si(;r:, z) = Z m * (x; — 3!_)2

* create a method to change k to user specified value

Figure 16: Editing Code Task

Reading Between the Lines: Modeling User Behavior and Costs in Al-Assisted Programming CHI *24, May 11-16, 2024, Honolulu, HI, USA

Machine Learning

Training and evaluating a model

Given the dataset. already split into train and test.

Step 1

Train a logistic regression model (use sklearn), do hyperparameter tuning and pick the best C on the test set in the grid [1e-3,1e-2,1e-1,1e1].
Train a random forrest (don't do any hyperparameter tuning).

Train a decision tree,

Step 2

Evaluate all three models on the test set and get their accuracies, AUC, F1 score.

Figure 17: Machine Learning Task

Task

We want to test an api for the following task:
* Given a string s containing just the characters ‘(" "), '{". Y. '[' and 'T', determine if the input string is valid.
An input string is valid if:
Open brackets must be closed by the same type of brackets. Open brackets must be closed in the correct order.
Example 1:
Input: s = "()" Output: true Example 2:
Input: s = "([I{}" Output: true Example 3:
Input: s = "(]" Output: false
Constraints: 1 <= slength <= 104 s consists of parentheses only "0[1{}
TODO: Write several test functions to make that the API function isValid(str) works properly.
* (Create a class called Testing, inside that class write different test functions that test different aspects of the APl (e.g. does it work with '()')), aim for 4 tests.

* Write 3 method that runs all the tests and returns the average success rate, the standard deviation of the sucess rate.

Figure 18: Writing Tests Task

CHI ’24, May 11-16, 2024, Honolulu, HI, USA Mozannar et al.

C.3 Survey Questions Results

Which best describes your programming experience?

11 to 15 years professional programming experience

More than 16 years professional programming experience

3 to 5 years professional programming experience

0 to 2 years professional programming experience

6 to 10 years professional programming experience

w
IS
[5;

o
-

.
[}
N

2
Number of Participants
How proficient are you with Python?

Beginner — | can write a correct implementation for a simple function

Advanced — | can design and implement a complex system architecture

Intermediate — | can design and implement whole programs

"

o
M

A 8 10
Number of Participants

| learned from the suggestions CodeRec showed me today.

Neither Agree or Disagree
Strongly Agree
Agree

6 8
Number of Participants

o
0
=

()

| spent a lot of effort to understand the suggestions CodeRec showed me today.

Strongly Agree

Agree

Strongly Disagree
Neither Agree or Disagree
Disagree

2 3 4 5 6 T
Number of Participants

=}
=
»

The code | wrote today is better than the code | would have written without CodeRec.

Disagree

Strongly Agree

Agree

Neither Agree or Disagree

3

o
&
=
=]

6 8
Number of Participants

Figure 19: User Study Survey results (1)

Reading Between the Lines: Modeling User Behavior and Costs in Al-Assisted Programming CHI *24, May 11-16, 2024, Honolulu, HI, USA

| was concerned about the quality of my code when using CodeRec.

Strongly Agree

Strongly Disagree

Neither Agree or Disagree

Agree

Disagree

o]
v

G 8
Number of Participants
By using CodeRec in this coding session, | felt less frustrated.

Strongly Disagree

Neither Agree or Disagree

Strongly Agree

Agree
(8] 2 4 (S 8 10
Number of Participants
By using CodeRec in this coding session, | completed the task faster.

Disagree

Neither Agree or Disagree

Agree

Strongly Agree

o
V]

B 10
Number of Participants
By using CodeRec in this coding session, | was more productive.

Disagree

Neither Agree or Disagree

Agree

Strongly Agree

(o]
[V
I
o
)
=

[5)
Number of Participants
By using CodeRec in this coding session, | spent less time searching for information or examples.

Neither Agree or Disagree
Disagree
Agree
Strongly Agree
[§) B a [B 10 T

Number of Participants

Figure 20: User Study Survey results (2)

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Using CodeRec in this coding session helped me stay in the flow.

Strongly Disagree

Disagree

Neither Agree or Disagree

Strongly Agree

Agree

3 4 5 G v
Number of Participants
How often do you use CodeRec outside of today’s session?

o
R
N
v

Less than once a month

A few times a week

Every day

Never

8 10

o

2 4

G
Thinking of your experience usinBlusberef Battiawafteoday’s session, do you think that
your session today reflects your typical usage of CodeRec?

