
  

 

 

 

 

Abstract 
 

Real-time recognition may be limited by scarce memory 

and computing resources for performing classification. 

Although, prior research has addressed the problem of 

training classifiers with limited data and computation, few 

efforts have tackled the problem of memory constraints on 

recognition. We explore methods that can guide the allo-

cation of limited storage resources for classifying stream-

ing data so as to maximize discriminatory power. We fo-

cus on computation of the expected value of information 

with nearest neighbor classifiers for online face recogni-

tion. Experiments on real-world datasets show the effec-

tiveness and power of the approach. The methods provide 

a principled approach to vision under bounded resources, 

and have immediate application to enhancing recognition 

capabilities in consumer devices with limited memory. 

1. Introduction  

Face recognition has become a commodity application. 

A variety of applications such as Google Picasa, Adobe 

Photoshop Elements, Apple iPhoto, Facebook, and Mi-

crosoft Windows Live Photo Gallery use face recognition 

to help users with tagging their photos. The ubiquity of 

these tools highlights the success of face recognition—and 

also the considerable computational power now available 

on commodity personal computers.  However challenges 

still remain for face recognition on mobile devices, pre-

cisely where matching faces to identities might deliver 

great value, given how cumbersome tagging can be in 

mobile settings. Despite the growing commonality of fast 

processors and high resolution cameras, even high-end 

phones such as the Apple iPhone 4S are currently limited 

to 512MB of RAM. Given that the OS and multiple appli-

cations must run at the same time, any individual applica-

tion is typically limited to a few tens of MBs. The data 

structures for computing features of images, and for per-

forming other tasks such as face detection, may consume a 

significant portion of this space, often leaving a surpris-

ingly small amount of memory to store the classifier.  

To understand why memory limitations make face 

recognition difficult, we must first examine the operation 

of effective face recognition methods. In recent years, the 

top performing algorithms have followed the approach of 

learning a feature set and a distance metric between face 

instances and then applying the nearest neighbor (NN) rule 

to determine the identity of an unlabeled face. This ap-

proach is used primarily because face recognition tends to 

be massively multi-class; a device owner can easily have 

hundreds of friends and family members in their photos.  

Further, the NN methodology can easily incorporate novel 

classes in the framework as they are encountered without 

requiring any further augmentation or training. Other par-

ametric methods such as SVMs or decision trees need to 

be augmented upon discovery of new classes and can per-

form poorly in light of large numbers of target classes.  

The NN procedure is simple and efficient when 

memory is not an issue. However, it quickly becomes im-

practical under constrained memory as we are unable to 

store the full set of examples. The inability to retain all of 

the data makes many other schemes harder to apply as 

well, since we cannot optimize over the entire set. The 

problem can be even more difficult: new classes (faces) 

might show up at any time. We thus have an unknown and 

constantly growing number of classes, coupled with an 

inability to store all past examples. We refer to this as the 

streaming recognition problem (see Figure 1).  
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Figure 1. Streaming version of the face recognition prob-

lem, where a user repeatedly captures photos and uses 

face recognition to help tag other images.  For each face 

in the sequence, previous faces can be used in training. 

We pursue methods that identify the best subset of previ-

ously captured faces to retain. 

 



  

 

 

 

We shall address challenges with leveraging streaming 

recognition for recognizing faces. Our main contribution is 

a method for selecting the best set of exemplars to store in 

memory, inspired by the decision-theoretic notion of ex-

pected value of information (EVI). The method continues 

to estimate the value of storing exemplars for classifica-

tion by considering the discriminative potential of each 

data, given what the system expects to see in the future. 

The approach provides coherent principles for recognition 

under bounded memory in the setting of streaming data. 

We focus on the challenge of streaming face recognition 

as both an illustrative and valuable real-world example.  

2. Related Work 

Recent approaches in face recognition [1][3][34], have 

been shown to perform well on large databases.  However, 

these methods have not been applied within conditions of 

scarce memory, nor for streaming recognition challenges.   

