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Abstract. Predictive user models often require a phase of effortful supervised
training where cases are tagged with labels that represent the status of unob-
servable variables. We formulate and study principles of lifelong learning where
training is ongoing over a prolonged period. In lifelong learning, decisions about
extending a case library are made continuously by balancing the cost of acquir-
ing values of hidden states with the long-term benefits of acquiring new labels.
We highlight key principles by extending BusyBody, an application that learns to
predict the cost of interrupting a user. We transform the prior BusyBody system
into a lifelong learner and then review experiments that highlight the promise of
the methods.

1 Introduction

Probabilistic user models have been generated via a process of applying a statistical
machine-learning procedure to a library of training cases. The process typically relies
on supervised learning to acquire labels for variables that are not directly observed in
the collection of activity or sensor data. Supervised training often requires an effortful
phase of labeling hidden user states such as a user’s current or future intention, affective
state, or interruptability.

Some user modeling applications bypass manual supervised learning by perform-
ing in-stream supervision, where tagging occurs in the course of normal activity. For
example, in the mixed-initiative Lookout system for calendaring and scheduling [3],
a probabilistic user model is used in real-time to infer a user’s intention to perform
scheduling, based on the content of email messages at the user’s focus of attention. To
build a case library, the system watches users working with email and assigns labels of a
scheduling intention by noticing if calendaring actions occur within some time horizon
of the reading of email at the focus of the user’s attention. The Priorities system [6],
which uses machine learning to assign incoming email messages a measure of urgency,
makes available an in-stream supervision capability. A set of policies, communicated
to users, is used to label messages with urgency values and made available for review
as draft case libraries. For example, messages that are deleted without being read are
labeled as non-urgent.

Unfortunately many applications may not be amenable to in-stream supervision as
labels for hidden states are not available. In such cases, the construction of predictive
user models depends on either manual training sessions or the use of an experience-
sampling methodology, where users are periodically asked for feedback that is used



to label a situation or state of interest. To date, experience-sampling probes have been
guided by random probe policies and such heuristics as seeking labels for states that a
system is most uncertain about.

We formulate and study a decision-theoretic approach to guide experience sam-
pling, centering on taking a value-of-information perspective. The methods address the
challenge of building user-modeling systems that have the ability to perform lifelong
learning, by continuing to use the current user model to make decisions about if and
when to probe users for feedback, and considering the long-term value associated with
such feedback. Beyond the use of the methods for learning predictive models in an effi-
cient manner, the techniques have value for the ongoing updating of a user model given
potential changes in users, tasks, and challenges.

We first introduce the legacy BusyBody system [5] as a motivating example. Busy-
Body employs experience sampling to learn a user model that provides inferences about
the cost of interrupting users. We discuss the core challenges of extending BusyBody
with machinery that can guide its experience sampling. After laying out core concepts
of lifelong learning, we discuss the specialization of the concepts for an alert mediation
application. Finally, we discuss experiments with an implementation.

2 Motivating Application: Context-Sensitive Mediation of Alerts

Fig. 1. BusyBody probe for user feed-
back, running in a binary modality.

Interest has blossomed in the construction of
models that can predict the cost of interrupt-
ing computer users. To our knowledge, meth-
ods and opportunities with the use of prob-
abilistic models to predict the cost of inter-
rupting users, based on the ongoing sensing
of a stream of activity, were first described in
[6]. The work explored a cost-benefit analy-
sis to controlling the flow of alerts to users,
where the inferred urgency of incoming mes-

sages is balanced with the inferred cost of interruption, as computed by a Bayesian
model. Several studies in the spirit [6] have explored the learning of predictive models
for interruptability based on observations of user activity [4, 1]. Efforts in this realm
include methods for seeking training from users in an ongoing manner. The BusyBody
system employs experience sampling to construct personalized models for real-time
predictions of the expected cost of interruption [5]. When BusyBody is in a training
mode, the system intermittently probes users with a pop-up query requesting an assess-
ment of their current or recent interruptability. The initial version of the system probed
users at random times, constrained to an overall rate set by users. Figure 1 shows a
request by BusyBody for input, used when the system is running in a binary hypothe-
sis modality. In other modalities, the system inquires about finer-grained states of the
cost of interruption. BusyBody contains an event infrastructure that logs desktop activ-
ities including such activities as typing, mouse movements, windows in focus, recent
sequences of applications and window titles, and high-level statistics about the rates of
switching among applications and windows. The system also considers several kinds
of contextual variables, including the time of day and day of week, the name of the



