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Abstract Finding correspondences among objects in dif-
ferent images is a critical problem in computer vision. Even
good correspondence procedures can fail, however, when
faced with deformations, occlusions, and differences in light-
ing and zoom levels across images. We present a method-
ology for augmenting correspondence matching algorithms
with a means for triaging the focus of attention and effort
in assisting the automated matching. For guiding the mix of
human and automated initiatives, we introduce a measure of
the expected value of resolving correspondence uncertain-
ties. We explore the value of the approach with experiments
on benchmark data.

Keywords Human interaction · Active learning · Value of
information · Matching · Correspondence problems

1 Introduction

Identifying correspondences among similar or identical
objects appearing in different images is a ubiquitous problem
in computer vision, and promising advances have been made
with algorithms for identifying such correspondences. Nev-
ertheless, the success of these methods is variable and can be
sensitive to multiple factors, including differences in image
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resolution, lighting conditions and zoom level across images,
occlusions that block views, and rigid or non-rigid deforma-
tions of objects. In hard cases, correspondence algorithms
may return partial results where some subset of matches is
identified with confidence. We describe a methodology for
refining such partial matching results. Our methods selec-
tively seek human or machine effort to resolve key uncer-
tainties in correspondences.

We specifically pursue answers to the following ques-
tions: (1) What kind of additional information can be used to
improve the mapping while being obtainable with reasonable
effort, (2) how can such information be obtained efficiently
in terms of computational effort and other costs, and finally
(3) how can such additional information be integrated with
ease so as to refine the correspondences?

We analyze the information gained with verifying correct
and incorrect matches in a partial solution to a correspon-
dence problem. Such verification resolves uncertainty about
selected correspondences and, importantly, also introduces
new structural and topological constraints in an interactive
manner that guide forthcoming human efforts at resolving
uncertainties about other correspondences. Beyond focus-
ing the attention and effort of people, our methods can be
used to triage the application of computationally intensive
subroutines.

We focus on the use of methods that alternate between
recruiting human assistance to verify the most informative
matches and propagating their implications to compute an
updated solution. Engaging people to assist introduces addi-
tional considerations of usability where we wish the tasks to
be simple enough to be completed successfully by people.
For example, we limit the verification of correspondences to
pairwise checks.

Core contributions of this paper include (1) a decision-
theoretic criterion for a cost-efficient, active selection of cor-
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respondence refinement tasks, (2) a general model for incor-
porating human input in correspondence problems, and (3)
crowdsourcing experiments whose results demonstrate how
human input improves results in the combinatorial matching
problem.

1.1 Preliminaries

We are given two point sets X = {x1, . . . , xn} and Y =
{y1, . . . , ym} between which we aim to establish pairwise
correspondences. Each point x is characterized by one or
more features ψ(x), e.g. location or appearance. In addition,
we might construct neighborhood graphs GX , GY . We aim
to find a mapping f : X → Y ∪ {⊥} that shows correspon-
dences between X and Y . If a point xi is mapped to ⊥, then
it has no correspondent in Y , e.g. in case of occlusion.

We can demonstrate the gain of interaction in the sim-
plest, linear assignment model. The approach integrates in
a straightforward manner into quadratic or more sophisti-
cated models as well, where it can be viewed as creating
more informative features. We define pairwise costs c(x, y)

for matching point x ∈ X to y ∈ Y . Initially, we set the
costs ˜C to the matrix of distances ci j = d(ψ(xi ),ψ(y j )). A
feasible matching is injective, i.e., f (xi ) �= f (x j ) whenever
xi �= x j and f (xi ) �=⊥. To account for unmatched points,
we introduce m auxiliary points X ⊥ = {x⊥

1 , . . . , x⊥
m } and n

points Y⊥ = {y⊥
1 , . . . , y⊥

n }. Now, a feasible matching is a
bijective function between elements of X ∪X ⊥ and Y ∪Y⊥.
We denote the set of all feasible matchings by M, and we
aim to find the matching that minimizes the costs c( f ):

min
f ∈M

∑

x∈(X∪X ⊥)

c(x, f (x)). (1)

The cost of matching any auxiliary point is defined by a
threshold θ : c(x⊥

i , y) = c(x, y⊥
j ) = θ . As θ is lowered,

increasing numbers of points remain unmatched. For ease of
notation, in the sequel we will implicitly include X ⊥ in X
and Y⊥ in Y . The optimization problem (1) can be solved
by the Hungarian algorithm or Munkres’ method (Munkres
1957).