Studies of machine learning under constrained memory 

have been done in areas outside of face recognition. The 

most promising and general methods take the popular ker-

nel learning methodology for classifiers to the streaming 

or online scenario. The work of Crammer et al. [5] sought 

to reduce the memory footprint of these methods by adap-

tively discarding examples that were deemed to be less 

useful. Dekel et al. [8] followed this approach with greater 

formalism, presenting bounds on the cost incurred by such 

approximation schemes, and also developing methods that 

considered a fixed budget of examples. We were drawn to 

the latter line of work for its elegance and relevance to the 

streaming scenario; unfortunately, the domain we tackle is 

multiclass in nature and must consider uncertainty about 

the (often large) number of classes at hand.  As the prior 

online learning work applies to binary classifiers, it is not 

necessary to keep one-vs.-all classifiers for each class, 

which would not be tenable in our scenario.  

Given a multiclass, metric space scenario, nearest 

neighbor methods are an attractive option; it is no surprise 

that prior work in face recognition has found success with 

this approach.  There has been prior research on nearest 

neighbor algorithms under constrained resources. Such 

efforts began with the seminal Condensed Nearest Neigh-

bor (CNN) work of Peter Hart in 1968 [16], which incre-

mentally grows the training data to the minimal “con-

sistent set,” i.e., the set required to correctly classify all 

training examples. Reduced Nearest Neighbor (RNN) [12] 

works from the other direction, iteratively removing ex-

amples that don‟t affect the training error. Modern ap-

proaches have included Modified Condensed Nearest 

Neighbor (MCNN) [9], which is order independent, and 

more recently, Fast Condensed Nearest Neighbor (FCNN) 

[2], which takes a similar approach to MCNN but is faster 

and produces smaller consistent sets. Although these and 

related methods perform admirably, they all require multi-

ple passes through the data.  So, despite their promise for 

static datasets or for offline training of static classifiers, 

they do not address the streaming recognition scenario, 

involving online decisions about which data to keep. 

While systems researchers have not been concerned 

with nearest neighbor per se, the problem of caching in 

memory, disk, and internet access has led to a variety of 

algorithms for deciding which instances of memory to 

keep versus discard.  Since access of a given cell often 

implies future access of its neighbors, the problems are 

similar to the ones we address.  An excellent survey of 

modern techniques can be found in [33]. Our approach is 

similar in spirit to the classic cache-replacement algo-

rithms from the computer systems literature, with exten-

sions from machine learning and decision making.  In par-

ticular, we draw upon ideas in active learning aimed at 

triaging effort in labeling examples. Past criteria for such 

triaging include disagreement among a committee of clas-

sifiers [10], margins of binary classifier [32], uncertainty 

[4][17], and expected informativeness [28], as well as the 

value of information [24]. In computer vision, active 

learning has been employed for object categorization [17] 

[21], video annotation [35], and face tagging [25]. Our 

work is different from these approaches in two ways: first, 

for every data point observed, the label is automatically 

revealed after the classification. Second, we operate in a 

streaming setting, while most of the work in active learn-

ing focuses on the pool-based setting, where all the data 

(though not the labels) are known beforehand. 

Our work is inspired by research in the realm of deci-

sion-theoretic approaches to bounded rationality [18][19], 

and most similar to the work on active learning that con-

siders the value of acquiring and storing data used by a 

classifier over the lifetime of a system [22][23][24]. 

3. Face Recognition with Limited Memory 

Consider the setting where a stream of face patches is en-

countered. At each time step, a recognition system at-

tempts to classify the observed face using the existing 

nearest-neighbor classification model. These face images 

then are presented to the user, who then has the opportuni-

ty to either accept the classification or correct the label. 

The system then updates its nearest neighbor classification 

model based on the user feedback. When there are no con-

straints on memory space, the optimal solution is to store 

the entire history. However, storing the entire stream of 

encountered face exemplars is not only infeasible but also 

expensive to search efficiently at classification time. Con-

sequently, we aim to sample the stream selectively and 

store only those exemplars that would be most valuable 

for the purpose of future classifications. 

