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Abstract

I define and implement a model of rational action for automated reasoning systems

that makes use of flexible approximation methods and decision-theoretic procedures

to determine how best to solve a problem under bounded computational resources.

The model provides a perspective on the use of metareasoning techniques to balance

the costs of increased delays with the benefits of better results in a decision con-

text. I focus on the use of inexpensive real-time analyses to control the allocation of

computational resources in complex decision-theoretic reasoning. The approach ex-

tends traditional decision analyses to autoepistemic models that represent knowledge

about problem solving, in addition to knowledge about distinctions and relationships

in the world.

To investigate the use of decision analysis for controlling computation, I con-

structed a computer program named Protos. Protos uses information about the

progress of problem solving to identify the ideal time to halt computation and take

action in the world. Protos’ metareasoner controls the precision of probabilities in-

ferred from complex network models that represent domain-specific expertise about

uncertain relationships among observations and hypotheses. I found that it can be

valuable to allocate a portion of costly reasoning resources to deliberate about the

best way to solve a decision problem. In addition to serving as a testbed for exploring

the value of metareasoning, I made use of Protos to examine the integration of reflex

and deliberative analyses and the construction of time-dependent utility models from
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observations.

After discussing principles for applying multiattribute utility theory to the control

of basic computational procedures, I describe how these principles can be used to

control probabilistic reasoning. In particular, I present techniques for controlling, at

run time, the tradeoff between the complexity of detailed, accurate analyses and the

tractability of less complex, yet less accurate probabilistic inference. Then, I describe

the architecture and functionality of Protos and review the system’s behavior on high-

stakes decision problems in medicine. Finally, I move beyond the consideration of time

constraints to investigate the constraints on decision-theoretic reasoning posed by the

cognitive limitations of people seeking insight from automated decision systems.
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Guide for the Reader

In this dissertation, we explore theoretical and empirical work on rational decision

making that addresses topics of interest to investigators in computer science, decision

analysis, and medical informatics. Essential background on the historical and theoret-

ical context of this dissertation is presented in Chapter 1. Readers who are unfamiliar

with the theoretical foundations of decision theory, or with the use of belief networks

and influence diagrams for representing and reasoning with uncertain knowledge, will

benefit from the background on probability and decision theory provided in Appendix

A.

Basic concepts and definitions that are useful for the analysis of problems of ideal

approximation under bounded resources are found in Chapter 2. Chapter 3 contains

illustrative examples of the multiattribute nature of partial results that are gener-

ated by sorting algorithms. The examples demonstrate how the ideal computational

strategy to select can be sensitive to the preferences of a user. This work may be of

special interest to computer scientists who have investigated primarily the worst-case

complexity of problem solving. Readers with little interest in the utility analysis of

partial results generated by computational algorithms can skip this chapter.

In Chapter 4, the principles elucidated in Chapter 2 are extended to problems of

belief and action under uncertainty. We examine closed-form equations that report a

measure of the value of computation for probability-bounding algorithms. Chapter 5

contains a discussion of a flexible algorithm for probabilistic inference. The chapter
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includes a discussion of the algorithm’s properties and limitations. Readers with

little interest in the details of this bounding algorithm may wish to skip this chapter.

Chapter 6 contains details about the implementation of the Protos system. We review

the architecture of Protos and explore the construction and representation of time-

dependent utility models. The chapter also includes a presentation of the range of

Protos’ behavior, illustrated with samples of the system’s output. Readers should,

at minimum, peruse the output of the Protos system to build intuitions about the

costs and benefits of continuing to compute in a time-pressured setting. Chapter 7

contains case analyses of the performance of Protos on several different belief networks

in the context of decision problems in critical-care medicine. The chapter contains

discussion of an evaluation technique that allows us to probe the value of Protos’

metareasoning, and describes the output of Protos’ case-analysis summarizer.

In Chapter 8, we shall the generalize methods for considering the value of compu-

tation under time constraints to the optimization of computer-based decision analysis

under the constraints defined by the cognitive limitations of people using decision-

theoretic systems. The chapter contains a discussion of how we can make advice

generated by a computer system more valuable to users by introducing flexibility into

value-of-information inference. The approach allows us to simplify the procedures so

that they are more natural and understandable. Readers who are primarily interested

in the comprehensibility, naturalness, and explainability of decision-theoretic infer-

ence may wish to read Chapter 8 in isolation from the other dissertation chapters.