Not all features may be equally suited for a direct compar-
ison d(ψ(x),ψ(y)) across data sets. Coordinates, for exam-
ple, can fail for rotations or non-rigid objects. In such cases,
it may be more appropriate to use relative features, captur-
ing as attributes of points their relation to reference points
within the data set, and to compare such relations. In this
paper, we will use such relational features. These features
introduce parts of the quadratic assignment problem into our
simple model, but, as opposed to quadratic assignment prob-
lems, the resulting optimization problem will still be solvable
exactly.

1.2 Related Work

Point correspondence problems are employed in a multitude
of applications in computer vision. Mapping points across
images is important in object or (3D) shape matching, 3D
reconstruction, motion segmentation, and image morphing.
These problems differ in terms of assumptions on the nature
of the transformations, the objects under consideration, and
in assumptions on the given information. Among the sim-
plest are transformations of rigid bodies, where geometry
can be exploited (Goodrich and Mitchell 1999; McAuley et
al. 2008), while correspondences among non-rigid objects,
and between non-identical objects, can pose significant chal-
lenges. Algorithms applied to more general correspondence
problems largely combine the compatibility of points by fea-
tures with the local geometric compatibility of matches. Such
models can be formulated as graphical models (McAuley et
al. 2008; Torresani et al. 2008; Starck and Hilton 2007) or
as selecting nodes in an association graph (Lordeanu and
Hebert 2005; Cho et al. 2010; Cour et al. 2006), and have
been extended to higher-order criteria (Duchenne et al. 2009;
Zass and Shashua 2008; Lee et al. 2011). Other methods con-
sider the Laplacian constructed from a neighborhood graph
(Umeyama 1988; Escolano et al. 2011; Mateus et al. 2008),
and some models are learned from full training examples
(Torresani et al. 2008; Caetano et al. 2009). Closest to the idea
of using reference points are approaches based on seed points
(Sharma et al. 2011), coarse-to-fine strategies (Starck and
Hilton 2007), and guessed points that help orient the remain-
ing points in a rigid body (McAuley and Caetano 2012). None
of these models, however, explicitly seek and incorporate
updates from user interactions. Our focus on actively gain-
ing information is orthogonal to ongoing work on enhancing
matching methods as described above. While we use simple
low-order models for exposition and experiments, we note
that the proposed method is compatible with higher-order
models, and easily extends to the procedures described in
this section.

Other related work includes multiple efforts to use human
input for improving computer vision (Vijayanarasimhan
2011; von Ahn and Dabbish 2004). Many of these approaches
pursue active learning to guide human annotation effort for
curating training data. Criteria such as uncertainty (Kapoor
et al. 2009), disagreement among a committee of clas-
sifiers (Freund et al. 1997), the structure of the version
space (Tong and Koller 2000), or expected informativeness
(MacKay 1992; Lawrence et al. 2002) have been proposed
for choosing unlabeled points for tagging data for supervised
machine classification. Active learning has also been used
for image annotation (Joshi et al. 2009) and object detection
(Vijayanarasimhan and Kapoor 2010). These and other
related studies focus inherently on classification and on
the goal of minimizing misclassification rates. Recent
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Fig. 1 (a) Example of how landmarks help identify correct correspon-
dences. Matching in the absence of landmarks can lead to a suboptimal
solution (left, matched pairs indicated with same color) out of sets of

ambiguous solutions. Ambiguity can be removed by providing two land-
marks (large circles), which results in the correct solution (right). (b)
Sample query to the user on confirming a match

