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Abstract. We describe a method called Predestination that uses a history of a 
driver’s destinations, along with data about driving behaviors, to predict where 
a driver is going as a trip progresses. Driving behaviors include types of desti-
nations, driving efficiency, and trip times. Beyond considering previously vis-
ited destinations, Predestination leverages an open-world modeling methodol-
ogy that considers the likelihood of users visiting previously unobserved loca-
tions based on trends in the data and on the background properties of locations. 
This allows our algorithm to smoothly transition between “out of the box” with 
no training data to more fully trained with increasing numbers of observations. 
Multiple components of the analysis are fused via Bayesian inference to pro-
duce a probabilistic map of destinations. Our algorithm was trained and tested 
on hold-out data drawn from a database of GPS driving data gathered from 169 
different subjects who drove 7,335 different trips. 

1   Introduction 

Location has played a central role in ubiquitous computing research. Information 
about the location of users can enable numerous compelling location-based services. 
For example, location can be used to fetch relevant information such as nearby points 
of interest and available services. Beyond current location, services can be developed 
around predictions about future locations. For example, a driver may want to know 
about restaurants or traffic problems before encountering them to give time to prepare 
and make decisions. Location-based services could present their availability in antici-
pation of a user’s arrival. In another application, a prediction of a person’s destination 
can be helpful in deciding if the person is deviating from an intended route [2]. Cheng 
et al.[3] even speculate that destination prediction could be used to catch automobile 
thieves. 

We present a methodology named Predestination that is aimed at predicting a 
driver’s destination as a trip progresses. The probabilistic prediction is based on sev-
eral sources of data, including the driver’s history of destinations and an ensemble of 
trips from a group of drivers. We demonstrate how to combine these data sources in a 
principled way to reason about drivers’ ultimate destinations, resulting in inferred 
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probability distributions over a geographic region. We trained and tested our algo-
rithm on GPS data from 169 different drivers who participated in a data-collection 
effort that we call the Microsoft Multiperson Location Survey (MSMLS)[4]. 

2   Related Research 

Previous work in predicting users’ locations includes an application designed for a 
pool of shared vehicles. Karbassi and Barth[5] process historical GPS data from the 
vehicles to extract the most common routes between five pre-designated locations. 
Given the destination, their goal is to predict the route in order to estimate arrival 
times. In contrast, Predestination is designed to predict the destination, not necessarily 
the route. And, our algorithm works on a fully tiled geographic region, not just a hand-
ful of discrete locations. 

Systems for predicting locations can be used to make smooth handoffs between 
wireless communication cells, like Wi-Fi and cellular telephones.  Cheng et al.[3] 
review the work in this area. The defining characteristics are that locations are repre-
sented as antenna cells and that prediction is based on past behavior. 

Like ours, much of the previous work on destination prediction is based on GPS 
sensing. In their comMotion work, Marmasse and Schmandt[6] predict a person’s 
destination from a list of previously visited destinations using a Bayes classifier, his-
togram matching, and an HMM. Ashbrook and Starner[7] find potential destinations 
by clustering GPS data, then predict destinations from these candidates based on 
Markov models trained to find the next most likely destination based on the one(s) 
that were recently visited. In Project Lachesis, Hariharan and Toyama[8] present a 
location clustering algorithm that is sensitive to scale in both space and time. They 
model transitions between clustered locations with a Markov model. Liao et al.[9] 
present a hierarchical dynamic Bayesian network to predict destinations, which is 
shown to outperform a 2nd-order Markov model. Using a dynamic network model, 
Gogate et al.[10] incorporate time-of-day and day-of-week evidence to predict a 
driver’s route and destination. All of this work shares the trait that candidate destina-
tions are extracted from GPS histories, i.e. places that subjects have actually visited.  