Fig. 2. Lifelong learning framework for training an alert mediation system.

computer being used, the presence and properties meetings drawn from an electronic
calendar, and wireless signals. The system employs a conversation-detection system,
using a module that detects signals in the human-voice range of the audio spectrum.
Responses to probes about interruptability are stored, along with the sensed evidence.
Bayesian structure search is employed to build predictive models that are then used in
real-time to provide predictions about the cost of interruption from the stream of sensed
data.

BusyBody and the models it constructs are typically deployed in larger systems
that reason about whether to relay incoming alerts and provides the current cost of
interruption to these information triaging systems, which continue to balance the cost
of interruption with the inferred urgency of incoming messages [4].

3 Lifelong Learning for User Modeling

We now revisit the experience-sampling challenge in BusyBody to highlight key aspects
of a lifelong learning methodology. Assume that BusyBody is used, per its design to
continually provide the current cost of interruption within an alert mediation system,
based on sensed events and states. The model can become better with additional cases,
obtained via experience sampling, where “better” is defined in terms of the performance
of the mediation system.

The lifelong-learning challenge is to use the current predictive model within a value-
of-information framework to control probes for new cases in an ideal manner, and to
incorporate the cost of probing in different contexts into the overall long-term optimiza-
tion of the use of the system. Figure 2 highlights the lifelong learning framework in a
schematic manner. At the core of the framework is the predictive user model that plays
a critical role in determining how to handle the incoming alerts. The predictive user
model needs to adapt and to learn continuously from the user, and this is done with re-
quests to the user. As shown in the figure, we divide the approach into two interrelated
components of analysis: the real-time usage component and the learning component.
These components can run simultaneously, each relying on the other.



3.1 Real-time Usage

Over its lifespan, the alert mediation system encounters many incoming messages and
the aim is to take appropriate actions when they arrive. Alerting a user about an incom-
ing message that may be urgent comes at the cost of an interruption, which in turn is
a function of the user state. Upon receiving a message, the system can either instantly
relay it to the user, defer its delivery, or store it for later review, and each of the different
actions is associated with a utility. The system aims to maximize the expected value (or
equivalently minimize the expected cost) of the handling of messages.

We shall use U(A,m) to refer to the utility of taking a message alerting action A
given the arrival of message m. We use C(A, s) to refer to the cost of interruption
when the system takes action A given that the user is in state of interruptability s.
Upon seeing a message, the optimal action, A∗, is the action associated with maximum
expected utility. Assuming decomposability of costs and benefits, A∗ is computed as:

A∗ = arg max
A

U(A, m)−
∫

s

C(A, s)p(s|E) (1)

We cannot directly observe the user’s state of interruptability s. We only have access to
the evidence E about the user’s context and activity from BusyBody’s event system. The
user model constructed with available data is used to predict the probability distribution
p(s|E) over states of interruptability. The fidelity of the computation of the best action
for the system during usage depends upon the accuracy of the user model.

3.2 Training and Probing

Several statistical machine-learning procedures can be employed to construct a user
model that computes p(s|E). These methods associate patterns of evidence with states
of the user. Candidate learning procedures include Bayesian structure search, support
vector machines (SVMs), decision trees etc. As the posterior probability p(s|E) plays
a key role in the lifelong learning methodology, we seek to use a probabilistic method-
ology such as Bayesian structure search or Gaussian Process (GP) classification.

