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Geospatial Structure of a Planetary-Scale
Social Network
Jure Leskovec and Eric Horvitz 

Abstract—Little is known about geographic properties of large-
scale social networks. In this paper, we examine the geospatial
attributes of a planetary-scale social network of 240 million people
and 1.3 billion edges. We study the interplay among topologi-
cal, geographical, and algorithmically generated paths connecting
pairs of nodes in a social network. Starting in the realm of
cyberspace, we find that topologically shortest paths of average
length of 6.6 exist between pairs of nodes in the network and
that the average degree of separation among nodes is robust to
removal of hub nodes. Moving to the realm of locations and dis-
tances in geographic space, we find that topologically shortest
paths in the social graph grow with increasing geographic dis-
tance between path’s endpoint nodes. We discover that shortest
topological paths are geographically inefficient, but that geog-
raphy provides an important cue for local algorithmic policies
for navigating between source and target nodes. Local algorith-
mic strategies for navigating the larger network structure in the
absence of global navigation procedures have varying success. At
the early stages of the navigation, navigating to a hub node helps,
while in the middle stage, geography provides the most important
clue. While local algorithms for navigating have trouble reach-
ing the target node, they are successful in reaching nodes that
are geographically close to the target. Taken together, our results
demonstrate a complex interplay between topological and geo-
graphical properties of social networks and explain the success of
local strategies for navigating such networks.

Index Terms—Decentralized search, network navigation, net-
works, small-world experiment, social search.

I. INTRODUCTION

U NTIL recently, it was impossible to directly analyze
the structure of the global human social network.

Nevertheless, it has been asserted commonly that any indi-
vidual in the world can reach any other individual through a
chain of only a few social connections [1], [2]. Experimental
evidence for short chains in the global human social network
has been limited [3]–[5]. Subject nonparticipation and non-
completion of chains have posed significant problems [3], [6].
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Travers and Milgram reported their results on six degrees of
separation among people based on 64 completed chains [7],
and most recently the email-based experiment of more than
60 000 participants, recorded only 384 completed chains [8].
The advent of widely used Web-based communication plat-
forms has provided electronic forms of large-scale social and
communication networks that span large regions of the Earth—
and that can serve as laboratories for research on the structure
of global social networks. Online human experiments [8]–[11]
have probed the structure of the global human social net-
work and suggested that the average number of steps of such
chains is roughly six, and further theoretical [12] and empiri-
cal [13]–[16] studies have further validated the claim to a wide
range of networks. In summary, studies of large-scale networks
have stimulated new questions and avenues of research about
the “small-world” hypothesis and the broader structure of the
global social network [6], [10], [15].

Here, we follow on the above line of work and explore ques-
tions about the relationships between graph-theoretic and geo-
graphic distances in social networks. We explore three different
notions of path length between pairs of nodes in the social net-
work: topologically shortest path that traverses the minimum
number of links to navigate from the source to the destination
node, geographic length of a path, which is simply the sum of
geographical distances of edges along the nodes of the path, and
algorithmic path, which is a path identified by an algorithmic
policy that only relies on local knowledge about the network.

We find that the average topologically shortest path length
among pairs of nodes grows with increasing geographic dis-
tance between the nodes. Topologically shortest paths are
generally quite inefficient geographically as they traverse long
geographic distances. We focus on the value of using geo-
graphic cues in local algorithmic strategies for navigating from
one node to another. Individuals in social networks have only
limited, local views of the network yet are often able, without
global knowledge of the network, to navigate the network in
a decentralized way to find short chains of connections [17]–
[25]. We experiment with local navigation policies and show
the value of harnessing geographic information in local naviga-
tion actions. We find that, at the early stages of the navigation,
navigating to a high-degree hub node helps, while in the mid-
dle stage of the navigation, geography provides the best cue.
Generally, early steps of navigation are “easy” as there are
many nodes leading topologically closer to the target, however
approaching the target is hard, as in later stages less than 5% of
node’s neighbors lead topologically toward the target.
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Fig. 1. Messenger network. (a) Geographic locations of 240 million Messenger
users. Color (blue to red) of dots represents the logarithm of the number of
users at a given location. (b) Messenger users are represented as nodes of the
network and users are connected via undirected edges if they exchanged at least
one message in the observation period of 1 month.