 Formally, we denote the stream of exemplars 

as *        +. Let us assume that we have a buffer  , 

which consists of tagged face images encountered in the 



  

 

 

 

past and is limited in size to contain at 

most           number of examples. At each time 

step    the system classifies the encountered exemplar    
by first finding the nearest neighbor in the buffer   and 

then assigning the corresponding label to the new point. 

After the classification, the true label     is revealed, and 

the system then has the opportunity to update the buffer. 

The limited size of the buffer forces us to only store a fi-

nite number of examples; thus, the problem can be formal-

ly defined as finding an optimal set that contains at most 

          number of examples that would provide 

best classification performance on future face images. 

 We aim to quantify the value of each exemplar for the 

purpose of future classification tasks and to use computa-

tions of these values as a guiding principle in deciding on 

the optimal set for the buffer. Intuitively, each exemplar 

provides some information about the classification task, 

which in turns varies from point to point according to the 

underlying data distribution. Besides the discriminative 

quality, the information value of each exemplar is also a 

function of the expected number of times that data point 

will be used in the future. For example, an exemplar near a 

decision boundary may have high information content but 

due to the dynamic nature of the streaming scenario, the 

exemplar may never be used for classification. Thus, we 

also need to consider the probability distribution over us-

age to compute the expected value of information (EVI). 

Since we are tackling the streaming setting, the underly-

ing data distribution is constantly changing; thus the chal-

lenge in computing EVI entails the tasks of modeling dis-

criminative quality of each example and continuing to 

update the probability that the exemplar will be useful for 

future classification. We next focus on these two tasks. 

3.1. Modeling Discriminative Quality 

One of the key components in an EVI formulation is esti-

mating how important an exemplar would be in a classifi-

cation task. Due to the heterogeneous distribution of data, 

different exemplars provide different amounts of discrimi-

natory power. We aim to estimate the discriminative quali-

ty of each point in the buffer   by considering its proximi-

ty to various test cases that the system encounters over its 

lifecycle. Since the classification system is based on a 

nearest neighbor scheme, we consider relative distances of 

the test point with the set of points in the buffer. Intuitive-

ly, if many test points are classified correctly because of 

their proximity to an exemplar, then we can consider that 

example to be relatively important. 

 Formally, assume that the system at time step   uses the 

buffer to classify     the current test case at hand. We de-

fine the probability that the test point    would choose an 

exemplar   stored in the buffer as its nearest neighbor: 
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This formulation is derived from the distance-metric learn-

ing literature [14], where it has been used for learning dis-

tance measures in a nearest neighbor context. Note that 

this expression is essentially a softened version of the 

nearest neighbor rule where   is a fixed constant determin-

ing the softness; as   becomes large, the nearest exemplar 

dominates the measure, and it asymptotically approaches 

the nearest neighbor rule. We can use this softened proba-

bility to quantify the discriminative power of the examples 

in the buffer. A correct classification of test examples 

should provide appropriate contribution in the measure-

ment of the discriminatory power of the examples. 

We denote the informativeness at time   of a point   in 

the buffer as       ( ). If the example    is classified 

correctly, then we can update our estimation of the dis-

criminatory power using: 
 

              ( )         ( )    
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Here,  ,    - denotes the indicator function. Intuitively, 

for every correct classification this update provides a con-

tribution based on the probability that the test point    
would choose   stored in the buffer as its nearest neigh-

bor. By continuously updating this quantity for all the ex-

amples in the buffer, the system estimates how useful each 

point in the buffer has been over its lifecycle. Note as the 

parameter   becomes large,    (    ) goes to one for the 

nearest neighbor in the buffer and zero for others. Thus, 

our measure of discriminative power in this limiting case 

reduces to the scheme of maintaining counts of how many 

times each exemplar in the buffer was used as the nearest 

neighbor for correct classification. While counting is one 

way to measure discriminating quality, our probabilistic 

formulation instead also takes into account the spatial dis-

tribution of exemplars in the buffer. 