The goal of the training cycle is to learn and to refine the user model by seeking
labeled cases from the user. Increasing the number and representativeness of cases may
increase the accuracy of the user model on future cases. Unfortunately requesting feed-
back from the user in experience sampling results in an interruption; hence, a context-
dependent cost of probing must be considered. We shall now review the computation
of the value of probing (V OP ) for a label, which is the expected gain in the long-term
utility of a system given a probe.

3.3 Computing the Value of Probing

The computation of the value of probing at any moment is based on (1) the available
labeled training set, (2) the current set of observations, (3) a characterization of the
instances facing the system over time, and (4) a specified period of time of system
usage being considered. The latter duration of usage can range from a specific period
of time to the expected lifetime of the system.

Let us assume that the system already has n training cases EL = {E1, .., En},
with labels SL = {s1, .., sn}. Each Ei denotes evidence capturing desktop activities



and context and si again denotes the state of the user. Most learning methods focus on
minimizing such metrics as classification accuracy. However, a more comprehensive
aim is to construct a lifelong learning process that is sensitive to both the predictive
accuracy as well as the cost of interrupting the user with probes.

Consider the decision about whether to seek information from users about their state
given Enew, a vector of observed evidence with relevance to the hidden state. The deci-
sion about whether to proceed with a probe is determined according to a maximization
of the expected value of information (V OI) [7]. To embark on the computation of the
V OP , we first consider a default situation where no triaging system is available to han-
dle incoming messages. In the absence of a mediation system, the user would be alerted
by all messages, (A = Adeliver). The mediation system is introduced to increase the
expected utility of messaging to the user. For each message m, the utility of messaging
in the absence of the alert mediation system is:

V 0(m, s) = U(Adeliver, m)− C(Adeliver, s) (2)

Let A∗ be the action selected according to the policy described in (1). Then, for a user
state ŝ predicted by the current user model, the utility achieved by the system is:

V ∗(m, ŝ) = U(A∗, m)− C(A∗, ŝ) (3)

The value that the system provides for an incoming message m is the marginal increase
in utility over the default situation:

V ∗(m, ŝ)− V 0(m, s) (4)

We need to compute the expected gain in utility for future alerts. Assuming stationarity,
we approximate this quantity using the mean utility gained over the labeled EL and the
unlabeled EU cases. We note that a user’s pattern of activity may not be stationary over
time; as time progresses, a user might acquire new behaviors. A system should have
the ability to adapt to these potential dynamics. Nonstationarity in users is addressed
by using a moving buffer EU that summarizes recent user activity and provides a means
for modeling the current underlying distribution of a user’s behavior. Given the labeled
data points EL and the buffer of unlabeled data points EU = {En+1, .., En+m} that
represents the recent distribution of data points, we can compute the total gain in utility
with the use of the system as:

Jall =
∑

Ei∈EL∪EU

∫

mi

∫

s

(V ∗(mi, ŝ)− V 0(mi, s))p(s|Ei)p(mi) (5)

Note, that we do not know the state of the user s for all Ei ∈ EU ; thus, we need to
marginalize over s by considering the conditional posterior p(s|Ei). We must rely on
our current predictive user model to provide us a good estimate of p(s|Ei). We also
need to learn a model of the future stream of messages mi associated with each situa-
tion Ei. Such a model provides the likelihood of different messages, p(mi), allowing us
to marginalize over mi. We can simply use probability distributions compiled via ob-
servation of incoming messages mi as approximations of future streams of messages.
We can alternately model p(mi) via over time via updating of Beta or Dirichlet distri-
butions. Let us consider the use of a Beta distribution for the case where there are only
two kinds of messages, m = 0 and m = 1. Specifically, if P (m = 1) = q, the system
models the distribution of future messages as:

P (q) = Beta(α, β) =
1

B(α, β)
qα−1(1− q)β−1 (6)



Here, q ∈ [0, 1], B(·) is the Beta function with α and β as parameters. Intuitively, α and
β correspond to the number of messages encountered so far where m = 1 and m = 0
respectively. At the start, we have no information about the proportions of messages,
so we have α = 0 and β = 0. Note, that these values of α and β lead P (q) to be
a uniform distribution, representing an uninformative prior. As the system encounters
more messages, it updates α and β, thus, maintaining an up-to-date belief about the
proportions of urgent messages that the system might encounter.

