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Abstract
A rising vision for AI in the open world cen-
ters on the development of systems that can
complement humans for perceptual, diagnos-
tic, and reasoning tasks. To date, systems
aimed at complementing the skills of people
have employed models trained to be as ac-
curate as possible in isolation. We demon-
strate how an end-to-end learning strategy can
be harnessed to optimize the combined per-
formance of human-machine teams by consid-
ering the distinct abilities of people and ma-
chines. The goal is to focus machine learning
on problem instances that are difficult for hu-
mans, while recognizing instances that are dif-
ficult for the machine and seeking human input
on them. We demonstrate in two real-world
domains (scientific discovery and medical di-
agnosis) that human-machine teams built via
these methods outperform the individual per-
formance of machines and people. We then an-
alyze conditions under which this complemen-
tarity is strongest, and which training methods
amplify it. Taken together, our work provides
the first systematic investigation of how ma-
chine learning systems can be trained to com-
plement human reasoning.

1 Introduction
Systems developed via machine learning (ML) are in-
creasingly competent at performing tasks that have tra-
ditionally required human expertise, with emerging ap-
plications in medicine, law, transportation, scientific dis-
covery, and other disciplines (e.g., [Esteva et al., 2017;
Chen et al., 2018; McGinnis and Pearce, 2019]). To date,
engineers have constructed models by optimizing model
performance in isolation rather than seeking richer opti-
mizations that consider human-machine teamwork.

Optimizing ML performance in isolation overlooks
the common situation where human expertise can con-
tribute complementary perspectives, despite humans
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Figure 1: Illustration of task and proposed approaches.

having their own limitations, including systematic biases
[Tversky and Kahneman, 1974]. We introduce methods
for optimizing team performance, where machines take
on some parts of the task and humans others. In an ideal
world, the machine would be able to handle all instances
itself. For complex domains though, this rarely holds in
practice, whether due to limited data or model capacity,
outliers, superior perceptual or reasoning abilities of peo-
ple on a given task, or evidence or context available only
to humans. When perfect accuracy is unattainable, the
machine should focus its limited capacity on regions of
the space where it offers the most benefit (e.g., on cases
that are challenging for humans), while pursuing human
expertise to handle others. We develop methods aimed
at training the ML model to complement the strengths of
the human, accounting for the cost of querying an expert.
While human-machine teamwork can take many forms,
we focus here on settings where a machine takes on the
tasks of deciding which instances require human input
and then fusing machine and human judgments.

Prior work includes systems that determine when to



consult humans [Horvitz and Paek, 2007; Kamar et al.,
2012; Raghu et al., 2019]. However, the predictive mod-
els are still trained to maximize their own, solitary per-
formance, rather than to leverage the distinctive strengths
of machines and humans. The latter requires a shift in the
learning objective so as to optimize team performance
via instance-sensitive decisions about when to seek hu-
man input. To our knowledge, the methods we present
are the first to optimize human-AI teams by jointly train-
ing ML systems together with policies for allocating
tasks to human experts versus machines. We make four
contributions:

First, we propose a family of approaches to training
an ML system for human-machine complementarity as
schematized in Figure 1. The run-time system combines
machine predictions with human input, which may come
at additional cost. During training, we use logged hu-
man responses to the task to simulate queries to a human.
We study both discriminative and decision-theoretic ap-
proaches to optimizing model performance, taking the
complementarity of humans and machines into consider-
ation. A baseline approach in either family would first
construct an ML model to predict the answer to a given
task and then build a policy for deciding when to query
the human, taking the predictive model as fixed. We
introduce the first generic procedures that operate end-
to-end, focused on team performance. With these ap-
proaches, we jointly optimize the predictive model and
the query policy for team performance, accounting for
human-machine complementarities. In the discrimina-
tive setting, we introduce a combined loss function that
uses a soft relaxation of the query policy for training,
along with a technique for making discrete query deci-
sions at run time. In the decision-theoretic setting, we
introduce a differentiable surrogate for value of infor-
mation (VOI) calculations, which allows joint training
of the predictive model and the VOI-based query policy
through backpropagation. In both cases, joint training fo-
cuses the predictive model on instances where the human
will not be queried, amplifying complementarity.