Finally, Chapter 9 contains a summary of this dissertation research and discusses

promising extensions of the work on decision-theoretic metareasoning.
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Chapter 1

Introduction

The nature of rational action has been debated for centuries. A familiar position,

taken by a great number of researchers in the behavioral and decision sciences, is that

rational decisions are those that maximize a numerical measure of preference, termed

utility. Utility is defined in decision theory by the axioms of utility, developed by von

Neumann and Morgenstern over four decades ago (von Neumann and Morgenstern,

1947). Decision theory was developed to help people reason about taking action under

uncertainty. The inescapable incompleteness in our knowledge about the world leads

to unavoidable uncertainties about the consequences that our actions will have.

Early pioneers of symbol-processing models of intelligence dismissed decision the-

ory for use in automated reasoning systems. Although many of these investigators

viewed decision theory as a gold standard for action in the presence of adequate rep-

resentational and computational resources, the formal methodology was rejected as

too complex for reasoning under bounded resources. Citing the limited abilities of

human decision makers and the forgiving nature of many problems in the world, re-

searchers proposed that most intelligent behavior is oriented toward finding solutions

that are nonoptimal, yet are sufficient or satisficing (Simon, 1955). A primary task

in modeling intelligent behavior was viewed as devising logical procedures that could

1
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forward the goals of an intelligent decision maker—and not necessarily as optimizing

the value of reasoning or remaining consistent with decision theory.

To date, research on automated reasoning, performed under the label of bounded

rationality, has yielded systems whose behavior may stray far from the levels of util-

ity that might be achieved through more sophisticated decision-theoretic analyses.

Losses may be especially significant in high-stakes decision making, given complex

uncertainties about the world. For example, bypassing principled approaches in the

design of medical reasoning systems that are used to assist physicians with diagno-

sis or to control therapeutic devices autonomously may be costly to patients. Such

potential losses—and opportunities for great gain—highlight the possible usefulness

of more sophisticated decision-theoretic analysis for optimizing the value of behavior

under resource constraints.

Although the straightforward solution of decision-theoretic models can generate

“optimal” recommendations for action in a timeless world, the delay required for

solving complex models can lead to a poor outcome. A decision maker typically

incurs a loss in the value of his action in the world by waiting to address a challenge.

The cost of delay is based in irrevocable losses in opportunity stemming from such

universal time-dependent processes as (1) competition for limited resources, (2) decay

of physiologic states, and (3) coordination among independent decision makers.

I shall describe my work on the synthesis of artificial intelligence (AI) and decision

analysis (DA) to address the problem of ideal computer-based decision making under

varying computational resource constraints. I have investigated principled techniques

for making rational decisions under resource constraints. Rather than reject the pur-

suit of a theoretical foundation for computing rational belief and action, I have sought

to extend coherently the principles of normative rationality to situations of uncertain,

varying, and scarce reasoning resources. My thesis is that we can use a principled

theory of action to build computer-based reasoners for making recommendations or

for taking autonomous action under scarce and varying resources.

We shall examine the extension of traditional decision-theoretic analyses with

techniques that enable a system to consider the value and cost of reasoning under

limited resources. A model of rational action for automated reasoning systems shall be
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developed that makes use of flexible approximation methods and inexpensive decision-

theoretic procedures to decide how best to solve a problem given costs or constraints

on reasoning resources. Flexible approximation strategies give reasoning systems

the ability to trade off gracefully optimality for increased tractability. Procedures

for controlling flexible reasoning can be generated dynamically in tractable real-time

analyses, performed in conjunction with problem solving, or can be derived in off line

decision analyses.

I develop real-time analyses to control decision-theoretic reasoning at the base-

level. This approach hinges on the extension of traditional decision analyses to au-

toepistemic models that represent knowledge about problem solving, in addition to

the traditional focus on distinctions and relationships in the world. As we shall see,

it can be valuable to allocate a portion of costly reasoning resources to metalevel de-

liberation about the best way to use additional resources to solve a decision problem.

1.1 Artificial Intelligence and Decision Analysis

For almost 3 decades, AI investigators have endeavored to develop computer-based

representations and reasoning strategies for encoding and manipulating knowledge

efficiently. AI evolved concurrently with other disciplines, spurred by the development

and refinement of electronic computing techniques in the mid-1950s. AI investigators

became interested in the metaphor of intelligence as information processing, and

early on, distinguished their work from ongoing studies of computer-based information

processing in operations research, systems science, and control theory. The researchers

turned away from prevalent quantitative models, laden with numeric information, and

instead focused on the logical processing of symbolic knowledge (Newell and Simon,

1963; Feigenbaum, 1964; Simon, 1969; McCarthy and Hayes, 1969; Simon, 1972).

