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Abstract. We present a study exploring the promise of developing computa-
tional systems to support the discovery and execution of opportunistic activities 
in mobile settings.  We introduce the challenge of mobile opportunistic plan-
ning, describe a prototype named Mobile Commodities, and focus on the con-
struction and use of probabilistic user models to infer the cost of time required 
to execute opportunistic plans.  

1   Introduction 

We believe that computing systems may one day provide great value to people by 
continuing to identify feasible plans for achieving standing goals in an opportunistic 
manner—in stream with ongoing activities.  We shall explore here the promise of 
developing methods that can make people aware of opportunities and means for 
achieving goals in mobile settings. The fundamental idea is straightforward: During 
the progression of a planned trip, we consider a set of standing goals and precondi-
tions specified by a mobile traveler, perform a search over a space of feasible way-
points for satisfying the goals, and seek to identify and alert the traveler about options 
for achieving one or more standing goals at minimal cost.   

We present a prototype system, named Mobile Commodities (MC), which performs 
a search over the locations of shops, points of interest, and services, and then deliber-
ates about the time and distance added to trips that include waypoints through these 
locations. MC attempts to minimize the cost of acquiring a product, service, or experi-
ence, including a consideration of the cost of time required to include the goal-
satisfying waypoint. The MC prototype consists of three programs, one running as a 
client application on Windows Mobile Pocket PC that accesses GPS information via a 
Bluetooth puck, the second program running as a desktop companion for assessing 
preferences, configuring and inspecting policies, and the third, a server-based system 
that engages in two-way communication with mobile devices via GPRS.    

We review the challenge of mobile opportunistic planning, and discuss how dis-
tinct subproblems are addressed by different components of MC.  We shall focus on 
the key problem of finding the time to carry out unplanned activities opportunistically, 
when such activities are overlayed on the execution of existing plans.  We present 
details on the construction and evaluation of probabilistic user models to infer the 
context-sensitive cost of allocating time to satisfying additional goals, and describe 
how the models are used in MC to guide the search for opportunistic plans. 



2   Opportunistic Planning Challenge  

Performing background analyses to identify feasible opportunistic plans requires (1) a 
means for encoding background goals, (2) a method for generating feasible plans for 
achieving such goals, and (3) a method for evaluating the economic value of alternate 
plans.  A critical aspect of the economic value of opportunistic plans is the context-
sensitive cost of the additional time required to satisfy secondary goals.  We shall 
focus on predictive user modeling of the cost of time in Section 3. 

Figure 1 displays the main components of mobile opportunistic planning that reflect 
the core competencies implemented in the MC prototype.  The destination analysis 
component ascertains the intended destination of a user in motion.  Methods for iden-
tifying a driver’s destination includes (1) acquiring the destination from a user, (2) 
using user-specified rules that identifies a destination from a set of previously encoded 
set destinations classified by time of day and day of week, (3) use of a location linked 
to a forthcoming meeting, drawn from an online calendar, and (4) the inference of a 
probability distribution over forthcoming destination based on a driver’s partial trajec-
tory. We have explored the use of all four methods in MC.  Space limitations limit our 
review of probabilistic models of destinations here; we refer readers to detailed dis-
cussion in [5].  The current implementation of MC allows users to specify destinations 
directly, to specify destinations as a function of the time of day and day of week, or to 
use the locations of forthcoming meetings drawn from an electronic calendar.  
         
 
 
 
 
 
 

 
 
 
 
        
 
 
 
 

 
 

 
Fig. 1. Flow of analysis for mobile opportunistic planning implemented within the Mobile 
Commodities (MC) prototype.   
 

A second component of MC contains a representation of standing, background 
goals asserted by users and the preconditions that specify when goals should be acti-
vated.   We formulated a sample ontology of products and services and we seeded the 
system with several classes of products, services, and social goals. Products and ser-
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vices encoded in the system include such goals as obtaining groceries, gasoline, meals, 
haircuts, and oil changes.  Users can specify specific retailers or service providers by 
name.  Social goals allow for the specification of locations of friends and family.  For 
each goal, we allow users to specify preconditions on a form that defines when the 
goal should be activated.   