Second, we demonstrate the benefits of optimizing for
team performance in human-machine teams for two real-
world domains of societal importance: scientific discov-
ery (a galaxy classification task) and medical diagnosis
(detection of breast cancer metastasis). Via comparative
studies, we highlight the importance of guiding learning
to optimize the performance of human-machine teams.

Third, we pursue experimental insights about when
and how complementarity-focused training provides
benefits. We find evidence for two conclusions: First,
training for complementarity is most important when the
ML model has limited capacity, forcing it to pick parts
of the task to focus on. This suggests that an emphasis
on team performance is particularly necessary for diffi-
cult tasks that machines cannot perfectly master on their
own. Second, training for complementarity has larger
benefits when there is an asymmetric cost to errors (e.g.,
false negatives are more costly than false positives). The
need to prioritize among potential errors increases the re-

turns of optimizing for team utility.
Fourth, we analyze how our methods distribute in-

stances to the human and machine and how these allo-
cations reflect differences in relative capabilities. We
find that humans and machines may make qualitatively
different kinds of errors. Moreover, the errors made by
the ML model change under joint training as the model
places more emphasis on instances that are difficult for
humans. Via joint training, human and machine errors
become different in structured ways that can be lever-
aged by the methods to improve team performance.

Related Work
Previous work shows that human-machine teams can
be more effective than either individually [Horvitz and
Paek, 2007; Kamar et al., 2012], including for medical
domains [Wang et al., 2016; Raghu et al., 2019]. How-
ever, in some others [Tan et al., 2018; Zhang et al., 2020],
potential complementarity has been difficult to leverage.

Sharing our motivation for developing techniques that
harness human-machine complementarity, the work by
[Raghu et al., 2019] and [De et al., 2020] study when
a model should outsource a given instance to a human.
[Raghu et al., 2019] is most closely related to our fixed
decision-theoretic algorithm; their approach considers
predictive variance for the human and machine at each
point to allocate human effort. However, the ML model
is always fixed, instead of being trained for complemen-
tarity. [De et al., 2020] propose a method to select the
parameters of a ridge regression model jointly with a set
of training instances to allocate to the human. Our work
differs in three important ways: (i) they do not train a
query policy to allocate new instances at run time, (ii)
our methods apply to arbitrary differentiable models (not
just ridge regression), (iii) we provide a characterization
of why some methods are more or less effective at lever-
aging complementarity.

Other related work addresses the complementary
question of designing ML models as an aid for a human
who is charged with making decisions [Grgić-Hlača et
al., 2019; Green and Chen, 2019; Hilgard et al., 2019;
Lage et al., 2018]. Some of this work emphasizes the
need for ML models to account for human reasoning,
in particular for humans to learn when to trust the ML
model [Bansal et al., 2019a; Bansal et al., 2019b], but
does not optimize the model for complementarity. We
focus on cases were the ML system decides which in-
stances require human input.

2 Problem Formulation
We formalize the problem of optimizing human-AI team-
work for predictive tasks. We start with the standard su-
pervised learning setting, predicting labels y ∈ Y from
features x ∈ X . We focus on multiclass classification,
where Y is a discrete set, but our methods apply to re-
gression with minor modifications. As is typical, we train
a model m with parameters θ, which produces a predic-
tion ŷ = mθ(x). The difference is that each instance may



also be labeled by a human. Our training data contains
instances {(x, y, h)}N1 ∼ P where h ∈ Y is a human’s
prediction and P is an (unknown) joint distribution. The
machine must decide, for each instance, whether to pre-
dict on its own or first consult a human expert.