AI researchers have had diverse goals. Expert-system developers, or knowledge en-

gineers, have created computer programs that can serve as consultants to professionals

in specific disciplines and subdisciplines. Other AI investigators have elucidated basic

principles of knowledge representation and reasoning. These researchers have devel-

oped fundamental techniques, and, at times, philosophical frameworks, for building
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intelligent artifacts. Still other AI investigators have used computer models as tools

for understanding human cognition. Although AI scientists have had diverse research

agendas, they have been unified by an interest in the foundations of intelligent be-

havior, and by their concerns with computational and representational tractability.

Thus, many AI researchers have rejected formal models traditionally associated with

intractable solutions. Instead, they have opted to test empirically the efficacy of

informal heuristic reasoning procedures.

Decision analysis (DA) evolved during the same period as did AI (Howard, 1966;

Howard, 1988; Raiffa, 1968; Keeney and Raiffa, 1976). Decision analysts share with

many AI scientists interests in the representation of abstract knowledge, in fostering

tractable analyses of decision problems, and in intelligent decision making. Unlike

AI, decision analysis evolved with a commitment to applying the principles of deci-

sion theory. Also, almost all work on decision analysis has centered on consultation

rather than on computer-based generation of recommendations; decision analysts have

traditionally performed custom analyses for clients to bring clarity to important de-

cisions. A decision analysis includes a careful assessment of the desires or preferences

of a decision maker, the alternative actions available to that decision maker, and the

outcomes of these actions and their associated uncertainties. In practice, decision

analysts use a battery of heuristic and formal techniques to build and to refine itera-

tively a decision model, and apply decision theory to identify the best action to take

under uncertainty. Although most AI investigators are familiar with decision theory,

decision-theoretic techniques, and, more recently, advances in decision analysis, have

been largely overlooked by that community.

1.2 Paradigms for Reasoning Under Uncertainty

There have been several competing paradigms for research on computer-based rea-

soning. Many AI investigators consider only logical relationships in their research.

Many of these investigators make an implicit assumption that uncertainty about the

environment—or about the effect of an action—is minor compared with the difficulties

of developing a satisfactory logical solution. Other logicists have devised deterministic
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machinery for addressing uncertainty. These techniques include nonmonotonic logics

and default reasoning (Ginsberg, 1987). In contrast to this group, many researchers

build systems that wrestle explicitly with numeric representations of uncertainty, or

with logical methods that are founded on numeric representations of belief (Nilsson,

1986). Investigators who admit the use of real-numbered degrees of truth for reason-

ing under uncertainty can be subdivided into two groups: those who investigate the

use of formal reasoning techniques, and those who study informal, heuristic reasoning

techniques.

Formalists study systems based on small sets of axioms that define consistent

theories of reasoning. They hope that reasoning systems based on such principles

will explain and generate complex intelligent behaviors—much as the parsimonious

set of astronomical laws developed by Kepler can explain the complex motion of

heavenly bodies. AI investigators have explored several axiom-based methodologies

for reasoning under uncertainty. These include probability theory, Dempster–Shafer

theory (Shafer, 1976), fuzzy-set theory (Zadeh, 1983), and multivalued logics (Gaines,

1978). All these approaches are theories for assigning measures of partial truth or

belief to alternate hypotheses, given observations or evidence. The theories do not

address rules for taking action under uncertainty. Decision theory is a formal calculus

for determining the best action under uncertainty. Decision theory is defined by

the axioms of utility, which, in turn depends on probability. Thus, we can consider

decision theory to be the axioms of probability and utility.

Many people find the axioms of probability and utility persuasive as principles for

rational choice under uncertainty (see Appendix A for additional discussion on the

axioms of probability and utility). Decision theory has been accepted as a foundation

for reasoning about belief and action in a wide range of fields, from economics to

behavioral science. Although normative can be used to describe the behavior entailed

by any compelling set of consistent principles for reasoning about action,1 the term

is most frequently used to refer to reasoning about belief and action in accordance

with decision-theoretic principles. We shall use normative to refer to decision theory.

1For example, an investigator assuming a deterministic world for an AI research problem might
consider logical inference to be “normative” in that logic prescribes a set of rules for correct inference
under certainty.
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Researchers interested in normative reasoning methods study techniques for building

reasoners that perform consistently with principles of decision theory for determining

action.