Given the gains in utility computed by considering the labeled points and the un-
labeled points, we can compute the expected value of a system (EV S) associated with
each incoming message as the average gain per message:

EV S =
Jall

|EL|+ |EU | (7)

The EV S per incoming message can be converted into an EV S per second, represent-
ing the rate at which value is being delivered by the system, given the expected rate of
incoming messages.

Following a user response to a probe for a label, we update the predictive user
model and may see a gain in the expected value that the system would be delivering per
message. However, we must consider the cost of the probe. The difference in the gain
and the cost guides the selection of cases to label. Let Cprobe

new be the cost that will be
incurred when the user is interrupted by a probe. For simplicity, we shall assume that the
cost of interruption for the probe, like the cost of interruption for incoming messages,
only depends upon the user state.

We introduce an optimization horizon, k that defines the duration of system usage
considered in the learning optimization. k refers to the number of future alerts that will
be handled. This value is selected according to the time frame that the user wishes to
optimize over. For example, a user may wish to have the system probe so as to optimize
the value of the system over two weeks. k determines the tradeoff between the acute
cost of a probe and the long-term benefits associated with the expected improvements of
system performance by refining the model using the additional case. A large k will tend
to push the system to probe the user a great deal early on, while a small k would make
the system reluctant to ask for supervision. Formally, we define the value of probing
(V OPk) for the new point Enew as the gain in the total expected value that the system
is expected to deliver for the k alerts subtracted by the cost of probing:

V OPk(Enew) = k · (EV Snew − EV S)− Cprobe
new (8)

Here, EV Snew denotes the total expected value of the system delivered per alert should
a label for Enew be acquired from the user. The V OPk quantifies the gain in utility that
can be obtained by interrupting the user. Thus, our strategy is to probe the user when
V OPk ≥ 0. This approach differs from the earlier methods in active learning where the
focus has been to minimize the classification error. Note, that this formulation of V OPk

assumes stationarity in the distribution of cases and associated patterns of evidences.
We need to compute V OPk before we know the label for Enew. Note that Jnew

all and
EV Snew cannot be computed before we know the actual label snew. Similarly, Cprobe

new
cannot be computed as the costs of labels are different for different classes. Thus, we
must approximate Jnew

all with an expectation of the empirical gain:

Jnew
all ≈

∫

s

Jnew,s
all p(s|Enew) (9)



Here Jnew,s
all is the gain in utility when Enew is considered labeled as s and to calculate

Jnew,s
all , we retrain the predictive model by considering Enew labeled as s in the training

set. Similarly, we can use the expectation of Cprobe
new as the costs of labeling vary with

the user state. Thus, given the V OPk for the new point Enew, our strategy is to interrupt
the user if V OPk ≥ 0. This strategy ensures that the system learns continuously while
working to minimize interruptions to the user.

4 Implementation and Experiments

We now describe experiments with a sample instantiation of the lifelong learning method-
ology for an alert mediation system. Let us assume that there are two kinds of incoming
messages: urgent (m = 1) and non-urgent (m = 0). Next, we assume that there are two
kinds of actions the system can take: either deliver the message (A = 1) or postpone
the delivery (A = 0). We shall consider the utility of outcomes in terms of the cost of
delayed review of messages [6]. For simplicity, we shall assume that a fixed cost Cu is
incurred if an urgent message is not delivered immediately and that this cost is greater
than the cost of deferring delivery of a non-urgent message, C¬u. Note, this requires
that we know if the message received by the system is urgent or not. Prior work has
applied machine learning to infer the urgency of the messages [6]. We are interested in
building a predictive user model that detects whether the user is busy or not, and have
s ∈ {1, 2}, where s = 1 (s = 2) correspond to the state that the user is busy (not busy).