II. SEVEN-DEGREES OF MESSAGING

We conducted a computational experiment of a global com-
munication network comprised 240 million users [Fig. 1(a)]
who exchanged 255 billion messages during the 1 month
observation period (refer to Appendix for further details) [10].
The users of the network cover a large portion of the populated
areas of the earth and represent a nontrivial fraction of world’s
population. The communication network represents all people
who have communicated with one another on the Microsoft
Instant Messenger communication network. We represent peo-
ple as nodes and focus only on the active communication ties by
connecting via undirected edges pairs of users who exchanged
at least one message during the observation period. We limit
our study to the largest connected component of the network
which contains 180 million nodes and 1.342 billion undirected
edges [Fig. 1(b)]. We also determine the geographical location
of each user by using the reverse geo-lookup based on the user’s
IP address (Appendix) [10]. We note that, in contrast to recent
studies of large social networks like Facebook [11] and Twitter
[26], where users have hundreds or even thousands of weak
“friends,” our study considers a network of strong active ties
that are actually being used for communication.

The experimental setup enables a thorough examination of
the small-world hypothesis. We studied the distribution of
lengths of the topologically shortest paths [Fig. 2(a)]. We ran-
domly sampled pairs of nodes and calculated the minimum
number of links separating a given source–destination node

Fig. 2. Degree of separation on the Messenger network. (a) Distribution of the
topologically shortest path lengths, measured as the minimum number of links
h traversed by the path between nodes S and T in the largest connected com-
ponent of the Messenger network which contains 180 million nodes and 1.342
billion edges. The average path length is 〈h〉 = 6.6. The 90th percentile of the
distribution is 7.8, 48% of nodes can be reached within six steps and 78% within
seven steps. (b) Average topologically shortest path length 〈h〉 when the nodes
of degree higher than kmax are removed from the network. 1.3% of nodes have
degree k > 100 and they account for 25% of all edges. Shortest path lengths
remain stable even if the high-degree hub nodes are removed from the network.

pair. We found that the distribution of path lengths reaches the
mode at 6 and has a median length of 7 [10]. A random pair
of nodes in the Messenger network is separated by 6.6 degrees
on average, which is close to the length measured by Travers
and Milgram [7]. Via the lens provided on the world of social
relationships by Messenger, we find that there are about “seven
degrees of separation” among people. Long paths—pairs of
nodes with high degree of separation—also exist in the net-
work. We found pairs of nodes that are separated by shortest
paths of length of up to 29 steps [10].

To put our findings in perspective, recent studies of Facebook
[15] and Twitter [26] social networks found that degree of
separation within these networks is around 4. The difference
likely arises because of the way that the networks were con-
structed. We study a network of “strong” ties actively used
for communication (and not, e.g., a network of address book
contacts). In contrast, studies on Twitter and Facebook use all
the ties with the majority of them being inactive or “weak.”
For example, the average degree in our network is 15, while
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average degrees in Twitter and Facebook are in the hundreds,
with some users having thousands of contacts, all referred
to as “friends.” Comparing our findings to those of Travers
and Milgram [7] is intriguing. However, Milgram studied the
lengths of the paths found by humans, while we compute
topologically shortest paths. Moreover, one also has to be
cautious interpreting Milgram’s results due to attrition in partic-
ipation, which means that in his experiment longer paths have
a higher probability of failing [6].

A. Fragility of Topologically Shortest Paths

While topologically short paths exist in the network, they can
be “fragile” in the sense that removing a small number of edges
(or nodes) could lead to large changes in the connectivity of the
network structure [27]. In particular, for scale-free networks,
it has been shown that removing a small number of nodes or
edges can lead to large changes in the network connectivity
structure [27].