Specifically, the machine learning model first sees x
and then decides whether to pay a cost c to observe h.
qθ(x) denotes the query policy, which outputs 1 when
the human is queried and 0 otherwise. The model makes
a prediction ŷ, which may depend on h if qθ(x) = 1.
The team’s utility is u(y, ŷ) if the human is not queried,
and u(y, ŷ) − c if they are. One choice for the utility is
u(y, ŷ) = 1[y = ŷ] (predictive accuracy), but our frame-
work extends easily to asymmetric weightings of differ-
ent errors. We aim to maximize out-of-sample utility,

E(x,y,h)∼P

[
qθ(x) (u(y,mθ(x, h))− c) (1)

+(1− qθ(x)) (u(y,mθ(x)))
]
.

The first term gives the team utility when the human is
queried, and the second when they are not. Conventional
supervised learning targets only the second term; our for-
mulation includes the query decision, and the impact of
the additional information provided by the human, on the
team’s overall accuracy.

3 Approach
A standard approach to optimizing for human-machine
teamwork would first train the model in isolation m to
predict the labels y given x. Then, m is taken as fixed
when constructing the query policy q (as, e.g., in [Raghu
et al., 2019]). We propose an alternate approach: joint
training that considers explicitly the relative strengths
of the human and machine. We introduce methods for
both discriminative and decision-theoretic approaches,
and now introduce each family in more detail.

3.1 Discriminative Approaches

Discriminative approaches learn functions for m and q
which directly map from features to decisions, without
building intermediate probabilistic models for the differ-
ent components of the system. We first introduce a base-
line “fixed” method for training a discriminative system
and then propose a means to jointly train the model and
query policy together for complementarity with people.

Fixed Discriminative Approach
Traditional fixed discriminative approaches train a model
m in isolation to perform the task, making the assump-
tion that there is no ability to query the human. That is,
we trainm to optimize E(x,y)∼P [u(y,mθ(x))] using any
number of well-established methods. Then, taking m as
fixed, we construct a query policy q by optimizing Equa-
tion 1.

Joint Discriminative Approach
In distinction to the fixed approach, we present a joint
discriminative method that trains the ML model mθ end-
to-end with the query policy qθ so that mθ can priori-
tize instances allocated by qθ to the machine. The goal
is to optimize a training surrogate for the team utility in
Equation 1. In the notation, mθ(x) denotes the distribu-
tion over classes output by the model, and h gives the
one-hot encoding of the human responses.

We propose a differentiable surrogate for Equation 1,
which can be optimized via stochastic gradient descent
whenever the models are themselves differentiable (e.g.,
neural networks). During training, we will allow qθ(x)
to take continuous values. This soft relaxation both en-
sures differentiability and speeds learning by propagat-
ing gradient information for both cases (querying and not
querying). The most direct relaxation for Equation 1 is

qθ(x)`(y,mθ(x, h)) + (1− qθ(x))`(y,mθ(x)) + cqθ(x)

where ` is any standard loss, which may be weighted
to capture asymmetries in the utility u. This replaces
the potentially discontinuous u with a differentiable loss
` defined on soft predictions (probability distributions),
along with a penalty scaling c by the query probability
qθ(x). In experiments, this direct relaxation often pro-
duced unstable training; intuitively, the predictions and
query policy may be spiky in some regions, giving a
rapidly changing training signal. The loss we use is

`(y, qθ(x)mθ(x, h) + (1− qθ(x))mθ(x)) + cqθ(x)

which measures the loss of a fractional prediction that
combines the human and machine outputs. The combi-
nation tends to behave more smoothly, enabling better
training. A key feature of this loss is that it allows the
predictions mθ(x) to focus on instances that rely heavily
on the machine. If qθ(x) for some x is close to 1, then the
loss for x depends only weakly on mθ(x), incentivizing
m to focus on instances where q is lower instead.

When the human is queried, the general formulation
allows mθ(x, h) to output a prediction different than the
human response h. However, we observe stronger empir-
ical performance using the simplification mθ(x, h) = h
(though training a separate model for mθ(x, h) results
in similar qualitative conclusions). Intuitively, often the
correct decision after querying is to output h, and includ-
ing a separate model only adds unnecessary parameters.