approaches explore the decision-theoretic notion of value of
information (VOI) (Howard 1967; Heckerman et al. 1992),
where the expected value of information under uncertainty
is computed to balance the cost of making a mistake with
the costs of acquiring labels from human experts. The use of
VOI as a criterion for selective supervision has been explored
in the realm of supervised learning (Kapoor et al. 2007),
sensor placement (Krause et al. 2008), and more recently
in the context of visual recognition and detection (Vijaya-
narasimhan and Kapoor 2010). In related work on human
computation and crowdsourcing, a Monte Carlo procedure
for computing value of information for long sequences of
human inputs (Kamar and Horvitz 2013) is used to fuse
machine vision and human perception in a citizen science
task for astronomy (Kamar et al. 2012). Interaction different
from the verifications employed in this work has been used
for 3D reconstruction (Kowdle et al. 2011; Debevec et al.
1996). Maji and Shakhnarovich (2012) propose a framework
that lets users decide on locations of landmarks, but without
active querying. Also relevant to the current study are earlier
efforts referred to as active matching that aim at reducing the
search space in matching problems (Chli and Davison 2008;
Handa et al. 2010). Our work differs from those methods
in that we address how to seek additional information from
people, with the challenge of posing tasks that are feasible
for humans to solve.

2 Improving Matchings Via Interaction

An algorithm that perfectly solves all types of correspon-
dence problems has been an elusive goal, but many existing

methods can achieve partially correct matchings. For refin-
ing an initial imperfect matching, we first examine how addi-
tional information can help to achieve better results. Then we
discuss how we can obtain this information efficiently. First,
we observe that any settled correspondence propagates infor-
mation to the remaining candidate matches, as good map-
pings are coupled by the structural bijection constraint. Sec-
ond, we use the concept of landmarks that provide orientation
for the matching task.

Definition 1 A landmark is a pair (x, y) ∈ X × Y that is
a correct match and that is used as a reference for creating
features that are comparable across X and Y .

Figure 1a illustrates this intuitively. Graph 2 is a simple
perturbation of Graph 1, derived by removing a single node
followed by a 180 degree rotation. Matching without any
landmarks (left) is a weakly constrained problem. Depend-
ing on the choice of algorithm, we can obtain numerous solu-
tions (e.g., Fig. 1a left). However, a few landmarks (Fig. 1a
right) make the problem significantly easier, as the added
constraints rule out ambiguities. Landmarks will play a cen-
tral role in the approach that we next describe in detail.

2.1 Using Landmarks

Knowledge of landmarks can help to solve a correspondence
task by inducing constraints that impose topological and geo-
metric invariants. We propose to use the relation of points to
the collection L of landmarks (x�, y�) as additional infor-
mation for a better matching. To distinguish landmark points
from regular points, we index them by superscript �.
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Given a collection L, we compute additional feature vec-
tors φ(x),φ(y) ∈ R

|L| for all x ∈ X and y ∈ Y that are
comparable across point sets. In particular, for a given dis-
tance d and landmarks � = (x�, y�) ∈ L, we introduce the
features

φ�(x) = d(x, x�) and φ�(y) = d(y, y�). (2)

These landmark features describe the relationship of each
point to the set of landmarks. Such descriptors easily extend
to multiple landmarks, for example for describing angles.
For a candidate match (x, y) the features φ�(x) and φ�(y)

provide new compatibility information, as they allow for
comparing the relation of x to x� with that of y to y�.
This information is similar to compatibilities of pairs of
matches used in quadratic methods, but, contrary to those
approaches, landmark features do not affect the hardness
of the optimization problem (1). We integrate the land-
mark features into an additional cost matrix DL of dis-
tances between feature vectors, e.g., with �2 distances, di j =
‖φ(xi ),φ(x j )‖ = √

∑

�(φ�(x) − φ�(y)), or �1 distances
di j = ∑

� |φ�(x) − φ�(y)|.
We linearly combine DL and the matrix Cinit of initial

costs (e.g., distances between ψ(x), ψ(y)) to a joint cost
C = (1 − α)C̄init + α D̄L, where the bar denotes normalized
matrices, C̄ = (maxi, j ci j )

−1C . A mixing coefficient α bal-
ances initial and newly introduced information, and can be
adjusted as L grows. We have found a concave increase in α

to be suitable.

2.1.1 Distance Functions

We propose two variants of distance functions to compute
the features φ� in Eq. (2): Euclidean and commute distances.
For Euclidean distances, each point x must have a descrip-
tor ψ(x) which includes its location, SIFT, or other local
features. Then we have d(x, x�) = ‖ψ(x) − ψ(x�)‖ (and
analogously for d(y, y�)).