We investigate the fragility of topologically shortest paths,
and the effect of high-degree hub nodes by examining how
the average topologically shortest path length 〈h〉 changes as
a function of the maximum degree kmax of any node in the net-
work [27]. As soon as the highest degree node is removed, the
average path length jumps from 6.6 to 7.4 and remains stable
up to the point when all nodes of degree greater than 100 are
removed. Overall, there are 2.3 million (1.3%) nodes of degree
k > 100 and they account for 25% of all edges in the network.
This indicates that the human social network represented by the
Messenger data is relatively robust and maintains connectiv-
ity even if high-degree nodes (25% of all edges) are removed,
which is somewhat surprising given the findings on scale-free
networks [27]. In contrast, our experiment gives evidence for
the hypothesis that highly connected hubs are not required for
short chains to exist in the network [24], [25].

B. Geographical Properties of Topologically Shortest Paths

We now investigate the connection between geographic g
and the graph-theoretic h notion of distance. More precisely,
we distinguish between geographic and topological measures
of distance as illustrated in Fig. 1(b).

1) Length h(S, T ) of the topologically shortest path: The
minimal number of links we need to traverse to get
from source node S to the target node T . For example,
h(S, T ) = 4 in Fig. 1(b).

2) Geographic distance g(U, V ) between nodes U and V is
the distance between geographic locations of nodes U and
V measured along the surface of the Earth.

3) Geographic path length gp of the path p is defined as the
sum of the geographic distances of links g(U, V ) along
the path p: gp =

∑
(U,V )∈p g(U, V ), where g(U, V ) is the

geographical distance between nodes U and V .
4) Geographic length gs of the topologically shortest path s

is the geographic length of path s, where s is the shortest
(in a network sense) path between nodes S and T .

We compare the geographic distance g(S, T ) and the topo-
logically shortest path distance h(S, T ) between the source
node S and target node T . Fig. 1(b) illustrates the topologically

Fig. 3. Geographical properties of topologically shortest paths. (a) Average
topologically shortest path length 〈h(g)〉 between pairs of nodes S−T that
are at geographical distance g. (b) Average geographical distance 〈gs(g)〉 of
the topologically shortest path s among pairs of nodes S−T that are at geo-
graphical distance g. Straight line y = x illustrates the lower bound on the
geo-distance of the shortest path. For nodes S and T that are more than 500 km
apart we observe that the topologically shortest paths s tend to be 15 400 km
longer than the geographical distance g between the path endpoints. In other
words, 〈gs(g)〉 ≈ g + 15 400.

shortest path from S to T with blue edges [h(S, T ) = 4] and
the geographic distance of the path as the sum of path edge
lengths. When analyzing the geographic structure of short-
est paths, it is often the case that multiple shortest paths of
different geographic lengths exist between a pair of nodes. In
such cases, we choose a random path among all topologically
shortest paths. Thus, for each pair of nodes S and T , we obtain
a single unique topologically shortest path and our figures then
show the averages of the shortest paths over many random
S−T pairs.

We find [Fig. 3(a)] that, for nodes S−T that are geo-
graphically close (g < 1000 km), the average topologically
shortest path length 〈h(g)〉 is 6.5, while for nodes that are
far apart (g > 10 000 km) the path length 〈h(g)〉 increases to
7.6. Thus, we conclude that there exists a connection between
geographical and topological distance between a pair of nodes.
Geographically, closer nodes tend to have shorter topologically
shortest paths. Increasing the distance between the nodes from
0 to 20 000 km on average increases the degree of separation
for about 1.2 hops, from 6.4 to 7.6.

However, we find that topologically shortest paths are
very inefficient geographically [Fig. 3(b)]. We measure the
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geographical length gs of the topologically shortest path s as the
sum of geographical lengths of the links on the path s and find
that the average geographical length 〈gs〉 of the topologically
shortest path is 15 400 km longer than the geographical distance
between path endpoints S–T . Except for the nodes that are
within a few kilometers from each other, it seems that topologi-
cally shortest paths show a constant penalty in the geographical
distance that they traverse and the penalty seems to be indepen-
dent of the geographical distance between the start and the end
point of the path. Thus, if one wishes to travel from S to T in
a minimal number of steps, then, on average, the distance that
must be traveled is 15 400 km longer than the S−T distance.