Users can express policies in terms of recurrent needs to acquire items that require 
cyclic replenishment or satiation. For example, for the goal of refueling their vehicles, 
users can specify a threshold amount of gasoline remaining in their car’s fuel tank. 
When the amount of gas remaining drops below the threshold level, a background 
search for opportunities to seek gasoline is triggered.  The frame-based specification 
of a policy for purchasing gasoline allows users to include the capacity of their fuel 
tank, the average miles per gallon, and the fuel remaining.  Figure 2a shows a view of 
the goals and conditions specification tool for the goal of refueling.  For recurrent 
goals such as replenishing groceries or getting haircuts, users provide a target duration 
between each purchase or receipt of service.   Goals and preferences are specified via 
the MC desktop program, which synchronizes with a server that communicates with 
the MC mobile application.  

A geospatial search component identifies locations that can satisfy active goals.  
MC uses the Microsoft MapPoint database to identify locations of shops and services.  
This subsystem takes the user’s current location and target destination, computes an 
efficient route to the destination, then identifies candidate locations that can satisfy the 
active goals should they be added as waypoints on the way to the destination.  For 
enhancing the tractability of MC’s search, we limit the number of locations of oppor-
tunistic waypoints to those within a maximal tolerated distance of locations from 
points on the expected path that a user will take.  

We will highlight the operation of MC with the example of the system computing 
recommendations for opportunistic gasoline purchases. The MC server has access to 
all of the gas stations in the Seattle area via the MapPoint database.  The system also 
has access to a gasoline pricing service being developed at our organization.  The 
service provides prices updated daily for all stations in major cities. Figure 2b shows 
the locations of gas stations in the Greater Seattle region.  Figure 2c shows the overlay 
of prices for different qualities of fuel.   

The planning component attempts to satisfy active goals and to minimize the cost 
of diverging from the efficient path to the primary destination.  The planner also per-
forms an economic analysis, seeking to minimize the expected cost of satisfying active 
goals.  The planner first examines the efficient path of the user to their primary desti-
nation and considers active goals and their associated candidate locations.  It then 
performs an exhaustive search over alternate routes that include locations that satisfy 
goals as waypoints on the path to the destination.  For each path, it caches the path, the 
goals satisfied, the available prices of the desired items or services available at the 
waypoints, a set of directions that routes the driver from the current location through 
the identified locations, and the total number of miles and time required for each 
modified route.  The economic analysis subsystem provides a context-sensitive cost of 
time for the user, and seeks to minimize the total cost to the user of diverting off of the 
most efficient path to the primary destination, based on the additional costs of time 
and of transportation.   



                                                                        

      
                   (a)                                         (b)                                       (c) 
Fig. 2. a: Form within the desktop MC client that allows users to specify goals and precondi-
tions, focused here on the gasoline purchase example; b: view of filling stations for the Seattle 
area; c: overlay of current prices for fuel by type of fuel at each location 

3   Considering Cost of Divergence 

It is not always possible to take time out, even if only a short time, to add a new desti-
nation to a trip—especially in opportunistic situations, where time may not have been 
allocated ahead of time for making stops.  Informal interviews with potential users of 
MC highlighted the need for opportunistic planners to represent and reason in a so-
phisticated manner about the cost of time and other additional travel costs, considering 
the preferences of the users they support.  We pursued the challenge of endowing the 
MC with a sense for the cost of time in different contexts.  
     A user’s time is indeed a precious and limited resource—in many cases the most 
precious resource handled by the opportunistic planner.  Reasoning about the cost of 
time is especially important in a system designed to trade off increasing amounts of 
distance and time on a trip for accessing increasingly better “deals.”  We focused on 
methods that could allow MC to consider the cost of arriving at a primary destination 
later than an initially intended or target arrival time.   

In the general case, the planner needs to consider multiple properties of a destina-
tion and the overall context to assign a cost of delay associated with an unplanned 
stop. We explored the use of the Microsoft Outlook calendar as a means for represent-
ing and accessing properties of destinations.  We view the use of an online calendar as 
a transitional representation for context and forthcoming events; we foresee future 
versions of MC relying on richer representations of patterns of daily activity.  Beyond 
using the calendar in a standard way to represent business appointments and special 
social events, MC users set up recurrent appointments that capture daily patterns of 
activity, such as target times for arriving at work and for returning home.  We gave the 
MC desktop application the ability to access such daily life events and more tradi-
tional appointments via an interface to Microsoft Exchange. 