The commute distance arises from a graph representa-
tion, and applies for example if only neighborhood relations
within X and Y are known or decisive. Given a neighbor-
hood graph GX on X , the commute distance between x and
x� is the square root of the expected time a random walk on
GX would take to wander from x to x� and back. This can
be computed as a distance between features derived from the
eigenvectors of a graph Laplacian (Lovász 1993). In practice,
we found it often more robust to truncate commute distances
to a maximum threshold.

2.1.2 Updates

We propose a simple design where, given the current
matching f , the algorithm selects a proposed matched pair
(xi , f (xi )) ∈ X × Y and asks the user for verification: “is

(x, f (x)) a match?” (illustrated in Fig. 1b). If the engaged
human confirms, the introduced landmark is used to update
the cost matrix with a new feature. If the human judges the
match as incorrect, the system adds a large constant γ to the
entry of C that refers to (x, f (x)). This constant is chosen
to depict a high enough cost to prevent that those candidates
are ever matched in future refinements. If the acquired input
on the match confirms that it is correct, a new landmark �

is introduced. The matrix DL can be updated efficiently:
Let ��(X ,Y) be the matrix whose (i, j)th entry is the �2

distance ‖φ�(xi ) − φ�(x j )‖ between added features. Then

DL∪{�} =
√

D2
L + ��(X ,Y)2, where the square root and

square are element-wise.

2.2 Seeking Good Landmarks

Starting with an initial matching based on point features, the
algorithm continues to incorporate additional (higher-order)
information at every query to refine the solution. With this
flexibility, we aim to be query-efficient and achieve the best
possible match with as few queries as possible. To select
maximally informative queries, we select the pair (x, f (x))

that maximizes the expected gain. This gain is computed as
the sum of the gains for the outcomes where people con-
firm versus disconfirm a proposed match, weighted by the
probabilities of each outcome:

p(match)gain(match) + p(¬match)gain(¬match). (3)

Two quantities needed for this computation are (1) the confi-
dence that the query will be assessed as a match, and (2) the
gain associated with either answer.

2.2.1 Estimates of Gain

The gain represents the amount of additional information
about correspondences that can be obtained via learning
whether a candidate pair is a match. We define two differ-
ent criteria for estimating the gain associated with landmark
candidates. Each moves beyond the local element-wise cost
function defined earlier. The first criterion involves the prop-
agation of information from the assessed landmarks across
the set of points. The second factor considers the structure of
the combinatorial optimization problem and relates to margin
maximization and version spaces.

2.2.2 Covering

The first criterion aims at “covering” the set of points with
landmarks, ensuring that each point has at least one landmark
sufficiently close by. We formulate this criterion as a cover-
ing problem. The common algorithm to cover a space with
as few landmarks as possible in polynomial time is greedy
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(Chvatal 1979): sequentially, always add the landmark that
covers the maximum number of additional points. The value
of information essentially implements this rule in a proba-
bilistic setting.

Formally, we say a point x is covered by x� if it falls in
a ball Br (x�) = {x |d(x, x�) < r} around the landmark x�.
Conversely, a landmark � covers all points in the balls around
its components x�, y�. The gain of landmark � is

ρ(�) = |Br (x�)| + |Br (y�)| (4)

= |{x |d(x, x�) < r}| + |{y|d(y, y�) < r}|. (5)

If we have already selected a set of landmarks L, then we only
count the marginal gain with respect to those landmarks. Let
Br,X (L) = ⋃

�∈L Br (x�) be the union of the points in X
covered by any landmark, and analogously Br,Y (L). Then
the marginal gain of a new pair � given L is

ρ(� | L) = |Br (x�) ∪ Br,X (L)| − |Br,X (L)|
+|Br (y�) ∪ Br,Y (L)| − |Br,Y (L)|. (6)

When judging gain by covered area, the radius r of the balls
determines the density of landmarks. We initialize r by a large
value (the average distance to the

√
n/3th nearest neighbor

point) to spread the first few landmarks widely. When nearly
all points are covered, there is no more difference in the gain
of any additional landmark. In this case, if there is budget for
more landmarks, we reduce r by one third, so that subsequent
landmarks fill the gaps among existing landmarks and ensure
a closer landmark for each point.