We find this result surprising as one would expect that the
paths between nodes that are spatially very close to one another
would be short topologically and geographically. In fact, we
find this to be the case for S−T pairs that are less than 500 km
apart. However, for S−T pairs above roughly 500 km apart,
we observe a clear linear trend in the relation between the
geographical distance between nodes S−T and the geographic
length taken by the topologically shortest path.

III. GEOGRAPHIC NAVIGATION

We now explore the value of using geographic information
in local algorithmic policies to find short paths between source
and target nodes. Computer scientists can compute shortest
paths among any two nodes in a graph using Dijkstra’s algo-
rithm. However, when humans navigate social networks and
search for short chains of connections, they are limited to
using local, decentralized policies that do not have access to
global knowledge of the larger network structure [17], [25].
Studies [4], [8], [9], [28] have observed that geography tends
to be one of the main cues people use in navigating the global
social network. To gain insight into geographic navigation in
networks, we next examine how topologically shortest paths
geographically “navigate” through the network.

A. Geographical Anatomy of Topologically Shortest Paths

We compute topologically shortest paths between pairs of
nodes and then examine paths’ geographical properties. We
discover that, even though topologically shortest paths in the
network are geographically very long, they eventually zoom-in
on the target node T .

Fig. 4(a) demonstrates that as the shortest path navigates
topologically closer to T in the network, it also approaches T
geographically. However, it is in the steps i = 5, 4, and 3 (count-
ing backwards from target node T ) when the path makes the
largest geographical strides toward T . An average path starts
geographically far away from T (gT = 8500 km), dwells at
approximately this distance for a few steps, and then in just
three hops zooms-in on T from 8000 km away to 500 km from
the target T [Fig. 4(a)].

To gain further insights into the structure of topologically
shortest paths, we quantify two properties: The degree of
nodes along the path [Fig. 4(b) circles] and the number of
topologically closer neighbors [Fig. 4(b) squares]. We define
node V to be topologically closer to the target T than node U
if h(V, T ) < h(U, T ). The intuition behind the definition is that

Fig. 4. Geographical properties of shortest paths. (a) Average geographical dis-
tance 〈gT (g)〉 to target node T as the shortest path is i steps away from target
T . The shortest path makes largest jumps geographically toward the target T
at steps i = 5, 4, and 3 (counting backwards from the end T of the path).
(b) Squares: Average number of topologically closer neighbors 〈di〉 of a node
with i degrees of separation from T . Circles: Average degree 〈ki〉 of a node on
the shortest path toward T as a function of the degrees of separation i of the
node from target T (shown on a different scale, drawn in the left side of the
frame).

if we are at some node U then navigating to node V decreases
the topological distance to target T and thus gets us closer to
the target.

For example, in Fig. 1(b), nodes F and G are topologi-
cally closer to T than node C since h(F, T ), h(G,T ) = 1 <
h(C, T ) = 2. Nodes A and D are not closer to T than C since
h(A, T ) = 3, while h(C, T ) = 2.

Examining the two quantities in Fig. 4(b), we find that
topologically shortest paths navigate through the high-degree
nodes at steps 5–3. We further find that this fast-paced geo-
graphical approach occurs because topologically shortest paths
traverse geographically longest links at steps 5–3 [Fig. 4(a)],
which indicates the core-periphery structure [29], [30] of the
Messenger network, where the shortest path lurks at the periph-
ery of the network so as to find a quick way through the
high-degree network core to reach the target.