Next, we define the cost of interruption C(A, s) by taking an action A. When we
hold back (A = 0), there is no interruption so (C(A = 0,m) = 0). However, the cost
of interruption is different when we relay the message to the user in different states:

C(A = 1, s) =

[
Cb if the user is busy
C¬b if the user is not busy

]
(10)

In cases where Cu ≥ Cb ≥ C¬u ≥ C¬b, the optimal policy is to withhold delivery of
the alert if the user is busy, unless the alert is urgent. We shall assume this policy.

We shall use a binary classifier as the predictive user model to detect the state of
busy (s = 1) and not busy (s = 2). We use the GP classification to generate the
probability distribution, p(s|E). Details of the GP classification and its implementation
can be found in [7] and [12].

If an incoming message is non-urgent and the system correctly detects that the user
is busy, then per the policy described above, the message will not be sent to the user
and the user will incur the cost of delayed review of non-urgent information (C¬u).
However, in absence of the alert mediation system, the non-urgent message would be
sent to the user who would incur the cost of interruption should they be busy (Cb).
Thus, the net gain of the system is G¬u

11 = Cb − C¬u. Here, G¬u
ij denote the reduction

in cost when classifying the user state belonging to class i as j while handling a non-
urgent message. Similarly, consider the scenario when a non-urgent message is received
and the system misclassifies the user state as busy. The system will not deliver the
message immediately; consequently, we have G¬u

21 = C¬b − C¬u. Note that the cost
of interruption when the user is not busy is low; thus, C¬b ≤ C¬u suggesting that
G¬u

21 ≤ 0. Further, the system relays all messages when the user is not busy and relays
all the urgent messages regardless of the user state; consequently, there is no net gain
in utilities for the rest of the cases. Note, that the system provides gain in utilities only
via suppressing the delivery of non-urgent messages. The system maintains the Beta



distribution over the set of urgent and non-urgent messages. Thus, Equation 5 reduces
to:

Jall =
β

α + β
· [

∑
i∈L1

G¬u
11 pi + G¬u

21 (1− pi)] (11)

Here pi = p(si = 1|Ei), the probability that the user is busy, given the evidence Ei

and L1 is the indices of points labeled by the current predictive user model as class 1
(busy). The term β

α+β appears in the equation as gains only occur for the non-urgent
alerts; consequently, the term enables us to consider the likelihood of receiving a non-
urgent alert while computing the total gain Jall.

The lifelong learning policy guides the BusyBody probe for assessments. Let us
consider the cost Cprobe

new incurred when the user is interrupted to label the current in-
stance Enew. We assume that the cost of probing depends upon the user state, that is:

Cprobe
new =

[
Cprobe

b if the user is busy
Cprobe
¬b if the user is not busy

]
(12)

We employ the concepts in Section 3.3 to guide requests for labels based on a compu-
tation of the value of probing.

We studied the value of the methods with simulations on data collected previously
by the BusyBody system for two subjects. The first user is a program manager and the
other a developer at our organization. The data for each contains two weeks of desktop
activity as well as the busy/not-busy tags collected by the legacy BusyBody system,
using a random probe policy. We only consider data points in the sequence for which the
label for the user state was available, rather than all labeled and unlabeled cases. Thus,
the results described can be considered as providing lower-bounds on performance.
We expect the value to be greater in usage settings where the system monitors users
continuously and can make decisions about all cases. We performed hold-out cross
validation, randomly holding out 20% of the data for testing. For evaluation, the system
employs the predictive model trained using the data seen up to the point being tested.
Thus, we can observe and characterize the performance of the system as it is evolving.