A finer measure of covering allows each point to be cov-
ered by k landmarks. Let cov(x) be the number of landmarks
whose balls cover x . A refined gain is

ρk(� | L) =
∑

x∈Br (x�)

[k − cov(x)]+ +
∑

y∈Br (y�)

[k − cov(y)]+,

where [a]+ = max{a, 0}.
The gain of a non-match (negative user feedback) is a no-

match constraint, and scored as a constant ν for all pairs.
Using (3), we query for assessments about the pair (x, y)

that maximizes the score

p̂( f (x) = y)ρ((x, y)|L) + (1 − p̂( f (x) = y))ν. (7)

2.2.3 Stability

Some active learning methods are aimed at minimizing the
version space—the set of likely hypotheses that are consistent
with the current observations (Dasgupta 2004). This goal
of stability is addressed by selecting a query whose answer
leaves a version space with little mass, meaning that only few
likely solutions remain. If we view our cost as a potential, then

this rule means that we select a landmark � whose features φ�

rule out many good candidate solutions and thereby reduce
ambiguity.

As computing the mass of the version space is expensive,
we estimate it by the gap between the best and the second-
best solution. Maximizing this gap is also the aim of methods
that maximize a margin. A wide gap indicates little ambigu-
ity. Thus, we seek landmarks whose addition in expectation
maximizes this gap. We compute the gap both for the case
where the query pair is indeed a match, and for the case of
negative feedback. Negative feedback can be beneficial if it
helps rule out one of two nearly good solutions and thereby
widens the gap between the two best allowed solutions.

The second-best solution of a matching can be com-
puted via shortest paths in a bipartite graph (Chegireddy and
Hamacher 1987): given the optimal matching f , we construct
a complete bipartite graph G = (X ,Y, E). For every pair
(x, y) that is currently not matched, i.e., f (x) �= y, there is a
directed edge (x, y) with weight c(x, y). In addition, for each
pair (x, f (x)), there is an edge ( f (x), x) in the other direc-
tion, with weight −c(x, f (x)). For each match (x ′, f (x ′)),
the shortest path from x ′ to f (x ′) in G forms a cycle together
with the edge ( f (x ′), x ′). The cost of this cycle C(x ′) ⊂ E ,
i.e., the sum of its edge weights, is the difference between
the cost of the optimum solution f and the optimum solution
that does not map x ′ to f (x ′):

min
g∈M,g(x ′) �= f (x ′)

c(g) − c( f ) =
∑

e∈C(x ′)
w(e) (8)

Thanks to the optimality of f , the graph G does not have any
negative cycles (Chegireddy and Hamacher 1987), and there-
fore the shortest cycle C(x ′) is easy to compute. The length
of the shortest cycle is the desired gap. The same method
applies to find gaps for the best solutions that exclude any
given tentative landmark pair; this is the gain if the feedback
is negative. We substitute these gains into Equation (3).

2.2.4 Probability of a Match

The confidence in the match (x, f (x)) can be estimated by
comparing the fit of f (x) to that of other possible matches
y ∈ Y . The more good candidates, the lower the confidence.
We estimate confidences conservatively as

p̂( f (xk) = yi )

= min

{

exp(−c(xk, yi ))
∑

j exp(−c(xk, y j ))
,

exp(−c(xk, yi ))
∑

j exp(−c(x j , yi ))

}

.

(9)

This quantity estimates at the same time how easy a human
may find it to verify the candidate match, and gives preference
to more identifiable candidates.
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Fig. 2 Effect of adding landmark features. As few as 1–2 landmarks eliminate global mismatches. Mismatches are highlighted with red arcs, green
points are matched correctly, yellow marks indicate landmarks; (d) average error over 20 image pairs if random landmarks are added (Color figure
online)

2.2.5 Thresholds

A further potential gain of feedback is to adapt the thresh-
old θ that determines when we “trust” a match, and when
we leave a point unmatched. This threshold is equivalent to
the penalty that we assign to unmatched points. We update
the threshold multiplicatively down to a given lower bound.
When a match has small distance (resulting in higher con-
fidence) and the feedback indicates that there is no match,
we reduce the current θ multiplicatively. Otherwise, when
observing a match whose distance is above the threshold, we
adapt θ by multiplying by a factor larger than one.

3 Experiments

We now report on experiments for evaluating the proposed
approaches. The experiments suggest that improvements can
be achieved by adding landmark features in a selective man-
ner. We compare the proposed methodology to the base-
lines of (1) not adding any new features, and (2) select-
ing queries uniformly at random from the pairs (x, f (x)).
We always query matched pairs, keeping in mind that this
is still more informative than querying arbitrary pairs from
X × Y . We use mostly Euclidean distances for computing
φ�, and �1 or �2 distances between the vectors of landmark
features.