However, navigating the network core is hard. At every step,
there are only between 1 and 4 possible nodes for the path to
proceed to, so that it progresses topologically toward the target
[Fig. 4(b) squares]. To navigate from a given node i, steps from
T to a node topologically closer to T , the path can choose only
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Fig. 5. Fraction of topologically closer neighbors. Average fraction of Pn(i)
of neighbors V of node U (h(U, T ) = i) that reside on the shortest path
(h(V, T ) = i− 1).

among 1.7 suitable nodes on the average. The average degree
〈ki〉 of nodes on the topologically shortest paths peaks later
(i = 4) than the average number of neighbors 〈di〉 that lead
closer to T (i = 8).

The ratio Pn(i) = 〈di〉/(〈ki〉 − 1) indicates the probability
that navigating to a random node would make a step topolog-
ically closer to the target node T (Fig. 5). When the path is
very far from T (i > 8), such navigation is easy; on average
70% of the neighbors of a node lead toward T . However, as
the path gets closer to T (i < 6), navigation becomes extremely
difficult. When the path is ≤ 6 steps from T , less than 5%
of nodes’ neighbors lead toward T . On average, only 10% of
node’s neighbors lead topologically closer to T . This means that
random navigation will successfully navigate toward the target
with probability of 0.1 at every step. The overall probability
of random navigation reaching the target node in the expected
number of seven steps is thus extremely unlikely, ≈ 10−7.

B. Strategies for Network Navigation

Various hypotheses have been proposed about strategies that
might be used by people to navigate the global social network
in a local, decentralized manner [8], [28]. We examine decen-
tralized search strategies by simulating the process of local
navigation in a network between a starting node S and a target
node T . In advance of finding a full path, a navigator is at some
node U and tries to evolve the path to target node T by navigat-
ing to one of U ’s neighbors [9], [17], [19], [25]. We model this
process as a greedy best–first search procedure, where node U
evaluates each of its neighbors V and navigates to the node of
the highest score.

Consider that the decentralized navigation strategy navigates
the network and tries to find a path from starting node S to
target node T . Consider further that the navigation strategy cur-
rently resides at node U and wants to move from U to some
neighbor V such that the degree of separation to T is decreased.
We call node V a topologically closer node as, by navigating to
it, the navigation strategy makes a step toward to T .

We say that the navigation strategy makes a successful move
if it moves to a topologically closer node, i.e., it navigates

from node U , which resides at distance h(U, T ) = i from T , to
node V , which is at distance h(V, T ) = i− 1. We use Pn(i) to
denote the accuracy, i.e., the probability that the navigation at
node U chooses topologically closer neighbor V . Note that, by
definition, the topological distance to the target T can decrease
by at most one at each step of navigation.

We consider that U performs a greedy best-first search
algorithm, i.e., we move from U to node V , where V =
argmaxW∈N (U) fT (W ) and N (U) is a set of yet unvisited
neighbors of node U . For example, one such heuristic fT (V )
would simply measure the geographic distance between nodes
V and target T , and this heuristic would generate greedy moves
to a neighbor V that is geographically closest to T . For the
network illustrated in Fig. 1(b) geographical navigation would
take the path S–B–D–E–G–T of length five even though
topologically shortest path of length four exists.

We consider the following heuristic procedures to navigate
to a node V ∈ N (U). The procedure navigates to node V that
maximizes fT (V ):

1) RANDOM: Navigate to a random neighbor V of current
node U , i.e., fT (V ) is random;

2) GEO: Navigate to neighbor V that is geographically
closest to the target T , i.e., fT (V ) = −g(T, V );

3) DEG: Navigate to highest degree kV neighbor V of U ,
fT (V ) = deg(V );

4) DEGGEO: Navigate to neighbor V with the highest
degree-to-distance ratio, fT (V ) = deg(V )/g(T, V )2.

We consider these navigation heuristics because they are well
motivated. DEG navigates through hubs and GEO navigates
purely using geography. While these heuristics have been con-
sidered in the past, we propose DEGGEO which combines the
two strategies based on our findings in the previous sections. In
particular, Kleinberg’s model [17] suggests that the probability
that a node has a friend d km away decays as d−2 and assum-
ing that edges are created independently, then the expected
number of edges from a node V to the target T is exactly
deg(V )/g(T, V )2. This means that the proposed DEGGEO pol-
icy navigates to a node V that is most likely to directly link to
T . When far away from T , DEGGEO navigates using degrees,
while when getting closer to T , geographic proximity plays a
more important role.