For this simplified formalization, we introduce the fol-
lowing run-time query policy: we need a way of con-
verting the fractional q to a 0 or 1 decision (whether
to actually query the human). In an idealized setting
where the human label was free, the run-time prediction
would be argmax (qθ(x)h+ (1− qθ(x))mθ(x)) (i.e.,
the highest-probability label in the combined prediction).
A naive thresholding scheme would query the human if
qθ(x) > 0.5 (or another fixed value). However, we can
approximate the idealized prediction more closely by in-
corporating a measure of the ML model’s confidence,
max (mθ(x)). Specifically, we query the human if

(1− qθ(x))max (mθ(x)) < qθ(x)



which results in a query if qθ(x) is sufficiently high, or
the model is sufficiently uncertain. More formally, when
this condition holds, the idealized prediction must align
with h since max (qθ(x)h) > max ((1− qθ(x))mθ(x)).

3.2 Decision-Theoretic Approaches
A decision-theoretic approach to human-machine teams,
as described in [Kamar et al., 2012], is to construct prob-
abilistic models for both the ML task and the human re-
sponse. This allows a follow-up step that calculates the
expected value of information for querying the human.

Fixed Value of Information Approach
The fixed value of information (VOI) method trains three
probabilistic models. pα(y|x) models the distribution
of the label given the features, pβ(h|x), the human re-
sponse given the features, and pγ(y|h, x), the label given
both the features and the human response. α, β, γ are
model parameters. Each model is individually trained to
fit its intended target. In our implementation, we use neu-
ral networks trained via gradient descent, followed by a
sigmoid calibrator trained using the Platt method [Platt,
1999; Niculescu-Mizil and Caruana, 2005]. Calibration
is necessary for the predicted probabilities to give mean-
ingful expected utilities.

At execution time, we use these models to estimate the
value of querying the human. The estimated expected
utility of the ML model without querying the human is

unq = max
ŷ∈Y

∑
y∈Y

pα(y|x)u(ŷ, y)


i.e., the value of the prediction with highest expected

utility according to pα(y|x). Before querying the hu-
man, we cannot know the value of h and hence the post-
query distribution pγ(y|x, h) is also unknown. However,
we can estimate the expected utility by averaging over
pβ(h|x),

uq = Eh∼pβ(h|x)

max
ŷ∈Y

∑
y∈Y

pγ(y|x, h)u(ŷ, y)

− c
and then query the human whenever uq > unq.

Joint Value of Information Approach
We propose a new decision-theoretic method, which we
refer to as a joint VOI approach, that optimizes the utility
of the combined system end-to-end, instead of training
the best probabilistic model for each individual compo-
nent. Retaining the structure of the fixed VOI system can
be viewed as an inductive bias which allows the model to
start from well-founded probabilistic reasoning and then
to be fine-tuned for complementarity. To benefit from
this inductive bias, we instantiate each of the probabilis-
tic models pα, pβ , and pγ with a neural network followed
by a Platt calibration layer, just like the fixed VOI ap-
proach. However, with joint VOI all of the neural net-
work parameters are trained together via an end-to-end

Algorithm 1 Joint VOI training

1: for T iterations do
2: Sample a minibatch B ⊆ [n]
3: for i ∈ B do
4: for ŷ ∈ Y do
5: unq(ŷ) =

∑
y∈Y pα(y|xi)u(ŷ, y)

6: end for
7: unq =

∑
ŷ∈Y

unq(ŷ) exp(unq(ŷ))∑
y′∈Y exp(unq(y′))

8: for ŷ ∈ Y do
9: uq(ŷ, h) =

∑
y∈Y pγ(y|xi, h)u(ŷ, y)

10: end for
11: uq =

∑
h∈Y pβ(h|x)

∑
ŷ
uq(ŷ,h) exp(uq(ŷ,h))∑
y′∈Y exp(uq(y′,h))

12: q =
exp(uq)

exp(uq)+exp(unq)

13: `icombined = `(q pγ(·|xi, hi)
14: +(1− q)pα(·|xi)) + qc
15: end for
16: Backpropagate 1

|B|
∑
i∈B `

i
combined

17: Every t iterations: update calibrators
18: end for

loss, which is grounded in the VOI calculation. We up-
date the calibration layer every t steps to maintain well-
calibrated probabilities.