3.2. Modeling Probability of Usage 

The EVI measure captures the usefulness of an exemplar 

over the future lifetime of the classifier. Consequently, in 

addition to the discriminative power, we also need to 

model how likely each exemplar is going to be useful over 

time. In photo streams, images of the same people tend to 

cluster together in time. Face IDs often occur in bursts 

because people tend to take multiple pictures each time 

they get the camera out. We shall verify this assumption 

empirically in the experiments section below. Hence, our 

model of usage needs to leverage the burstiness and clus-

tering of face IDs in time. Formally, for each exemplar  , 

we         
   (   ), which represents the probability at 

time-step   that the data point will be used exactly   times 

in future. We assume that   
   (   ) follows a Negative-

Binomial (NB) distribution parameterized with   and  : 
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This distribution is a natural choice for modeling counts 

and is a robust alternative to the more commonly used 

Poisson distribution [13]. Intuitively, if we consider the 

occurrence of a face ID as a Bernoulli trial with probabil-

ity (   )⁄ , then the Negative-Binomial distribution 

provides us with   
   (   )  the probability that we will 

next observe   instances of the same ID before encounter-

ing   number of failures. Thus, the distribution enables us 

to account for bursty sequences in a stream of photos. Al-

so, note that the data following the Negative-Binomial 

distribution can be thought of as Poisson observations with 

a rate    following the Gamma density          (   ). 
The Negative-Binomial distribution is useful in modeling 

discrete data that are more variable than would be ex-

pected from the Poisson model (see [13]).  

 In the approach, each point    maintains its own proba-

bility distribution with parameters (     ) and when intro-

duced in the buffer initialized to (         ). We 

increment both    and    by 1 at each time step, unless the 

incoming point is correctly classified because it is the 

nearest neighbor to   . Incrementing the parameters affects 

the probability distribution by decreasing the probability 

of the Bernoulli trial ( (   )⁄ ) and allowing for a 

greater number of failures ( ); this reduces the expectation 

of seeing similar data in future. However, in case the data 

is a nearest neighbor to the correctly labeled test point 

both    and    are re-initialized to (     ), signifying that 

the model expects to see more of such data in future. 

3.3. Value of Information of Exemplars 

We can calculate the EVI of each exemplar   in the active 

buffer at a time-step   by considering the estimated dis-

criminating potential      ( ) at the time-step   and the 

likelihood that it will be useful in future. If the exemplar   

is used for classification exactly   times in future, the es-

timated benefit obtained in terms of utility is        ( ). 

However, we do not know a priori the exact value of  .  

Instead, at time  , we only have the probability    
   (   ) 

of the example being useful exactly   number of times in 

future. Consequently we need to consider all possible val-

ues of   in order to compute the EVI. Formally, 

    ( )  ∑       ( )    
   (   )        ( )   ̅

 

   

 

Here,  ̅ denotes the expected value of   under the dis-

tribution   
   (   ).      ( ) is independent of   and can 

be moved out of the summation. Our goal is to maintain a 

set of exemplars in the buffer that would maximize the 

utility of the set for the purpose of classifying future cases. 

Thus, when the model needs to incorporate a new data 

point, the procedure dictates replacing the point with min-

imum EVI with the new exemplar. In particular, the re-

placement candidate is chosen according to this criterion: 
 

         
   

    (  ) 

The overall scheme for the memory constrained selec-

tion procedure is shown in Algorithm 1. The algorithm 

maintains a buffer of active points that is used for the pur-

pose of nearest neighbor classification. Given a misclassi-

fication, the buffer is updated and the method is guided by 

EVI to choose a replacement candidate. Note, that for a 

Negative-Binomial distribution with parameters(   ), the 

mean  ̅ is computed as   ⁄ , which can be computed rela-

tively efficiently. We note that the work presented here 

makes a greedy assumption, where we replace a single 

data point at a time. This can be generalized by applying 

myopic approximations and look-ahead procedures [27] 

that consider the EVI for different sets of points. 

4. Experiments 

Associating identities of faces in a photo collection can 

enhance photo browsing and management. For e.g., such 

tagging makes it possible to efficiently access all images 

containing a particular family member. We consider ongo-

ing tagging scenarios where a stream of face images is 

continually captured by a mobile device or a small camera. 