Although previously visited locations are one component of our prediction algo-
rithm as in the work above, we also predict destinations that the user has not necessar-
ily ever visited before. We do this with an examination of ground cover (e.g. middles 
of lakes are unpopular driving destinations), the fact that drivers attempt to take effi-
cient routes, and a distribution of likely trip times. In Predestination, all this informa-
tion is combined with Bayes formula to give a probability distribution of destinations 
over a geographic area. We also introduce the concept of an open-world model that 
addresses the incompleteness of our models in an explicit manner. With the open-
world method, we acknowledge and model the possibility that behaviors observed in 
the future may not be represented in the current dataset.  In the case of Predestination, 
drivers may go to destinations that have not been previously recorded in the training 
data. The open-world model allows us to reason about new destinations seen as train-
ing progresses so as to capture a user’s general patterns of trips and destinations, as 



 

well for capturing the ongoing background exploration of new locations that people 
may perform on an ongoing basis.  

3   MSMLS: Multiperson Location Survey 

We trained and tested our destination prediction algorithm on driving trip data gath-
ered from 169 subjects[4]. These subjects volunteered to place one of our 55 GPS 
receivers in their car for two weeks (and occasionally longer) as they drove normally. 
Nearly all the subjects live in the Seattle, WA USA area, and they include employees 
of our institution and their family members. The GPS receivers were Geko 201 mod-
els, capable of recording up to 10,000 time-stamped (latitude, longitude) coordinates. 
Each subject was given a cable to supply GPS power from the car’s cigarette lighter. 
Using a simple hardware modification, we altered the GPS receivers so they would 
automatically turn on whenever power was supplied. This meant that the drivers did 
not have to remember to turn the receivers on or off, and could instead just set the 
receiver on the dashboard and neglect it for the entire two weeks. Because some cars’ 
cigarette lighters are powered even when the car is off, we used a mode on the GPS 
receivers that only recorded points when the receiver is in motion, eliminating the 
accumulation of points when the cars were parked. 

We gathered a total of 1,228,237 (latitude, longitude) points for an average of 
6,267 points per person. The points were separated by a median distance of 63 meters 
and 6 seconds. We also gathered demographic data from each subject: 75% were 
male, 71% had a domestic partner, 48% had children, and the average age of drivers 
was 36. 

As the goal of this research is to predict destinations, we segmented our GPS data 
into discrete trips. We identified trips by looking for places in the sequence that met 
either of the following criteria: 

 
• Gap of at least five minutes: A five-minute gap indicates that the GPS was 

not moving and, because of its adaptive recording mode, not recording 
new points. Such a gap can also come from vehicles where power to the 
device turns off with the car. 

• At least five minutes of speeds below two miles per hour: Identifying such 
a period of low speed accounts for the fact that, even when parked, GPS 
noise can make it appear that the vehicle is moving slightly. We took 
measures of five minutes or more of extremely slow apparent motion to be 
a split between trips. 

 
We deleted discrete trips whose maximum speed did not exceed 25 miles per hour 

in an effort to eliminate pedestrian and bicycle trips, because some of our study par-
ticipants took their devices out of their cars. We also eliminated trips of less than one 
kilometer or with less than 10 GPS points. After this segmentation and culling, we had 
7,335 discrete trips. We found that the average length of these trips is 14.4 minutes, 
and that subjects took an average of 3.3 trips per day. 



 

4   Destination Probabilities 

This section explains the probabilistic analysis of drivers’ destinations. We first de-
scribe the spatial representation and the underlying probabilistic model for the Predes-
tination method. Then we describe the four constituent components of the probabilis-
tic analysis.  Finally, we describe the probabilistic integration of the sources of infor-
mation to produce a posterior probability distribution over destinations. 

4.1   Probabilistic Grid on Map 

We represent space as a 40x40, two-dimensional grid of square cells, each cell 1 kilo-
meter on a side, as shown in Figure 1. Each cell represents one discrete location. Our 
destination prediction is aimed at picking the cell in which a driver will conclude his 
or her trip based on which cells the driver has already traversed and on the characteris-
tics of each cell. This particular discretization of space is a heuristic choice, and we 
could have chosen a different tiling, size, and number of discrete cells. Each of the 

1600=N  cells is given an index Ni ,,3,2,1 K= . 
Because our methods are probabilistic, we ultimately compute the probability of 

each cell being the destination, i.e. ( )xX == iDP , where D  is a random variable 
representing the destination, and X  is a random variable representing the vector of 
observed features from the trip so far.  While we shall focus on trajectory-centric 

Figure 1: We used a grid over the Seattle, WA area as the basis for modeling 
driver behavior and destination predictions. The left map shows the area with-
out the grid. The cells are squares, one square kilometer in size. 