Algorithm 1 outlines joint VOI training. We optimize
a surrogate for team utility via stochastic gradient de-
scent, so each iteration first samples a minibatch of data
points. For each point, we simulate a differentiable VOI
calculation which draws on soft versions of the team’s
utility if the human were queried (uq) and if the human
were not queried (unq), along with the cost to query.
Specifically, line 4 computes unq(ŷ), the expected util-
ity of predicting ŷ (according to pα) when the human
is not queried. Line 5 takes a softmax over all poten-
tial ŷ in order to achieve a differentiable approximation
to the best achievable expected utility without a query.
Similarly, line 6 computes the expected utility uq(ŷ, h)
of predicting ŷ supposing that the human was queried
and responded with h. Line 7 takes a softmax over ŷ
for each fixed h (the inner sum), and then an expecta-
tion over h ∼ pβ (the outer sum). This approximates the
expected utility of observing h and then predicting the
best ŷ given the observation. Line 8 makes a soft query
decision via a softmax over unq and uq.

Using the output (query decision and prediction) of the
differentiable VOI calculation, we compute a team loss
`combined, which uses the same form as in the joint dis-
criminative model. We average this loss over the mini-
batch and backpropagate it to update the predictive mod-
els. During this process, we freeze the parameters of the
calibration layers of the models. The calibration layers
are updated using the Platt procedure every t steps in or-
der to ensure that the model remains well-calibrated even
under end-to-end training.

Compared to the fixed model, the joint model uses
well-calibrated models to calculate the expected utility of
a query. However, it encourages these models to fit most



carefully to parts of the space that the are best handled
by the machine, and obtains human expertise for others.

4 Experiments
We conducted experiments in two real-world domains to
explore opportunities for human-machine complemen-
tarity and methods to best leverage the complementarity.

4.1 Domains
We first explore a scientific discovery task from the
Galaxy Zoo project. Here, citizen scientists label im-
ages of galaxies as one of five classes to help under-
stand the distribution of galaxies and their evolution. We
use 10,000 instances for training and 4,000 for testing.
Each instance contains visual features which previous
work extracted from the dataset [Lintott et al., 2008;
Kamar et al., 2012] for x. The human response h is
the label assigned by a single volunteer (who may make
mistakes), while the ground truth y is the consensus over
many (> 30) volunteers.

We next study the medical diagnosis task of detect-
ing breast cancer metastasis in lymph node tissue sec-
tions from women with a history of breast cancer. We
use data from the CAMELYON16 challenge [Bejnordi
et al., 2017]. Each instance contains a whole-slide im-
age of a lymph node section. Each image was labeled by
an expert pathologist with unlimited time, providing the
ground truth y. It was also labeled by a panel of patholo-
gists under realistic time pressure whose diagnoses con-
tain errors; we sample h from the panel responses.

The dataset consists of 127 images. There are also 270
images without panel responses, with which we pretrain
the ML models. To develop our models, we follow com-
mon practice from high-scoring competition entries (our
implementation is based on [Vekariya, 2016]). We first
train a convolutional network (Inception-v3 [Szegedy
et al., 2016]) to predict whether cancer is present in
256×256 pixel patches sampled from the larger whole-
slide images. Then, we use Inception-v3 to predict the
probability of cancer in each patch, giving a probability
heatmap for each slide. We extract visual features from
the heatmap (e.g., size of the largest cancer region, ec-
centricity of the enclosing ellipse, etc). These features
are the input x into the human-AI task. This workflow
produced the highest-scoring competition entries, ensur-
ing we compare using a state-of-the-art ML method.

4.2 Models
We compare each of the four approaches introduced ear-
lier: fixed versus joint discriminative and VOI mod-
els. All use neural networks with ReLU activations and
dropout (p = 0.2). Our experiments vary the number of
layers and hidden units to examine the impact of model
capacity. We also show a “Human only” baseline that
always queries the human and outputs their response h.