> 3 a 5 &
Number of Participants
| feel more fulfilled with my job when using CodeRec.

Q
=
\l

Agree

o]
=
IS
«

2
Number of Participants
| can focus on more satisfying work when using CodeRec.

Neither Agree or Disagree

Agree

4.

ol

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.
Number of Participants

Figure 21: User Study Survey results (3)

O

Mozannar et al.

Reading Between the Lines: Modeling User Behavior and Costs in Al-Assisted Programming CHI *24, May 11-16, 2024, Honolulu, HI, USA

While working with an unfamiliar language, | make progress faster when using CodeRec.

Strongly Agree
Agree

0.00 0.25 0.75 1.00 2.00
Number of Parti
While working with a familiar language, | make progress more slowly when using CodeRec.

Strongly Disagree
Disagree
Agree

3.0

Number oF Partlcupa nts

o

0.4

0.2

| complete repetitive programming tasks faster when using CodeRec.

Strongly Agree
Agree

0.0 05 1.0 1.5 270 275 370 35 470
Number of Participants

Using CodeRec was distracting in this coding session.

Agree

Neither Agree or Disagree
Strongly Disagree
Disagree

4 G 8 10
Number of Participants

o]
V]

Figure 22: User Study Survey results (4)

CHI 24, May 11-16, 2024, Honolulu, HI, USA Mozannar et al.

C.4 Full User Timelines

Time (s)
Debugging/Testing Code (H) I Looking up Documentation (N) Writing Documentation (B)
Deferring Thought For Later (D) Il Prompt Crafting (V) I \Writing New Functionality (Z)
B Edditing Last Suggestion (X) B Thinking About New Code To Write (F) —— Suggestion Rejected
B Editing Written Code(C) B Thinking/Verifying Suggestion (A) ~ —— Suggestion Accepted
I DK (I) Waiting For Suggestion (G)

Figure 23: Participants timelines for the first 10 minutes of their sessions (P1 to P10)

Reading Between the Lines: Modeling User Behavior and Costs in Al-Assisted Programming CHI *24, May 11-16, 2024, Honolulu, HI, USA

Debugging/Testing Code (H) I Looking up Documentation (N) Writing Documentation (B)
Deferring Thought For Later (D) HEm Prompt Crafting (V) B Writing New Functionality (Z)
I Edditing Last Suggestion (X) I Thinking About New Code To Write (F) —— Suggestion Rejected
B Editing Written Code(C) B Thinking/Verifying Suggestion (A) ~ —— Suggestion Accepted
HE DK (1) Waiting For Suggestion (G)

Figure 24: Participants timelines for the first 10 minutes of their sessions (P11 to P21)

CHI ’24, May 11-16, 2024, Honolulu, HI, USA Mozannar et al.

C.5 Full CUPS Graph

Not Thinking
Waiting For '//
Suggestion

Deferring Thought
For Later

\ —

Writing
Documentation

Figure 25: CUPS diagram with all transitions shown that occur with probability higher than 0.05

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Copilot System Description
	3.1 Influences of CodeRec on Programmer's Activities
	3.2 Programmer Activities in Telemetry Segments

	4 A Taxonomy for Understanding Programmer-CodeRec Interaction: CUPS
	4.1 Creating the Taxonomy
	4.2 Taxonomy of Telemetry Segments

	5 CUPS Data Collection Study
	5.1 Procedure
	5.2 Participants

	6 Understanding Programmer Behavior with CUPS: Main Results
	6.1 Aggregated Time Spent in Various CUPSs
	6.2 Patterns in Behavior as Transitions Between CUPS States
	6.3 Programmers Often Defer Thought About Suggestions
	6.4 CUPS Attributes Significantly More Time Verifying Suggestions than Simpler Metrics
	6.5 Insights About Prompt Crafting
	6.6 Post-Study Survey Answers

	7 Limitations, Future Work and Conclusion
	7.1 Limitations
	7.2 Future Work
	7.3 Conclusion

	Acknowledgments
	References
	A Programmer Behavior by Task
	B Predicting CUPS from Telemetry
	C Details User Study
	C.1 Interfaces
	C.2 Task Instructions
	C.3 Survey Questions Results
	C.4 Full User Timelines
	C.5 Full CUPS Graph