 

observations, other factors can be included in X , such as time of day and day of 
week. 

We decompose the inference about location into the prior probability and the like-
lihood of seeing data given that each cell is the destination. Appling Bayes rule gives 
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Here ( )iDP =  is the prior probability of the destination being cell i . We shall com-
pute the prior with two sources of map information, detailed in Sections 4.2 and 4.3. 

( )iDP == xX  is the likelihood of cell i  being the destination based on the observed 
measurements X . We compute this with two other sources of map information, de-
tailed in Sections 4.4 and 4.5 below. The denominator is a normalization factor com-
puted from the collected data. 

4.2   Ground Cover Prior 

We can use ground cover information as one source of information about the probabil-
ity of destinations. For example, we can assert that the middles of lakes and oceans are 
unlikely destinations for drivers, and that commercial areas are more attractive desti-
nations than places that are perennially covered with ice and snow. In order to verify 
these suspicions and use them for destination prediction, we characterized each cell in 
our grid based on a United States Geological Survey (USGS) ground cover map, 
available for free download [11]. These maps categorize each 30m x 30m square of 
the U.S. into 1 of 21 different types of ground cover whose types are given in Figure 
2. 

By looking at the (latitude, longitude) of each trip destination in our dataset, we 
created a normalized histogram over the 21 ground cover types, shown in Figure 2. As 
expected, water is an unpopular destination, although still more popular than some 
other categories, and commercial areas are more attractive than those covered with ice 
and snow The two most popular destinations are “commercial” and “low intensity 
residential”, which the USGS describes as: 

• Commercial/Industrial/Transportation – “Includes infrastructure (e.g. 
roads, railroads, etc.) and all highly developed areas not classified as High 
Intensity Residential.”[12]  

• Low Intensity Residential – “Includes areas with a mixture of constructed 
materials and vegetation. Constructed materials account for 30-80 percent 
of the cover. Vegetation may account for 20 to 70 percent of the cover. 
These areas most commonly include single-family housing units. Popula-
tion densities will be lower than in high intensity residential areas.”[12]  

The “water” category was nonzero likely because a 30m x 30m USGS square is cate-
gorized as water even if it is up to 25% dry land, which could include beaches and 



 

waterfront property depending on how the squares are placed. We expect this distribu-
tion to be not generally applicable outside the immediate area of our testing, because 
different regions will have different mixes of ground cover and its people will have 
possibly different behaviors. 

The normalized histogram in Figure 2 represents ( )jGiDP == , which gives the 
probability of a destination cell if it were completely covered by ground cover type j  
for 21,,3,2,1 K=j . In reality, our 1 km x 1 km cells each contain about 1,111 30m x 
30m ground cover labels, and they are usually not completely covered by the same 
type. To account for this, we compute the distribution of ground cover types for each 
cell, calling it ( )jGPi = . We compute the probability of each cell being a destination, 
based only on the ground cover information, by marginalizing the ground cover types 
in the cell: 

( ) ( ) ( ) ( )jGPjGiDPjGiDPiDP i
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G ======== ∑∑
==
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1
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1
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( )iDPG =  is the probability of a destination cell based on ground cover. A plot of this 
likelihood on a map is shown in Figure 3(a), which shows that water and more rural 
areas are lower-probability destinations. 

4.3   Personal Destinations and Open World Modeling 

We now turn to the incorporation of more informative probabilistic information based 
on the prior history of driver’s destinations. We build on the intuition that drivers 
often go to places they have been before, and that such places should be given a 
higher destination probability. This is the main principle behind much previous work 
in pervasive computing on modeling and predicting transportation routines. For in-
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Figure 2: Destination probabilities vary with the type of ground cover at the 
destination. 



 

stance, Murmasse and Schmandt[6] used the loss of a GPS signal to indicate that a 
user had entered a building. If the user enters the same building a number of times, 
that location is marked as candidate destination for future prediction. Ashbrook and 
Starner[7] cluster GPS-measured locations where a user spent more than 10 minutes to 
extract likely destinations. In their work on learning and modeling transportation rou-
tines, Liao et al.[9] extracted destinations by clustering locations of long stays. In 
Project Lachesis, Hariharan and Toyama[8] infer potential destinations in a similar 
way, but explicitly account for variations in scale of a destination’s size and duration 
of stay. 