Face detection is then performed on the image, detected 

faces are automatically classified, and results are presented 

to the user. The user, if he wishes, can then either accept 

the proposed tags or correct them. Note that, there is no 

requirement that an „oracle‟ needs to keep providing labels 

all of the time. The scenario we propose is a natural one, 

where the user has the option to provide feedback to the 

system if they wish, and where the system is capable of 

incorporating and benefitting from such feedback. 

4.1. Face Processing Pipeline 

For our base feature extraction and recognition engine, we 

follow the Learning-Based Descriptor approach of Cao et 

al. [3]. The first step of this procedure is to detect the loca-

Algorithm 1: Memory Constrained NN - Stream 

Initialize: Buffer   *+, Data Stream = *        + 
For  t = 1 to T  

           ̂=                       (    ) 
          Observe true label    
 

         If  ̂     
                    If     ( )            

                                  *     +) 
                     Else 

                                               (  ) 
                                 {  *       +}  *     +) 
                     End If 

          End If 

End For 

 



  

 

 

 

tions of the eyes, nose, and mouth. Nine facial patches are 

then extracted from fixed positions relative to these patch-

es and the resulting patches normalized for illumination 

variation by applying a DOG (Difference-of-Gaussian) 

filter. The learning-based descriptor is then computed by 

sampling the patches relative to the location of each pixel 

to create a feature vector that is then quantized using a 

learned encoding. The resulting patch code image is then 

compressed using PCA and normalized to form a de-

scriptor. The patch descriptors are then concatenated and 

quantized into 16-bit integers. An L2 distance function is 

used. The final representation requires 800 bytes (2 bytes 

x 400 dimensions) for each face. This is roughly five times 

more efficient than the standard Local Binary Pattern ap-

proach (LBP) [1], yet obtains excellent rates on the La-

beled Faces in the Wild (LFW) data [20].  

4.2. Description of Data 

In the streaming scenario, rather than having access to a 

gallery of images, the input is a sequence of face patches 

and the algorithm must attempt to classify each face using 

only the labels for faces encountered earlier in the se-

quence (modulo the memory buffer constraints). As the 

scenario differs from the classic face recognition task, the 

standard large face recognition databases such as Face 

Recognition Grand Challenge (FRGC) [31], Labeled Fac-

es in the Wild (LFW) [20], or Multi-PIE [15] cannot be 

used. A key characteristic of this scenario, however, is that 

the performance of algorithms depends on the exact se-

quence of faces, and how coherent the IDs are across time.  

     To evaluate algorithms in the streaming scenario, it is 

important to use real sequences of photos taken from actu-

al personal collections. We considered three such da-

tasets
1
. Two of these are standard in the academic com-

munity. The third is a new dataset that we have created: 

 
1 Data provided with supplementary material. 

 

1. The EasyAlbum dataset [6] contains 1077 faces 

of 32 different people across 1044 photos. 

2. The Gallagher dataset [11] contains 963 faces of 

36 different people across 589 different images. 

3. The Authors‟ dataset contains 1585 faces of 36 

different people across 2032 photos. 
 

In the creation of the third dataset, no selections of photo-

graphs were performed; the photos were simply copied 

from one of the author‟s devices. A face detection algo-

rithm was run, and all faces that the author could name 

were labeled (i.e. a few irrelevant people in the back-

ground were not labeled, but otherwise there was no filter-

ing to remove small, blurred, or low quality images).  

4.3. Results 

Burstiness Property: We first look at the statistics of the 

three datasets, specifically highlighting the bursty nature 

of labels. Figure 2 plots how labels across all the three 

datasets tend to cluster in time. We show the top 10 most 

frequently observed labels (ID 1 in Figure 2 is the top oc-

curring label) and use an indicator function to plot their 

occurrence over the timeline. It is easy to see that labels do 

cluster in time. Although the most frequently occurring 

label (ID 1) is relatively uniform, a majority of other la-

bels occur in bursts. This is observed across all three da-

tasets, which were independently collected by different 

research groups. The visualization in Figure 2 provides 

strong evidence for modeling probability of future use 

using the model proposed in this paper. 
 