In the experiments, we assigned utilities of different outcomes as follows: Cu =
16, C¬u = 4, Cb = 8, C¬b = 1, Cprobe

b = 8, Cprobe
¬b = 1. We assumed that all

of the incoming alerts are non-urgent, i.e., β
α+β = 1.0. Also, we chose k to be the

length of the whole sequence. We employed a GP classifier using a polynomial kernel
of degree 2 as the core machine-learning methodology for constructing the predictive
model. We compare the lifelong learning scheme, both with and without a case buffer,
with two alternate policies. First, we consider the policy of randomly selecting cases
with a probability of 0.5 to query the user. The other scheme selects cases on which
the predictive user model is most uncertain. Specifically, the system probes for labels if
0.3 ≤ p(snew|Enew) ≤ 0.7.

Table 1 shows the recognition accuracy on the test points and net gain in utilities
over the hold-out set. The net gain in utilities includes the gain associated with the
system usage and the cost of interruptions from the probes themselves. The lifelong
learning method (V OP ) outperformed the heuristic policies in accuracy as well as gain
in utilities. We found that the buffer helps to improve the performance of the system as
it enables the system to exploit the additional available data in computing the expected
gain in utility. The lifelong learning scheme with the use of a buffer resulted in overall
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Fig. 3. The net gain in utilities by the system on the test points as it encounters data instances
from the case libraries of the (a) program manager and (b) developer.

accuracies of 67.90% for the program manager and 92.31% for developer. The program
manager was queried 6 times and the developer was queried 3 times. We compared the
accuracy achieved for the same number of labels with the random probe policy used
in the legacy BusyBody system. Drawing the same numbers of cases for each subject
randomly led to models with accuracies of 59.26% and 50%, respectively, a significant
drop in accuracy for both. Figure 3 shows the gain in utilities over the hold-out set as the
system sees progressively more labels. The graph highlights the ability of the lifelong
learning methodology to provide an efficient means of learning predictive user models
continuously over time.

5 Related Work

Most research on statistical models considers training and usage phases separately.
Training data is used to generate predictive models and these models are analyzed.
Exceptions include the paradigm of active and online learning where the model is con-
tinuously updated as the system collects data from the environment. In active learning,
the aim is to probe a human/oracle about the label of the points as they arrive. Numerous
heuristics and schemes have been proposed for choosing unlabeled points for tagging.
For example, Freund et al. [2] propose as a criterion for active learning the disagreement
among a committee of classifiers. Tong and Koller [11] propose to choose unlabeled
points to query that minimize the version space for SVMs. Within the Gaussian Process
framework, the method of choice has been to look at the expected informativeness of
unlabeled data points [8, 9]. All of these methods inherently focus on minimizing the
misclassification rate. Key aspects of the work presented here build upon our earlier
work on selective supervision [7], employing decision-theoretic principles.

6 Conclusion

We reviewed principles of lifelong learning where the costs and benefits of acquiring
and learning from additional cases are considered over the lifetime of a system. We fo-
cused on the use of lifelong learning to guide supervision in experience sampling. The
method harnesses the value of information to make decisions about probing users for



Table 1. Performance on the test set. Left: program manager data. Right: developer data.

Strategy Accuracy # of Probes Utility Gain
V OP (Buffer) 67.90% 6 100
V OP (No Buffer) 62.96% 12 42
Most Uncertain 66.67% 88 -371
Random (p = 0.5) 59.26% 169 -812

Strategy Accuracy # of Probes Utility Gain
V OP (Buffer) 92.31% 3 66
V OP (No Buffer) 84.62% 3 59
Most Uncertain 80.77% 24 -79
Random (p = 0.5) 69.23% 36 -200

states that are not available to the system. Concepts were illustrated in the context of
the BusyBody system, applied on the challenge of balancing the costs and benefits of
alerting users to potentially urgent messages. We reviewed the use of a comprehensive
measure of the expected value of a system that incorporates both the cost of acquiring
additional cases for learning and the net gains associated with real-world use of refined
predictive models. In ongoing work, we are pursuing the use of principles of lifelong
learning in multiple applications as well as working to extend the methods. Our cur-
rent research includes investigating the modeling of non-stationary distributions and
methods for caching, forgetting, and reusing cases.
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