We model personal destinations as the grid cells containing endpoints of segmented 
trips. As such, the spatial scale of a candidate destination is the same as a cell’s size, 
and the required stay time to be considered a destination is determined by our trip 
segmentation parameter, which is currently five minutes. 

4.3.1   Closed-World Assumption 
We first consider the case where drivers only visit destinations that they have been 
observed to visit in the past.  We refer to this assumption as the closed-world assump-
tion, and to corresponding analyses as closed-world analyses. Much of the prior re-
search on predicting a person’s location based on GPS data, including that described 
above, centers on closed-world analyses. 

Making a closed-world assumption, we examine all the points at which the driver’s 
trip concluded and make a histogram over the N  cells. Normalizing gives a probabil-
ity mass function ( ) NiiDPclosed ,,3,2,1, K== , where the “closed” subscript indicates 
that this probability is based on personal destinations. Figure 3(b) shows the cells with 
nonzero ( )iDPclosed =  for one driver in our study. If a user has never visited a cell, the 
personal destinations probability for that cell will be zero. This is because, as ex-
plained in Section 4.6, this probability will be multiplied by other probabilities over 
the N  cells in the Bayesian calculation to compute the posterior destination probabil-
ity for each cell. If any cell has a zero prior, that cell will not survive as a possible 
destination.  

4.3.2   Open-World Analysis 
The closed-world assumption is naïve in that people actually can visit locations they 
have never been observed to visit.  This is the case in general, but such observations 
of new destinations are especially salient in the early phases of observing a driver. On 
the latter, “new” locations include places a driver has visited before, but had not been 
observed to visit during the course of a study, as well as genuinely new destinations 
for that driver. Thus, a more accurate approach to inferring the probability of a 
driver’s destinations would consider the likelihood of seeing destinations that had not 
been seen before, thus leveraging an “open-world” model. If we can correctly model 
this effect, we can transform a closed-world probability mass function taken at an 
early point in the survey into an approximation of the steady state probability that we 
would have observed at the end of the survey and beyond. This open world model 
then replaces ( )iDPclosed = , and we have a more accurate model of the places a subject 



 

tends to visit. 
Focusing on open-world modeling, we model unvisited locations in two ways. The 

first is based on our observation that destinations tend to cluster, as seen in the exam-
ple in Figure 3(b). Our intuition is that drivers tend to go to places near each other to 
save time, or to overall regions they are familiar with, e.g. drivers might chose gas 
stations and grocery stores that are near their place of work. We modeled this effect as 
a discretized probability distribution over the distance from previously visited points.  
This distribution has the overall shape of a tiered “wedding cake” as in Figure 4(a). 
Each tier gives the probabilities of new destinations around previously visited ones. 
Each tier of the wedding cake is a concentric ring of constant probability at some 
radius from center, and it is intended to model the eventual clustering of destinations 
in the steady state. 

We measured this clustering tendency by looking at the normalized histograms of 
destinations on our grid over the days of each subject’s GPS survey. For each destina-
tion on a given day, we computed the probability that an as-yet-unvisited destination 
would appear in the eventual steady state for each ring of a 10-tier wedding cake 
around that destination. Each tier is a ring of width one kilometer and a center radius 
of { }10,,2,1 K=r  kilometers, and the steady state was taken from all the destinations 
visited over the whole survey. The results are shown in Figure 4(b) for days 1-14 of 
the survey. On day 1 of the survey, the probabilities of finding unvisited steady-state 
destinations near already-visited destinations are relatively high. As the days go on, 
each subject gradually visits most of their usual destinations, so the probabilities drop. 
For each day, tiers near the center are higher than near the outer edge. Operationally, 
for a given closed-world probability ( )iDPclosed =  from a given day, we compute 
another probability with the unvisited neighbors of each nonzero ( )iDPclosed =  re-

  
(a) (b) 

Figure 3: (a) Probabilities based solely on ground cover information, with 
darker outlines showing cells of higher probability of being destinations. Wa-
ter and rural regions are less probable destinations. (b) The destination cells 
recorded for one driver in the MSMLS study.  