3.1 Usefulness of Landmarks in General

First, we establish whether landmarks can improve the
quality of matchings. Figure 2 shows a sample matching
computed from initial SIFT features only, and subsequent
improvements when landmark information is added. Here,
we introduced landmarks (correct matches) in a random
manner, with α increasing from 0.65 to 0.95 over 15 land-
marks. Few landmarks suffice to rule out mismatches where
f (x) is very far from the true match y(x), such as matches
between a point on the foot of Person 1 to the neck of
Person 2. This effect is similar to the effect of structural

constraints illustrated in (Torresani et al. 2008, Fig. 3).
Figure 2d shows that over many randomly drawn landmarks,
the added information improves the results on average. The
variance suggests that the actual gain depends on the set of
landmarks, and how well the landmarks complement one
another.

3.2 Selective Querying

Knowing that landmarks can be beneficial, we test the effec-
tiveness and efficiency of employing selective queries. We
compare the two selection strategies from Sect. 2.2.1 with a
baseline of randomly selected queries. The strategies cov and
gap vary in how they estimate gain: ‘cov’ employs the cov-
ering criterion ρ(� | L), and ‘gap’ uses the stability criterion
measuring the gap between the best and second-best solu-
tion. To analyze the random sequence, we run ten indepen-
dent repetitions for each image pair, compute the error and
efficiency for each, and then average. The ‘cov’ and ‘gap’
methods resolve ties between equally scoring potential land-
marks randomly. Therefore, we repeat those methods five
times and average.

3.2.1 House/Hotel Sequence Dataset

We begin with the CMU house sequence data, with the 30
labeled points per image and shape context features used in
(Caetano et al. 2009). The sequence consists of 111 frames
of a rotated toy house. We compute C as Euclidean distances
between the shape context features, and use Euclidean dis-
tances to landmarks. We match 20 pairs of images with a fixed
distance of frames. The error is computed as the fraction
of mismatched points, err( f ) = |{x | f (x) �= y(x)}|/|X |,
where y(x) is the true correspondent of x . Figure 3a shows
the average number of queries needed for a completely cor-
rect matching for gaps varying between 50 and 80 frames.
The random sequence needs more than 50 % more queries
than the other methods, and more than twice as many in the
worst case. Furthermore, Fig. 3b indicates that the average
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Fig. 3 Efficiency (average number of queries needed for zero error) and average error for the CMU Houses and Hotels data sets. The white bar
illustrates the worst case (over random repetitions), averaged over all image pairs
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Fig. 4 Average number of queries needed to attain 80, 90 or 100 % accuracy. Averages are over all possible pairs of the depicted images. The
results refer to the case that no initial landmark pairs are given, or that ten correct random landmark pairs are given

error achievable with a fixed budget of queries is lower for
decision-theoretic selections.

The results on the related CMU hotel sequence are similar.
Figure 3c indicates that the variance for the number of queries
needed is very high when querying randomly. The ‘gap’ and
‘cov’ criteria lead to progress more consistently.

In general, pursuing correspondences for the rigid house
sequence is a relatively easy task: For geometric transfor-
mations of rigid bodies, many sets of landmarks are equally
good. Thus, the advantage of the decision-theoretic scores
stems from preferably querying pairs that we are more confi-
dent about. Those are more likely to lead to a new landmark
(correct pair). Given that about 70 % of the initial matches
are correct, a random query is likely to yield an additional
hit. For a more objective evaluation, we test the guided inter-
action on more challenging matching instances that exhibit
more variation.

3.2.2 Non-Rigid Objects with Variations

When the matched objects are not identical, such as the forks
in Fig. 5, then simple features such as SIFT features may be
very uninformative: they lead to very high initial matching
errors. In such cases, human interaction can be beneficial.