3.1 Assessment of Costs of Time 

     The computation of the cost of time in MC makes use of several assessments that 
are used in conjunction with probabilistic inference to generate the expected costs of 
time under uncertainty about context. We found that the assessments and training 



required approximately a half-hour session of working with forms generated by the 
MC desktop client. Users first indicate on a seven-day by twenty-four hour spread-
sheet-style palette, swaths of time associated with a low, medium, or high cost of arriv-
ing at a destination after a target arrival time.  Users then directly assess a cost of time 
in dollars per hour for each of the three states.  As we shall see, these background 
costs are considered by MC when no information is noted on a user’s calendar.  Users 
also assess costs of delay for contexts where a calendar is showing a forthcoming 
appointment. Users are asked to also consider appointments as being associated with 
low, medium, and high costs contexts, and assess a similar cost of delayed arrival for 
each of the contexts.  Users can optionally enter a tardy penalty, a dollar value repre-
senting what users would be willing to pay to avoid being late at all.  After assessment 
of background and meeting-centric time costs, the MC desktop application uploads a 
database of costs by time to the MC server.  The server application uses these costs in 
doing cost analysis during opportunistic planning. 

3.2 Learning Predictive Models for the Cost of Time 

MC includes a subsystem for constructing probabilistic user models that are used at 
run time to infer context-sensitive costs of delays. The user models in MC infer (1) the 
probability that a meeting is associated with a low, medium, or high cost context, and 
(2) the probability that a target time drawn from a forthcoming appointment on the 
user’s calendar is relevant. The first step in building the predictive models is that ex-
traction of a time-sorted list of appointments from a user’s online calendar.   
    A form displaying the list is composed for user tagging. The form contains two sets 
of radio selection buttons, adjacent to each appointment item. Users indicate for each 
meeting whether it is appropriate to consider the start time listed in the appointment as 
a relevant deadline, and, if so, whether the meeting should be associated with a high, 
medium, or low cost of being late. Given a database of tagged appointments, the sys-
tem prepares a training set composed of appointments annotated with tags from the 
users, and also a set of properties associated with each Outlook appointment.  The 
properties include the day and time of the appointment, meeting duration, strings from 
the subject and location fields, information about the organizer, the number and nature 
of the invitees, the response status of the user to an online invitation, whether the 
meeting is a recurrent meeting or not, and whether the time was marked as busy versus 
free on the user’s calendar.  We also include the role of the user, whether the user was 
the organizer of the meeting versus listed as a required or optional attendee by another 
organizer.  We employ the Microsoft Active Directory service to recognize and anno-
tate organizational relationships among the user, the organizer, and the other atten-
dees. As an example, the system recognizes whether the organizer and attendees are 
peers, managers, or direct reports.  Finally, we note whether the attendees, organizer, 
or location is “atypical” given the other meetings in the users data base; that is, we 
identify whether they are present in less than a predefined small fraction of all meet-
ings in the training set.   

Given the library of cases, the desktop MC application employs Bayesian structure 
learning to build Bayesian networks that predict relevancies and cost-of-delay func-
tions.  The system constructs models by performing heuristic search over feasible 
probabilistic dependency models, guided by a Bayesian score to rank candidate mod-



els.  The Bayesian structure search method we use employs both global and local 
search [2,3]. For each variable, the method creates a tree containing a multinomial 
distribution at each leaf, exploiting the local structure search methods.  

 

         
 

Fig. 3.  Bayesian model learned from library of tagged appointments. The model predicts rele-
vancy of target times and the cost function associated with arrival after the specified start time. 

A sample predictive model for the cost of time constructed from training data from a 
subject testing the MC system is displayed in Figure 3. The subject tagged appoint-
ments from February 21, 2005 to March 4, 2006, a task which took the subject ap-
proximately 45 minutes.  We performed a holdout cross validation, using 85 percent 
of the case library for training the model, and the remaining 15 percent of data to test 
the predictive accuracy of the models on the remaining 15 percent of holdout data.  
Target variables for the association of a deadline with the start of an appointment and 
the cost of being delayed are highlighted as circled nodes.   Table 1 displays the accu-
racies of the inferences about the likelihood of deadlines being associated with calen-
dar items and the probability distribution over the meeting being in the class of low, 
medium, or high cost of arriving after the target arrival time.  The table displays sig-
nificant predictive lifts over the marginal models for both of these inferences, showing 
the value of using the model over background statistics. 
 