 

placed by a wedding cake with probability values for the appropriate day taken from 
Figure 4(b). This simulates the spread we expect to see in the steady state. After nor-
malizing to one, we refer to the wedding cakes as ( )iDW = . This is done separately 
for each subject. 

Although the steady state destinations tend to cluster, isolated destinations also oc-
cur. We characterized this effect by computing the probability that a steady state des-
tination would not be covered by a 10-tier wedding cake around a destination visited 
before steady state. This probability is shown as β in Figure 5(a). As expected, the 
probability of new, isolated destinations drops with time. One way to model this back-
ground probability is with a uniform distribution over all grid cells. However, this 
would have the undesirable effect of contributing probability to places where no one 
goes, like middles of lakes. Instead of a uniform distribution, we take the background 
as ( )iDPG = , which is the ground cover prior as described previously in Section 4.2. 

We combine these effects to compute a probability distribution of destinations that 
more accurately models the steady-state probability. The three components are the 
closed-world prior ( )iDPclosed = , the parameterized spread as represented by the wed-
ding-cake shaped distributions ( )iDW =  described above, and the background prob-
ability ( )iDPG =  to model isolated destinations. We apportion a fraction α  of the 
total probability to ( )iDW = , where α  is the sum of the tiers from Figure 4(b) for the 
appropriate day, shown in Figure 5(a). A learned fraction β  of the probability, cap-
turing the probability that users will travel to places beyond the tiered distributions is 
allocated to the background, with β  also shown in Figure 5(a). The open-world ver-
sion for the probability of a driver’s destinations, which we shall take as a prior prob-
ability for our analysis, is then computed as 
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Figure 4: (a) A 4-tier probability distribution, showing the discretization  over 
four threshold radii from a previously visited location. We used a 10-tier ver-
sion to model the clustering of destinations. (b) Probability distribution show-
ing allocation of probability to each tier with each passing day. These prob-
abilities were computed from our GPS data. 



 

 
( ) ( ) ( ) ( ) ( )iDPiDWiDPiDP Gclosedopen =+=+=−−== βαβα1  ( 3 ) 

We refer to this as the open-world prior probability distribution.   
Figure 5(a) shows the behavior of α , β , and βα −−1  with time. As time goes 

on, α  and β  tend to decrease, deemphasizing the adjustment for clustering and 
background probability in favor of each subject’s actual learned destinations. This 
represents the richness of an open-world model that takes into appropriate considera-
tion the fact that people can visit new locations, especially early on in the observation 
period, but also in the long run. 

The open-world prior probability distribution, ( )iDPopen = , is designed to ap-
proximate a subject’s steady state distribution of destinations better than the naïve, 
closed-world prior ( )iDPclosed = . To test this, we computed the Kullback Leibler (KL) 
distance1 between both of these models and the actual steady state prior for each sub-
ject. The steady state prior is simply the closed-world prior computed with each sub-
ject’s entire survey data. Figure 5(b) shows the improvement factor as a function of 
days into the survey. At day one, the KL distance between the naïve, closed-world 
prior and the actual steady state is about 1.7 times as great as the distance between the 
open-world prior and the steady state. This factor decreases with time as the naïve 
prior approaches the steady state prior. The advantage of the open-world prior is that 

                                                           
1 The KL distance between a true distribution ( )xp  and an approximate distribution 

( )xq  is ( ) ( ) ( )[ ]xqxpxp 2log∑ . If the approximate distribution is zero anywhere, 
this results in a division by zero. The closed-world prior often has zeros, which we 
accounted for by modifying it in the standard way: ( ) ( ) ( ) Nxqxq λλ +−=′ 1  with 

01.0=λ . 
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Figure 5: (a) The mixing of probabilities for computing the open-world prior. 
As time goes on, the prior emphasizes the subject's previous destinations more 
strongly. (b) The multiplicative improvement in KL distance between the 
closed-world and open-world priors when compared to the true steady state. 



 

the system works with a prior much closer to the actual steady state than with the 
closed-world model. 