We also experimented with other heuristics such as:
fT (V ) = lang(V, T ) and fT (V ) = country(V, T ), where
lang(A,B) (country(A,B)) is the probability that a user of
language (country) A links to user of language (country) B. We
found that these heuristics do not perform as well as GEO.

For each of the four navigation heuristics, we consider
214 662 pairs of nodes S−T . For each of the S−T pairs, we
simulate each navigation heuristic until it hits the target node
or until the navigation reached 1000 steps, at which point we
terminate the process. Also, if there is no better move, then the
algorithm may be forced to move from node U to V which has
a worse heuristic estimate, fT (V ) < fT (U).

C. Accuracy of Hitting the Target

Investigating the methods described above, we find that nav-
igation strategies give different performance depending on the
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Fig. 6. Comparison of navigation strategies. Refer to the main text for the description of the strategies. (a) Probability Pn(i) that a given navigation strategy that
is currently i steps away from target T (h(U, T ) = i) navigates to a topologically closer node V (h(V, T ) = i− 1). (b) Probability Phit(S < s) of hitting the
target T in less than s steps of the navigation procedure. (c) Probability P10km(S < s) of navigating inside the 10 km of the target T in less than s steps of the
navigation procedure.

stage of the navigation procedure [Fig. 6(a)]. In particular, DEG

navigation strategy has best accuracy when the search is topo-
logically far (i ≥ 5 steps) from T . When closer to T , DEGGEO

provides highest accuracy.
For example, for i ≥ 8 DEG outperforms RANDOM for 35%

(DEGGEO improves RANDOM for 28%, and GEO improves
RANDOM for 6%), for i = 7− 5 DEG outperforms RANDOM

for 120% (DEGGEO 90%, GEO 24%). But for i = 4− 2 DEG

gives 75% improvement over RANDOM, while DEGGEO gives
230% and GEO 225% improvement over RANDOM.

Generally, it is easy to navigate toward T when the navigator
is far away from T while the probability of successfully nav-
igating toward T is lowest in the last three steps. When the
navigation is topologically far from T , it is important to nav-
igate to and through high-degree hub nodes [24], [25]. As the
search zooms, in on the target, geography becomes increasingly
more important guidance for finding the target.

D. Getting Close to the Target

We discovered that hitting the target T exactly is a low prob-
ability event, but that it is much easier to navigate to the close
vicinity of T [Fig. 6(b) and (c)]. In 1000 or less steps, the ran-
dom navigation procedure hits T in only 0.02% of the cases.
The best performing strategy is DEGGEO that in 4.92% of the
cases hits T in less than 1000 steps (GEO 2.52% and DEG

0.21%). Overall, DEGGEO navigation strategy is 250 times
more likely to hit the target than random navigation (DEG out-
performs RANDOM for a factor of 10, GEO for 125). Directly
hitting the target node T is unlikely, but navigating inside 10 km
of T is much more likely. Even random and maximum-degree
navigation approach within 10 km of the target in less than 100
steps 20% of the cases. On the other hand, GEO needs 11 steps
to get close to T with probability 0.8 and 50 steps to get in
10 km of T with prob. 0.9. DEGGEO is even more successful.
The procedure takes only five steps to zoom-in with probability
0.8 and 16 steps to navigate inside 10 km of T with probability
0.9 [Fig. 6(c)].

Taken together, this evidence suggests that navigation
strategies, based on geography and simple statistics about the
network structure, are effective in guiding navigation on the

network. When the search is far away from T , degree-centric
navigation is most successful as the search needs to reach a
good hub node. Thus, while hub nodes are not necessary for the
existence of short paths in the network, they aid the navigation
[24]. In the intermediate stage of the search, geography is the
best strategy for zooming, in on the target. However, when the
search is extremely close to T (less than 10 km), geography is
not useful. We hypothesize that, when the navigator is proximal
to the target, heuristics based on interests, profession, and
other personal characteristics of T may prove more successful
[8], [22].