AI investigators interested in heuristic methods for reasoning under uncertainty

reject the requirement for a set of mathematically specified principles and for well-

defined behavior, often noting problems with limited computational resources, but

equally often arguing that formal methods such as decision-theoretic techniques lack

the expressiveness needed for intelligent behavior. Instead of relying on axioms, these

researchers seek to solve problems with the development of tractable, intuitive ap-

proaches. Many AI investigators view heuristics as an approach to solving difficult

reasoning problems that is more direct and tractable than is working within the con-

straints and combinatorics of decision theory. Heuristic approaches often are descrip-

tive in that they attempt to describe human problem solving—much as the epicycle

machines, used in the days before we had a satisfying theory of planetary motion,

could describe adequately the motions of the stars. Scientists often draw insights

about heuristic procedures by introspecting or by observing people solving problems.

1.3 Normative Reasoning in Intelligent Systems

Although decision theory was well known to early AI scientists, it was rejected as

inappropriate for intelligent problem solving. Herbert Simon was an early proponent

of research on heuristic reasoning, having noted problems with the straightforward

application of decision theory. In 1955, he observed that, although decision theory

defines rational action in a world of unbounded computation resources, we should

consider constraints on cognitive resources in generating and evaluating the behavior

of real-world decision makers (Simon, 1955). Simon used bounded rationality to refer

to the importance of acceptable or satisficing decision-making behavior. Simon’s

discussions stimulated research on heuristic approaches to decision making in a variety

of disciplines. Economists and business analysts studied related issues of bounded

rationality for characterizing the decision-making behavior of populations (March,

1978; Shugan, 1980).
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1.3.1 Early Research in Medical Informatics

Despite the dominant interests of AI investigators on logical reasoning and heuristic

models of problem solving, research on the automation of normative reasoning pro-

gressed in the late 1950s. In particular, early research projects on the automation of

medical reasoning centered on the implementation of normative expert reasoners (Led-

ley and Lusted, 1959). In the early 1960s, several teams of physicians and computer

scientists began to experiment with computer-based applications of decision-theoretic

reasoning. These early medical-informatics pioneers worked on computer programs

with the hope that more complex normative reasoning systems might some day help

physicians to solve difficult problems. Prototype probabilistic and decision-theoretic

medical diagnostic systems were constructed, including Warner’s system for the di-

agnosis of heart disease (Warner et al., 1961), de Dombal’s system for the analysis of

acute abdominal pain (de Dombal et al., 1972), and Gorry’s systems for heart disease

(Gorry and Barnett, 1968) and renal failure (Gorry, 1973). To maintain the tractabil-

ity of knowledge representation and inference procedures, the investigators engineered

systems for reasoning in small, well-circumscribed problem areas, and imposed the

simplifying assumptions of mutual exclusivity among diseases (only one disease can

be present) and conditional independence among all symptoms. Nevertheless, the

systems were found to perform at a level comparable to experts within the scope of

their limited domains (Gorry, 1973; de Dombal et al., 1974; Dawes and Corrigan,

1974).

1.3.2 Normative Methods as Intractable and Opaque

In the early 1970s, medical-informatics investigators began to dream of building med-

ical reasoning systems with broader abilities and a greater breadth of knowledge than

the earlier normative systems had. Problems with the tractability and expressiveness

of normative reasoning and representation became salient as investigators attempted

to scale up their systems to handle real-world patient cases. Scientists highlighted the

complexity of constructing and manipulating large knowledge bases of probabilistic
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information, discussed the inadequacy of making assumptions of conditional indepen-

dence, and of mutual exclusivity and exhaustivity of hypotheses, to gain tractability,

and expressed concern that a combinatorial explosion would threaten attempts to

move beyond these assumptions or to larger domains (Gorry, 1973; Szolovits, 1982).

Beyond problems with representational and computational intractability, some re-

searchers pointed out the limited expressiveness of normative representations, citing

the apparent differences between the quantitative approach of probabilistic inference

and the richer, qualitative nature of informal human reasoning. Some suggested that

the differences between normative methods and informal human reasoning could lead

to problems in encoding expertise and in explaining the results of probabilistic infer-

ence (Gorry, 1973; Shortliffe and Buchanan, 1975; Szolovits, 1982; Davis, 1982).

Frustration with the complexity of the task of collecting, representing, and reason-

ing with large amounts of probabilistic information stimulated interest in the value of

nonnormative, heuristic methods for reasoning under uncertainty. Gorry, a pioneer

in the application of normative reasoning in medicine, captured the growing disil-

lusionment with probability and utility—and growing interest in informal reasoning

strategies—with his comment in a landmark paper:

Although we cannot characterize precisely the methods used by experts,

it is clear that these methods can accommodate the greater complexity of

real clinical situations. (Gorry, 1973, p. 49)

Some medical-informatics researchers became interested in the logical reasoning pro-

cedures developed in the maturing discipline of AI. At the same time, AI investigators

began in earnest to apply AI representation and reasoning techniques to build expert

systems in medicine. The ubiquity of uncertainty in medicine catalyzed the devel-

opment of heuristic scoring methodologies for assigning belief to hypotheses and the

integration of logical reasoning techniques with uncertainty calculi.