Equation ( 3 ) is the prior probability that we use in Bayes formula in Equation ( 1 
). The next two subsections discuss the two likelihoods of the form ( )iDP == xX , 
where x  is some measured feature of the current drive, that we use to model other 
sources of information for destination prediction. 

4.4   Efficient Driving Likelihood 

Drivers tend to take purposeful and somewhat efficient routes to their destina-
tions[13]. Intuitively, if a driver appears to be taking a very inefficient route to a can-
didate destination, then we can reason that that destination is unlikely. The efficient 
driving parameter is intended to capture this behavior in order to help narrow the set 
of likely destinations. We developed a different destination prediction algorithm using 
only efficient driving in [14]. 

We quantify efficiency using the driving time between points on the driver’s path 
and candidate destinations. Thus, for each pair of cells ( )ji,  in our grid, we estimate 
the driving time jiT ,  between them. A first approximation to the driving time could 
come from a simple Euclidian distance and speed approximation between each pair of 
cells. Instead, we used Microsoft MapPoint desktop mapping software to plan a driv-
ing route that MapPoint considers to be ideal between the center (latitude, longitude) 
points of all pairs of cells. MapPoint provides a programmatic interface that returns 
the estimated driving time of planned routes. Using a driving route planner takes into 
account the road network and speed limits between cells, giving a more accurate driv-
ing time estimate.  

For N  cells, there are ( )1−NN  different ordered pairs, not including pairs of 
identical cells. Our route planning software plans routes at the rate of about four per 
second on a 2.8 GHz PC, meaning it would take about 7.4 days to plan routes for all 

( ) 6106.21 ×≈−NN  pairs. We cut this time in half by assuming that the travel time 
from cell i  to j  is the same as from cell j  to i , i.e. ijji TT ,, = . The computation 
time for route planning was the main barrier to increasing the resolution of our grid. 
Fortunately, this computation must be done only once for the grid. 

We measure efficiency based on the trip’s starting cell s  and a candidate destina-
tion cell i . If the driver’s route is efficient, then the total time required to go between 
these two cell should be about isT , . If the driver is currently at cell j , then the time to 
reach the candidate destination i  should be about ijT , . If i  really is the destination, 
and if the driver is following an efficient route, then the driver should have taken a 
time of ijis TT ,, −  to reach the current cell j . We know that the driver’s actual trip 
time to this point is t∆ , which will be longer than ijis TT ,, −  if the driver is taking an 
inefficient route. Thus our measure of efficiency is the ratio of how much time the 
driver should have spent moving toward the candidate destination divided by how 
much time has actually transpired: 
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We expect this to be about one for an efficient trip between s  and i . Using our GPS 
survey data, we computed the distributions of efficiency values based on known trips 
and their corresponding destinations. The efficiency likelihood ( )iDeEPE ==  repre-
sents the efficiency that drivers actually produce on their way to a destination. If a 
candidate destination results in a low-likelihood efficiency, its posterior probability 
will be corresponding low when ( )iDeEPE ==  is incorporated in Bayes rule. As a 
function of the fraction of the trip, the efficiency likelihood is shown in Figure 6. The 
distribution near the beginning of the trip is unrealistic likely due to MapPoint’s in-
ability to give accurate travel times for short trips. For all trip fractions, some drivers 
are able to boost their efficiency beyond 1.0, either due to speeding or mistakes in the 
ideal trip time estimates from MapPoint. The effect of using this likelihood for desti-
nation prediction is that if a driver appears to be driving away from a candidate desti-
nation, that destination’s probability will be lowered. 

4.5   Trip Time Distribution 

The final component we use for destination prediction is a distribution of trip times. 
Intuitively, we know that most car trips are measured in minutes, not hours, which 
limits the range of likely destinations. To quantify this intuition, we used data from the 
U.S. 2001 National Household Transportation Survey (NHTS)[1]. The NHTS col-
lected data on daily and longer-distance travel from approximately 66,000 U.S. 
households based on travel diaries kept by participants. The survey results are avail-
able via a Web interface[15], from which we created a histogram of trip times, a nor-
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Figure 6: These curves show the measured distributions of driving efficiency, 
which vary with the amount of the trip completed. 