Table 1. Classification accuracy of predictive model when tested on a holdout set. The accu-
racy of the respective marginal models are listed beneath the accuracies of the learned models 

 

 

 
 

3.3 Integrating Cost of Time into Opportunistic Planning 

Adding waypoints to a pre-existing trip in an opportunistic manner adds time and fuel 
costs to an overall trip. Reasoning about the best options for addressing background 

 Relevant deadline Cost of delayed arrival 

Learned model 0.90 0.88 
Marginal model 0.52 0.44 



goals requires computing the additional costs for each plan option. In the simple, non-
probabilistic case, we consider the additional time and miles incurred with the diver-
gence off the most efficient path for each opportunistic plan.  We refer to this cost as 
the cost of divergence (CD) associated with each candidate plan.  
     MC makes use of the inferences from the predictive model to generate the cost of 
diverging from the ideal route to the destination. The analysis considers (1) the as-
sessed background default cost of time in different situations, (2) inferences from the 
predictive model, based on the properties of a forthcoming appointment, about the 
probability distribution over the cost of arriving at progressively later times after a 
target start time, and (3) the likelihood that the target start time of an active appoint-
ment is relevant. We use these quantities to compute the expected cost of divergence 
(ECD) associated with any amount of time and/or distance added to the trip by consid-
ering the costs associated with the deadline relevant and not relevant situations, and 
combining the two situations together weighted by the likelihood of relevance and its 
complement.   
     We focus now on details of how the predictive model is used in MC to compute the 
cost of divergence. We shall use Sb and Sa to refer to background, non-appointment 
situations and special appointment contexts, respectively. We use ∆d to refer to the 
additional miles associated with the plan and ∆t to refer to the additional time of the 
trip due to the inclusion of one or more opportunistic waypoints to achieve standing 
goals, in addition to the estimate of the time required to execute the goal once at the 
appropriate location.  We decompose ∆t into the time until a target time, tb, and the 
time, ta, that falls after the target start time.   For the case where the time for executing 
the modified travel plan leads to arrival after the target time, the cost is the sum of the 
background time cost incurred before the deadline, C(Sb,tb), the penalty for arriving 
after the target time, Cp(Sa, ta>0), and cost of arriving at the primary destination at 
increasingly later times after the target time has passed, C(Sa,ta). MC also considers 
the additional transportation costs (fuel and wear and tear on the vehicle), Cf, associ-
ated with the divergence from the efficient path to the primary destination.  This trans-
portation cost, Cf(∆d) is a function of the difference in distance in miles between the 
opportunistic plan and the primary trip, ∆d, for each plan. Si

a  refers to the cost context 
(low, medium, and high) for an active target time. 
    We use p(A|E) to refer to the probability that a deadline for the appointment A is 
relevant conditioned on evidence E, a set of properties of a forthcoming appointment 
Sa.  The probability that a deadline is not relevant is simply the complement, 1- p(A|E).  
For the case where the deadline is not relevant, the cost of time is just the background 
default cost based on the default context or situation, C(Sa,∆t).  For the case where the 
deadline is active, we have the background time cost incurred before the deadline, 
C(Sb, tb), the penalty for being tardy, Cp(Sa, ta>0), and the growing cost of lateness, 
capturing the increasing cost with arriving late for the appointment, C(Sa, ta).  MC is 
uncertain as to the cost functions associated with arriving after the target times associ-
ated with specific appointments, so the system computes an expectation by summing 
over the probability distribution of time cost functions inferred by the predictive 
model.  Putting these terms together, weighting the influences of the appointment and 
non-appointment scenarios by the appropriate likelihoods, and adding the transporta-
tion cost, we compute the ECD for each alternate route as, 
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where p(Si
a|E) is the probability that each appointment cost context (low, medium, and 

high) is active.  The costs of divergence described in this section are used to identify 
the best opportunistic plans in the MC prototype. 