IV. CONCLUSION

Web-based communication platforms have come to innervate
large portions of the world and, as such, provide laboratories for
studying the structure of connections among people. We used
Messenger communications to investigate geographical proper-
ties of the social graph captured electronically by the planetary-
scale service. We found that shortest paths among people are
robust to removal of hub nodes and only increase slightly with
large changes in geographic distance among people. Given the
abilities of humans to navigate global social networks with local
steps, we studied several local navigation procedures. We found
that geography provides an important cue in navigating between
arbitrary source and target nodes. Overall, we found that navi-
gating through the periphery of the network is relatively easy,
but that it is difficult to navigate through the core of the network
composed of high-degree nodes.

APPENDIX A
NETWORK AND EXPERIMENTAL DETAILS

A. Network Preparation

We consider all the pairwise conversation activity during 30
days of June 2006. We observed 242 720 596 users log onto the
Messenger system during the observation period. On a repre-
sentative day of June 1, 2006, nearly 1 billion (982 005 323)
different conversations (sessions) took place.

During this time, 180 million users sent or received mes-
sages, while 170 million sent and received messages. We
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Fig. 7. Comparison of the degree of separation and the network robustness of
the full and the 2-way networks.

introduce an arc joining a pair of nodes if the users represented
by the nodes exchange at least one message in either direction
in June 2006. This full network contains 179 792 538 nodes (of
nonzero degree) and 1 342 246 427 undirected edges.

We also consider another version of the network where we
connect a pair of nodes only if each of the users sends at least
one message to the other. We refer to this network as 2-way
network as we only connect pairs of nodes that were engaged
in bidirectional communications. The 2-way network contains
169 415 316 (with nonzero degree) nodes and 1 155 190 935
undirected edges. For both networks, we limit our study to the
largest connected component of the network which contains
99.9% of the nodes the particular network.

We note that degree of separation in the Messenger network
is independent of the way we construct the network and that
both networks exhibit the same level of robustness (Fig. 7). We
investigate the fragility of topologically shortest paths and the
effect of high degree hub nodes by examining how the average
topologically shortest path length 〈h〉 changes as a function of
the maximum degree of any node in the network. We start with
the full network, remove all nodes with degree larger than kmax,
and measure the average shortest path length as a function of
kmax. We observe (Fig. 7) that the average shortest path length
of the full network and the 2-way network are essentially equiv-
alent. The only difference is that when a single highest degree
node is kept in the full network, the average shortest path length
is 6.6. As soon as this node is removed, the average path length
jumps to 7.4 and remains stable up to the point when all nodes
of degree greater than 100 are removed.

B. Determining User Geographic Location

We use the IP address of the computers users used to login
to the Messenger service in order to decode the geographical
coordinates, which we then use to position users on the globe
and to calculate distances. The advantage of our approach is
that it is not self-reported and cannot be easily gamed by the
users. If a user logged in from multiple IP addresses, we use the
location of the first login. The reported accuracy of the Geo-IP

resolution is as follows: 99.8% accurate on a country level, 90%
accurate on a state level, and 83% accurate on a city level with
a 25 mile radius [31]. This means that the accuracy of such
services is at the same level or better than using the US ZIP
code as a proxy for the location. Overall, we consider such ser-
vice to be accurate and robust enough for the purpose of our
analyses.

C. Computing the Degree of Separation

For computations, we used the Stanford Network Analysis
Platform (SNAP) [32]. We implemented a parallel version of
Dijkstra’s algorithm for finding shortest paths between pairs of
nodes. The code we developed to perform the experiments is
available at http://snap.stanford.edu.

For all of the experiments, we used a four processor server
with 64 GB of main memory. Given a single source node,
our implementation was able to find shortest path distances
to all other nodes in the network in about 16 min. All of our
analyses are performed with experiments using a set of 1000
source nodes, and thus we consider shortest paths between
≈ 180× 109 pairs of nodes.
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