 

malized version of which is shown in Figure 7.2 
The likelihood governing trip times is ( )iDtTP T =∆=∆∆ , where T∆  is the ran-

dom variable representing the trip time so far. For use of this likelihood, we quantize 
our trip times according to the bins in Figure 7. Figure 7 actually represents the distri-
bution of destination times before a trip has started, i.e. ( )DD tTP = , where DT  repre-
sents the total trip time. Once some time has passed on a trip, the probability of times 
passed drops to zero, so we renormalize to get 
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To compute the likelihood for a candidate destination, we take t∆  as the length of 

the trip so far and Dt  as the estimated time to the candidate destination from the cur-
rent cell, based on the jiT ,  estimated trip times explained in Section 4.4. 

4.6   Inferring Posteriors over Destinations 

In Section 4.3, we described the generation of a prior probability distribution via the 
combination of visited locations and geographic data, combined with an open-world 
approach.  Sections 4.4 and 4.5 introduced two likelihoods of seeing data given the 
truth of target destinations.  

If we assume independence of the driving efficiency and the trip duration likeli-
hoods given the destinations, we can combine these two elements and the prior into a 
single posterior probability for each destination using Bayes rule from Equation ( 1 ), 
giving the destination probability as 
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Considering such independencies is referred to as the naïve Bayes formulation of 
Bayesian updating. Relaxing the independence assumptions to allow richer probabilis-
tic dependencies would likely enhance the accuracy of the predictions because intro-
ducing realistic dependencies minimizes “overcounting” of probabilistic influences. In 
this case, we are not considering the relationships between driving efficiency and 
duration. 

                                                           
2 Specifically, from https://nhts.ornl.gov/2001/Login.do, we created a table whose 

analysis variable was “Annual vehicle trips (VT)” and whose row variable was 
“Calculated Time to complete trip (min.) (TRVLCMIN)”. 



 

In the general case, more sophisticated models come at the cost of more complex 
representations and data collection. Naïve Bayes has been shown to perform relatively 
well in a variety of domains (e.g., see [16]). Angermann et al.[17] used a similar tech-
nique for combining probabilistic location estimates defined on a grid. Elfes[18] in-
troduced the probabilistic grid approach to robotics for sensor-based mapping. Practi-
cally, we implement this equation by computing a grid of scalars for each of the prob-
abilistic components, multiplying the scalars in corresponding cells, and normalizing 
to make the sum of the products one. 

The probabilistic formulation of destination prediction means that uncertainties 
about the driver’s true destination are represented in a coherent manner. This means 
that applications built on a system like ours can account for the inevitable uncertainty 
in a driver’s destination. For instance, an application that shows restaurants or gas 
stations near a driver’s destination could progressively show more detail and less area 
as the destination becomes more certain. Warnings about traffic problems could be 
held until the certainty of encountering them exceeds a certain threshold. Cognitively 
impaired people deviating from their intended destination could be warned only when 
the deviation becomes nearly certain.  

5   Results 

We tested our Predestination algorithm on trips from our database of GPS traces. We 
split the data into two halves, using one half for training the efficiency distributions 

( )iDeEPE ==  as explained in Section 4.4. Testing on the remaining half of the data 
(3667 trips), we iterated through each trip of each subject. For each trip, we trained 
the closed world prior ( )iDPclosed =  on that subject’s trips, omitting the one we were 
testing, resulting in a leave-one-out testing strategy. We tested the algorithm in three  
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Figure 7: This is a distribution of trip times taken from the 2001 U.S. National 
Household Transportation Survey[1]. 



 

different modes: 
 

• Simple closed-world model – This model uses only a closed-world prior 
based on survey data from days before the test day. It does not use the ef-
ficient driving likelihood nor the trip time likelihood, only a simple prior. 
This naïve model represents a first order attempt at predicting destinations 
based only on where a subject has gone in the past. 

• Open-world model – This uses Equation ( 6 ) and the open-world prior 
from Equation ( 3 ). For training the ( )iDPclosed =  part of the prior, it uses 
only survey data from days before the test day. This represents a realistic 
scenario of user starting with no training data. 