4 Operation of MC  

    When MC users get into their automobiles, the MC mobile client recognizes a Blue-
tooth puck in the car.  A signal is sent from the mobile device to the MC server, identi-
fying the server that the user is beginning a trip.  Let us consider the example of op-
portunistically purchasing gasoline. When MC begins to work to satisfy the goal of 
identifying a best location to purchase gasoline, the system executes a cycle of analy-
sis on the server every 10 minutes.  In each cycle, the system identifies the driver’s 
location.  When planning is active, the server component accesses the user’s assess-
ments of the cost of time for the default period of time and for appointments.  The 
system also accesses a database of the user’s forthcoming appointments and examines 
the appointment properties.  It then computes the cost of time with Equation 1.   
     For each cycle of opportunistic planning, the server application first computes an 
ideal path from the user’s current location to the assumed destination, using the Map-
Point route planner.  As an example, when the gasoline goal is active, the application 
identifies all filling stations within the greater Seattle region and loads current gas 
prices. The system exhaustively searches through alternative routes from the current 
location to the destination, going through each candidate waypoint.  

For each candidate route and waypoint, a divergence in miles and time for the new 
route, by taking the difference in miles and in time associated with the new trip and 
the original trip, as well as the cost assumed for the time required to stop and fill up. 
An overall dollar value cost of divergence is computed for each candidate trip.  This 
cost is added to the cost of the intended purchase, computed as the price of the gas and 
the number of gallons required to fill the driver’s tank.  The system then prioritizes the 
alternate routes from low net cost to higher costs and sends the top five candidates to 
the MC mobile client, along with summary information about each candidate, includ-
ing turn-by-turn directions for each. The directions divert the user off of the current 
path through the way point and then back to the final destination.  Drivers can config-
ure an alerting policy to limit the number of notifications during each trip.   



            

     

Fig. 4. Top: Portion of MC’s deliberation about the best waypoint to stop for fuel.  Three alter-
nate plans of the larger search space that satisfy the goal are displayed.  Bottom: Economic 
summary of the cost of diverging from the route to the primary destination for best plan.  
 

                                     

Fig. 5.  Mobile views of a notification about a best candidate for opportunistic fueling.   

To illustrate how MC operates, we present screens generated by a visualization util-
ity that we created to step through the results of MC’s searches.  The system displays 
the original route, as well as candidate routes and locations for purchasing gas ordered 
from lowest cost to highest cost candidates.  The top portion of Figure 4 shows a se-
quence of views displayed by the system.  Each view shows a candidate opportunistic 
plan.  A summary of the divergence analysis, including the net cost, as well as break-
outs for the cost of time and for the purchase, is displayed for each candidate plan.  A 



summary analysis is displayed in the lower portion of Figure 4.  Views rendered on a 
prototype MC mobile client of a notification about an opportunity, and of the direc-
tions for the path including the recommended waypoint, are displayed in Figure 5.  

5 Related Work 

Several prior studies are relevant to the work on MC.  Patterson, et al. [6] examined 
an application that identifies when cognitively compromised people have likely 
strayed off of expected paths, and that works to route them back to a primary destina-
tion. Bohnenberger, et al. explored the recommendation of paths through a shopping 
mall based on representations of shoppers’ interests [1].  In other related work, Hor-
vitz, et al. [4] described the use of machine learning from tagged case libraries of 
Outlook appointments to construct probabilistic models to predict whether users will 
attend meetings or not and models of the cost of interruption for those meetings. 

6 Summary and Directions 

The Mobile Commodities project has focused on identifying challenges and opportu-
nities for building opportunistic planning systems that work continuously to address 
goals encoded by people.  We presented methods and models used in MC, a prototype 
that highlights key components and challenges with mobile opportunistic planning. On 
future directions, we are pursuing four extensions: (1) bundling of opportunities and 
simultaneous search over multiple goals, coupled with an exploration of more sophis-
ticated planning techniques to address the combinatorial challenges; (2) integration of 
destination prediction services and the generalization of the methods by considering 
probability distributions over drivers’ destinations, (3) moving to a more comprehen-
sive cost-benefit analysis of opportunities, including the development of the ability to 
learn over time to recognize special offers and anomalously low prices, and (4) devel-
opment of pricing systems and mechanisms that allows retailers to post standing and 
time-limited offers to people in a manner sensitive to preferences and context, poten-
tially negotiating directly with peoples’ opportunistic planners. We hope that our ini-
tial efforts will stimulate the user modeling community to focus more attention on 
challenges with mobile opportunistic planning.  We see great opportunities ahead. 
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