4.3 Results
We first examine the performance of these methods for
the two tasks. Fig 2 shows each method’s total loss (com-

Table 1: Comparison of joint and fixed VOI models across a
range of settings. “Layers” gives the number of layers used in
the predictive models, “Hidden,” the number of hidden units,
and “% diff.,” the percentage improvement of the joint over
fixed model (given as the min, average, and max improvement
in loss over costs from 0 to 0.2).

Task Layers Hidden % diff. (min / avg / max)
GZ 1 - 21.8 / 38.9 / 73.3
GZ 2 50 2.13 / 9.02 / 14.0
GZ 2 100 -1.05 / 8.89 / 13.5
CAM. 1 - -3.10 / 4.51 /10.4
CAM. (asym.) 1 - -1.26 / 5.13 / 15.2
CAM. 2 20 0.30 / 1.82 / 2.65
CAM. (asym.) 2 20 -0.80 / 1.91 / 4.85
CAM. 2 50 0.00 / 0.03 / 2.31
CAM. (asym.) 2 50 -0.67 / 1.70 / 2.28

bining classification error and the cost of human queries).
For each model, the dashed line shows the fixed version
and the solid line denotes joint. For the joint models, we
train the model under a range of weightings of classifi-
cation loss vs query cost, and each x-axis point selects
the version with lowest total loss for that cost. We show
discriminative models with one- and two-layer networks.
Because the one- and two-layer VOI models have fairly
different losses (which compresses the plots), we only
show two layers. Table 1 gives results for all VOI con-
figurations.

The joint models, which optimize for complemen-
tarity, uniformly outperform or tie their fixed coun-
terparts. For Galaxy Zoo, joint training leads to 21-73%
reduction in loss for the one-layer VOI models and 10-
15% reduction in loss for two-layer VOI. The reductions
are 10-15% and 29% for the one and two layer discrim-
inative models respectively. For CAMELYON16, joint
training improves the one-layer discriminative model by
up to 20% and the one-layer VOI model by up to 10%.
For deeper models, joint training ties the fixed approach
or makes modest improvements (around 2% reduction in
loss). Next, we vary the problem setting to explore the
factors that influence the benefits of joint training. First,
we vary the capacity of the models, as measured by the
number of hidden units. Figures 2b and 2d compare the
total loss of different approaches when hidden unit sizes
is reduced from 50 to 20. Table 1 examines the effect
of model capacity on the VOI-based approaches. Over-
all, joint training provides larger benefits with limited
model capacity. For example, for CAMELYON16, the
reduction of loss from joint training for discriminative
approaches is up to 15% when hidden units are reduced
to 20, whereas for the 50 neuron condition the two dis-
criminative approaches are tied (two-layer models). This
dovetails with earlier results that showed larger gains for
shallower models. Essentially, a lower-capacity model
has more potential bias (since it represents less complex
hypotheses which cannot fit the ground truth as closely).
This makes aligning the training process with team per-
formance more important because some errors are in-
evitable; joint training helps the model focus its limited
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Figure 2: Total loss (classification error + cost of queries to human) as a function of the cost of a human query. Top row: All
approaches. Bottom row: Zooming in on decision-theoretic approaches. (a) Galaxy Zoo (b) CAMELYON16 (c) CAMELYON16,
doubling the cost of false negatives. (d) CAMELYON 16, reducing hidden layers to 20 neurons (from 50). We omit the “human
only” baseline for Galaxy Zoo since it has over twice the loss of any other method. All differences between fixed and joint models
are statistically significant for Galaxy Zoo, and on the CAMELYON16 task for the discriminative models (Student t-test, p < 10−3).
Due to the small size of the CAMELYON16 dataset (127 samples), not all VOI comparisons are statistically significant, but the
larger differences approach significance (e.g, p < 0.15 for the point with largest difference in each of Figures 2(c-d)).
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Figure 3: Detailed analysis on Galaxy Zoo task. Left: Error rate of machine versus human models for each class. Right: Fraction
of instances in each class queried by the machine.

predictive ability on the most important regions. In the-
ory, sufficiently large datasets would let us train arbitrar-
ily complicated models that perfectly recover the ground
truth, rendering simple models unnecessary. In practice,
limited data requires us to prevent overfitting by restrict-
ing model capacity; maximizing the performance of sim-
ple models is valuable in many tasks.