Runtime Behavior: Figure 3 illustrates the runtime be-

havior of the method. Specifically, to generate Figure 3, 

we computed a 2D projection of the EasyAlbum data us-

ing t-SNE and then we plot the history of every data point 

in the active buffer (top). The bottom row shows slices 

through the time axis at 3 different points and captures the 

snapshot of the state of the system. All the points are color 

 
Figure 2. Illustration highlighting the bursty nature of labels. We plot the top ten most frequently observed labels in each 

of the three datasets. Rows correspond to occurrences of labels as they are encountered over time. The majority of labels 

tend to occur in clusters on the time axis. 

 



  

 

 

 

coded according to their labels. On the bottom row, we 

only plot the last 50 encountered points and the next point 

that needs to be classified. We observe that the active 

buffer evenly spans most of the set across all the time slic-

es. Furthermore the bottom figure shows the flexibility 

that can be achieved by the proposed model. The method
2
 

is able to recognize the shift in data distribution (note the 

significant shift in labels from frame 84 to 1070), thereby 

successfully classifying future data points.  
 

Recognition Performance: We compare the EVI method 

with several other schemes. Besides comparing against the 

simple scheme of random sampling, we also evaluate sev-

eral alternate strategies motivated from caching. As dis-

cussed earlier, the problem of memory-constrained nearest 

neighbor classification in streaming scenarios has interest-

ing parallels with the problem of maintaining a cache in 

the computer architecture and systems literature. While 

cache maintenance algorithms need to optimize for page 

faults, our goal is of maximizing correct classification. 

Nonetheless, we can modify some of the existing cache 

replacement policies to apply to the streaming photo sce-

nario and then compare them with the EVI scheme. In 

particular, we consider the three popular cache replace-

ment schemes of least-recently-used (LRU), least-

frequently-used (LFU) and first-in-first-out (FIFO). The 

least-recently-used and least-frequently-used methods 

need to maintain tables that keep counts about when and 

how many times respectively a face exemplar from the 

buffer has been used to correctly classify the stream of 

data. Upon misclassifying an exemplar, the least-recently-

used heuristic would choose to replace the face from the 

buffer that has least recently been used for any correct 

classification. Similarly, least-frequently-used would 

choose the exemplar that has the least number of counts 

towards correct classification.  

 
2 We provide illustrative animations in supplementary materials that 

highlight such dynamic shifts in data boundaries 

All of these five schemes (EVI, LRU, LFU, FIFO and 

Random) are compared against the baseline when the sys-

tem can retain full memory (Full). In particular, we pre-

sent results in terms of percent increase in misclassifica-

tion error as compared to the use of infinite memory (i.e.: 

    (                     )             ⁄ ). We 

report results for both a held-out stream of data (random 

30%) and the rest of the online stream that our algorithm 

is being applied to. The accuracy on the online stream 

closely reflects the realistic task of not tagging every face 

encountered, whereas accuracy on the held-out set reflects 

the performance on a set of data that is untouched and 

separate from the training phase.  

At each time-step t, we classify the encountered face 

exemplar in the online stream using the current active 

buffer and compute the percentage increase in misclassifi-

cation. We then consider the label for the exemplar re-

vealed and use it to update the active buffer. The cumula-

tive performance on the held-out data is computed assum-

ing original positions of test cases in the stream (i.e., a 

held-out image is classified only if the algorithm has seen 

all the training faces that came before). Note that the held-

out stream is untouched in advance of evaluation, kept out 

of training and updating the buffer, and is only used to 

measure the test performance. We fixed the value of     

in all the experiments. Further, all the experiments were 

performed 100 times by randomly splitting the data into 

the hold-out and the online stream of unlabeled face ex-

emplars. The results include average results over these 100 

trials and the standard error. 

Figure 4 compares the proposed EVI method with the 

other schemes. We show the results where the buffer size 

is fixed to 5% of the length of the data stream. Similar 

results are obtained using other buffer sizes and are sum-

marized in Figure 4. The top row shows the result on the 

online streaming data where the lines represent average 

percent increase in misclassification up to that point using 

the different methods. The mean is computed over the 100 

runs and the standard error is shown as dotted lines. Note 

that we are plotting accuracy up to each time step; conse-

quently the graphs need not be monotonic (e.g., the arrival 

of new previously unseen people can result in a string of 

errors which can push the cumulative accuracy lower). 