We obtained such harder instances by labeling photos of
humans, cats and objects from Flickr and simulate query
sequences as before. We again use Euclidean distances to
landmarks as they appear to be more robust, and begin with a
cost matrix C computed from SIFT features at 37–87 points.
By themselves, these features provide very little guidance for
correspondences and match about 5 % of the points correctly.
As a result, random queries are not very likely to query a cor-
rect pair and thereby identify new landmarks. Therefore, such
a poor initial solution serves as a difficult test for querying
methods.
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Fig. 5 Sample results for ‘cov’ (coverage), ‘gap’ (stability) and ‘random’ (randomly selected queries) methods. Colored bars depict averages,
white bars worst encountered cases (Color figure online)
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Fig. 6 Sample results for Euclidean and commute distances to landmarks. Colored bars depict averages, white bars worst encountered cases. The
images are from the same sequence as those in Fig. 2 (Color figure online)

Figure 4 shows the average number of queries required
to attain a certain target accuracy, across all possible pairs
of five cats (10 pairs) and six humans (15 pairs). Here, we
also compare to a variant of the covering criterion where
each point can be covered by k = 2 landmarks, as described
in Sect. 2.2.1. This criterion is in some cases more efficient
than ‘cov’. Since the two covering criteria still often behave
similarly, we restrict ourselves to k = 1 in the other experi-
ments. Figures 5 and 6 display sample results for single pairs
of images of humans and forks. For those, we also show the
error as a function of the number of queries. Both statistics,
error and efficiency, indicate that (1) engaging humans with
queries about matches helps to reduce error, and (2) selecting
queries by expected value of information reduces the number
of queries needed for a given accuracy, and this decreases
human effort. As an example, for the forks in Fig. 5, the
decision-theoretic query selection procedures require half as
many queries as the random scheme.

In Fig. 6, where the SIFT features carry more information
and the initial match is more accurate, the stability criterion
becomes very useful and is the most efficient method. Note
that the active querying methods (that do not know correct
matches and may therefore fail to add a landmark in some
steps) achieve full accuracy faster than a method that ran-
domly adds known landmarks (one in each step), as shown
in Fig. 2d. This suggests that both the selective gathering of
positive and negative feedback and the location of landmarks
matter.

3.2.3 Difficulties

A closer inspection of the results shows that matching
becomes more difficult when the SIFT features are less infor-
mative and there are very few correct initial matches, and
when there are symmetries in the objects. In those cases, more
initial queries are needed before the error decreases rapidly.
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Fig. 7 Efficiency with human labelers for the images in Fig. 1b; the y
axis shows the cost when each query costs 5 cents

While symmetries can be resolved with a few landmarks,
landmark-based matching can become more difficult when
there are strong deformations in the objects that place points
together in one image but not the other. This is the case for
the second pair in Fig. 5, where in particular the ‘gap’ method
needs more queries. Once a few landmarks are established,
the active querying methods still become effective.

3.2.4 Human Expertise

As a complement to the simulations, we explored feed-
back provided by human labelers via Mechanical Turk and
recruited users for evaluating matches. Figure 1b shows the
user interface for an example query. All possible points are
shown in green, and the query points are marked by multicol-
ored diamonds. We labeled a subset of points on the objects,
and then added unlabeled points. The algorithm could query
any pair, and the error was computed on the 24 hand-labeled
points. Figure 7 shows the average number of queries needed
to achieve a certain accuracy. When paying 0.05 dollars for
a query, a query selection by stability can save 26.5 cents on
average for a completely correct labeling, and 17 cents for a
labeling with 90 % accuracy, for which random queries cost
more than four times more than the selective ones.

4 Conclusion

We have explored methods for harnessing the perceptual
abilities of people to help to refine partial correspondences
between images that are identified via automated procedures.
We employ a measure of the value of information to selec-
tively direct human attention on correspondence problems.
We proposed two different objectives for computation of
value of information. In the first formulation, we seek to max-
imize coverage. The other formulation seeks to find stability
via reducing the gap between the best and second-best solu-
tions. We found that the covering criterion tends to be more
robust when very few correct matches have been found. The
stability criterion tends to become increasingly effective as

more knowledge is gathered. Both criteria substantially out-
perform the random selection of query points and sometimes
exceed the strategy where confirmed landmarks are added
randomly at each step. The methods and results demonstrate
the value of developing interactive approaches to challenging
matching problems. More generally, the interactive approach
we have taken to solving correspondence problems highlights
the promise of endowing computational systems with the
ability to engage and collaborate with people so as to ideally
leverage the complementary skills of people and machines.
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