The second experimental modification introduces an
asymmetric loss for CAMELYON16: motivated by high
cost of missing diagnoses in many areas of medicine
(such as failing to recognize the recurrence of illness in
patients with a history of cancer), we weight false neg-
atives twice as heavily as false positives. The gaps be-
tween the fixed and joint models grow under asym-
metric costs. For example, in Figure 2(b) (equal costs),
the two-layer model performance of discriminative or
VOI approaches were previously tied. In Figure 2(c)
(asymmetric costs), the joint approaches now outperform
their fixed counterparts by up to 10% (discriminative
family) and 4.8% (VOI). Optimizing combined team per-
formance is especially helpful when it is necessary to pri-
oritize between potential errors.

Finally, we examine how joint training influences the
capabilities of the ML system in relation to those of hu-

mans. We start with the Galaxy Zoo task (two-layer mod-
els, 50 hidden units, cost = 0.1). Figure 3 shows the error
rates of the fixed and joint VOI models for each of the
five classes when acting alone and when paired with peo-
ple. Both the error rates of the two approaches on classes
2 and 3, and the way they query humans show differ-
ences, indicating that joint optimization changes how the
ML system learns and makes decisions. The joint ap-
proach makes more queries to humans for classes that
are hard for the machine and less for class 1, which is
easy for the machine (note that class 1 accounts for over
70% of instances). This behavior improves team per-
formance on classes 2 and 3 without diminishing per-
formance on class 1. For class 3, the error rate of the
joint VOI model is higher than its counterpart when act-
ing alone, but lower when combined with the human, a
reduction in loss that cannot be simply explained by the
marginal increase in human queries. This shows that the
joint model can harness human input more effectively by
discovering input spaces within individual classes where
the benefits of complementarity can be realized, and also
that joint training encourages the model to manage trade-
offs in accuracy to leverage the ability to query the hu-
man.



Figure 4: Error rates of humans and decision-theoretic ap-
proaches for prominent feature regions of CAMELYON16.

We observe similar behavior for CAMELYON16.
Here, we find clear structure in the human errors, uncov-
ered by fitting the decision tree shown in Figure 4 (for the
uniform-cost task with two-layer models and 50 hidden
units). Over 68% of human errors are concentrated in a
region containing just 10% of instances, identified using
two features. For each leaf, we show the error rate of the
human, the fixed VOI model, and the joint VOI model.
The joint model prioritizes the region that contains most
of the human errors, improving from the 0.29 error rate
of the fixed model to perfect accuracy. This comes at the
cost of increased errors in the far-left leaf; however, in
this region the human is almost perfectly accurate. Over-
all, this tradeoff made by the joint optimization leads to
a 2% overall reduction in loss. In other words, the dis-
tribution of errors incurred by the joint model shifts to
complement the strengths and weaknesses of the human.

5 Conclusion and Future Work
We studied how ML systems can be optimized to
complement humans via the use of discriminative and
decision-theoretic modeling methodologies. We eval-
uated the proposed approaches by performing experi-
ments with two real-world tasks and analyzed the prob-
lem characteristics that lead to higher benefits from train-
ing focused on leveraging human-machine complemen-
tarity. The methods presented are aimed at optimizing
the expected value of human-machine teamwork by re-
sponding to the shortcomings of ML systems, as well
as the capabilities and blind spots of humans. With this
framing, we explored the relationship between model ca-
pacity, asymmetric costs and ML-human complementar-
ity. We see opportunities for studying additional aspects
of human-machine complementarity across different set-
tings. Directions include optimization of team perfor-
mance when interactions between humans and machines
extend beyond querying people for answers, such as set-
tings with more complex, interleaved interactions and
with different levels of human initiative and machine au-
tonomy. We hope that the methods and results presented
will stimulate further pursuit of opportunities for lever-
aging the complementarity of people and machines.
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