• Complete data model – This uses a closed-world prior, but it is based on 
all the survey data (except the holdout trip), including survey data taken 
after the test day. We expect this model to perform best since it has the 
benefit of using the steady state destination prior. This is how the system 
would work after it has been trained sufficiently to have seen nearly all the 
subject’s destinations. 

 
The result of computing a destination prediction from Equation ( 6 ) is a probability 

mass function over all the cells. Sorting the cells by this probability gives a ranking, 
from highest to lowest, of the posterior probability of each cell being the actual desti-
nation. It is this sorted list that Predestination would return to an application that 
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Figure 8: The median prediction error using the MAP estimate drops with 
the fraction of the trip completed. At the halfway point of the trip, the 
complete data model’s error is two kilometers. The open-world model comes 
within about one kilometer of the accuracy of the complete data model. The 
simple closed-world model is consistently poor. 



 

needed to take an action as a function of the user’s destination. Predestination makes 
such a prediction at every point along the trip. A simple way to examine the result is to 
consider the maximum a posteriori (MAP) estimate, which is the cell with the maxi-
mum probability. Figure 8 shows the median error between the MAP estimate and the 
actual destination as a function of the fraction of the trip completed. The complete 
data model has a median error of two kilometers at the halfway point, while the open-
world model has an error of three kilometers at the same point. The simple open-
world model gives an error that is consistently higher, around five kilometers. This 
result shows that our open-world model approaches the accuracy of the complete data 
model, and that the simple closed-world model is noticeably worse. 

In some instances, an application could make use of a list of highly probable desti-
nations rather than just the single MAP estimate. For instance, in giving anticipatory 
point-of-interest data, a user might be willing to pick from a list of the top several 
likely destinations. In this case, Predestination would return a list of destination pre-
dictions sorted by probability. Figure 9 shows how the probability of finding the cor-
rect destination cell changes with the length of the sorted list and the distance toler-
ance for both the open-world model and the complete data models at the halfway point 
of the trip. Specifically, each bar in these figures shows the probability of the correct 
destination being both: 

• Somewhere in the list of the most probable computed destinations, as a 
function of the length of the list, and 

• Somewhere within a radius of the most probable computed destinations, as 
a function of radius. 

As either the length of the list or the radius is increased, the probability of finding the 
correct destination goes up. The light gray bars show which probabilities are at least 
0.9. Figure 9(a) shows the probabilities using the open-world model, where training on 
trips after the day in question was disallowed. Figure 9(b) shows the probabilities 
using a complete data distribution. The open-world model achieves nearly the same 
level of performance as the complete data model, validating our attempt to model the 
steady state in the early days of the GPS survey. 

6   Conclusions 

“Predestination” predicts a driver’s destination as the trip progresses. In the approach 
described here, we considered four different probabilistic cues, and we combined the 
cues in a mathematically principled way to create a probability grid of likely destina-
tions. The best performance on 3667 different driving trips gave a median error of two 
kilometers at the trip’s halfway point. We introduced an open-world model of destina-
tions that helps the algorithm work well in spite of a paucity of training data at the 
beginning of the training period. Applications of Predestination include proactively 
delivering information about upcoming points of interest and traffic problems. This 
could reduce cognitive load on the driver by eliminating information about places that 
he or she is unlikely to encounter. Destination prediction can also be used to detect if a 
user is deviating from the route to an expected location. 



 

Future work in this area includes exploring the value of relaxing assumptions of 
probabilistic independence and incorporation of additional prediction features. As 
examples of the latter, the structure of the road network and locations of specific 
points of interest could be considered. In addition to absolute destinations, destination 
classes such as coffee shops, dinner spots, and antique stores could be learned for 
individual users. Destinations also likely show temporal dependence, so we expect 
that inclusion of variables representing time of day, day of week, month of year, and a 
user’s calendar data would enhance predictive accuracy, especially with increasing 
amounts of data, providing representative coverage for different periods of time . 
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(a) Using open-world model 
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(b) Using complete data model 

Figure 9: These plots show the probability of getting the correct destination at 
the halfway point of the trip. Each vertical bar shows the probability of the 
correct destination being somewhere in the sorted list of the given number of 
destinations included and within the given radius of the computed destina-
tion(s). The light-colored bars show probabilities ≥ 0.9. 
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