We observe that the EVI based approach significantly 

outperforms both the random as well as the re-purposed 

caching schemes. While both the first-in-first-out (FIFO) 

and least-recently-used (LRU) schemes potentially can 

model the varying distribution of incoming face exem-

plars, they still do not leverage information about the dif-

ferent value of exemplars in classification. Similarly, the 

least-frequently-used (LFU) scheme roughly models the 

informativeness but does not take into account the dynam-

ic data distribution in the streaming scenario. The EVI 

method on the other hand considers both the informative-

ness as well as the change in data distribution. 

 
Figure 3. 2D projection of EasyAlbum data on a timeline 

showing how long each point was in the active buffer (top). 

Bottom row shows different time slices (color denotes la-

bels) and red circle denote set of active points.  



  

 

 

 

The results on the held-out stream of data are also 

shown in Figure 4 (bottom). We observe similar results 

confirming that the EVI method chooses better examples 

to keep, consequently achieving better performance than 

the other schemes. Finally, we note that the performance 

of the EVI scheme is only about by 5% worse than that of 

the system with infinite memory across all of the datasets.    
 

Effect of Buffer Size: We also explore the performance of 

all five methods as we vary the active buffer size. Figure 5 

shows the mean recognition accuracy estimated at the end 

of the entire online stream for different sizes. The average 

is again over 100 runs with the error bar denoting the 

standard error. We can observe that the recognition per-

formance of the EVI method increases favorably with in-

crease in buffer size. Increase in buffer size allows the 

algorithm to better model the dynamics of the data distri-

bution as well  as the ability of storing more exemplars in 

the active buffer resulting in better performance.  

The experiments suggest that it is valuable to consider 

the expected value of information in memory-constrained 

classification—a common challenge in mobile computer 

vision applications. Perhaps the most important point to 

note about the results is how consistent they are across the 

100 trials, the 3 datasets, the various buffer sizes, and the 

online and held-out streams. In all cases, a significant im-

provement is obtained by using our algorithm. Finally, we 

note that the proposed scheme based on expected value of 

information is efficient. In particular, each round for a 

stream of 963 exemplars (400 dims) took less than 1 

msecs on a 2.16 Ghz Intel Laptop. Our implementation is 

in MATLAB and further speedups can be expected, mak-

ing this scheme particularly appealing for small devices.  

5. Conclusion and Future Work 

We extend the nearest-neighbor classification paradigm to 

handle streaming recognition of faces under limited 

memory. The proposed scheme uses expected value of 

information to make decisions about which exemplars to 

store in a buffer based on the expected utility of each face 

patch over the future life of the system.  The approach is 

applicable to numerous computer vision scenarios running 

in constrained memory. We highlighted the value of the 

methodology for enhancing a face-tagging application on 

mobile phones with limited memory. Experiments with 

real-world datasets demonstrate that the proposed frame-

work is more effective than alternate baselines, and other 

methods motivated by cache replacement algorithms.  A 

limitation of the current studies is that we have considered 

greedy schemes that replace one face at a time. We seek to 

study less myopic selective sampling methods. Other fu-

ture directions include considering additional contextual 

cues to induce more constraints and applying the method-

ology to other streaming scenarios.  

 
 

Figure 4. Comparison of EVI with other methods on EasyAlbum (left), Gallagher (center), and Author (right) data. (Top) 

Online performance on the streaming data. (Bottom)  Performance on the held-out set. The graphs show mean increase in 

misclassification (100 runs) when compared to maintaining entire history (lower is better).  Dotted lines signify std. error.  
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Figure 5. Mean recognition performance on all held-out cases at the end of the stream as size of the active buffer set is 

varied. We show results on Gallagher (left), EasyAlbum (center), and Author (right) data. Graphs show mean accuracy 

over 100 runs and the dotted lines are std. error, and show that EVI method is effective for a wide variety of buffer sizes.  