1.3.3 Interest in Heuristic Approaches

Several AI in medicine projects formulated and studied nonprobabilistic numeric ap-

proaches to reasoning under uncertainty. The Internist-1 project (Miller et al., 1982)
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was an early project to develop and use an ad hoc scoring scheme for assigning a

measure of likelihood to diseases in internal medicine, given observations.2 The in-

vestigators acquired several different numeric measures and used these measures to

assign belief to different diseases. The Internist-1 team also created several heuris-

tic decision-making methods to generate recommendations about new evidence to

acquire and tests to perform, given the current belief in alternate hypotheses.

Another well-known heuristic approach developed in the 1970s was a quasiproba-

bilistic scheme named certainty factors. Certainty factors provided a means of man-

aging belief within rule-based production systems (Buchanan and Shortliffe, 1984;

Clancey, 1985). The development was a key component of Mycin (Shortliffe and

Buchanan, 1975), a system that applied logic-based reasoning techniques—originally

developed by AI investigators for theorem proving—to medical diagnosis and therapy.

Other heuristic approaches for reasoning under uncertainty included the use of

patterns of evidential criteria, or frames, as in the AI-Rheum system and its descen-

dants (Lindberg et al., 1980), the development of descriptive cognitive constructs,

such as long-term and active memory in the Present-Illness Program (Pauker et al.,

1976), and the use of causal networks to relate pathophysiology and observations, as

in the Casnet system (Weiss et al., 1978).

Medical-informatics investigators of the 1970s embraced heuristic schemes partly

to avoid the unrealistic assumptions of independence they had to make with norma-

tive reasoning. Recent analyses have shown that the researchers did not avoid the

assumptions by moving out of the probabilistic framework—the assumptions merely

became more difficult to identify when heuristic approaches were used. Analyses of

several of the heuristic procedures for performing diagnosis and decision making under

uncertainty have demonstrated that the methods are as restrictive, or more restrictive,

in their imposition of independence than were the simple probabilistic systems of the

1960s (Heckerman, 1986; Heckerman and Horvitz, 1987). However, unlike the explicit

independence assumptions of the probabilistic systems, the restrictive assumptions in

the heuristic approaches have been less apparent.

2Internist-1 research has evolved into the current Quick Medical Reference (QMR) (Miller et al.,
1986), Caduceus (Pople, 1982), and QMR-DT (Shwe et al., 1990a) projects.
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1.3.4 Recent Research at the Boundary of AI and DA

Over the last two decades, several projects have made use of decision theory to ad-

dress difficult AI problems (Jacobs and Keifer, 1973; Coles et al., 1975; Feldman

and Sproull, 1975). In the last five years, however, investigators in a subdiscipline of

AI studying techniques for reasoning under uncertainty, have attempted to synthe-

size AI and DA reasoning and representation techniques (Cooper, 1984; Holtzman,

1985; Smith, 1986; Pearl, 1988; Breese, 1987; Wellman, 1988; Langlotz et al., 1988;

Henrion, 1988; Klein, 1989; Heckerman, 1990b; Horvitz et al., 1989a). Most of this

research has made use of a graphical knowledge-representation language developed

by decision analysts, called influence diagrams (Howard and Matheson, 1981; Owen,

1978; Olmsted, 1983). The influence diagram was developed by decision analysts at

Stanford Research Institute (SRI) in the early 1970s, partly in response to advances

in electronic computing. Although influence diagrams formally describe a decision

model, they have a human-oriented qualitative structure that facilitates knowledge

acquisition and communication. An influence diagram is a graphical knowledge repre-

sentation that captures information about decisions, outcomes, and the probabilistic

dependencies among propositions and events (Rousseau, 1968; Cooper, 1984; Pearl

and Verma, 1987). The representation is, more specifically, a directed acyclic graph

(dag) that contains nodes representing uncertain variables, and arcs that represent

dependencies among the variables. Arcs missing between nodes in a belief network are

significant assertions of conditional independence. Influence diagrams can be used to

describe completely problems with inference and action under uncertainty. A closely

related representation, called belief networks, (also referred to as knowledge maps and

probabilistic networks) is a specialization of influence diagrams that does not include

preference and decision information. (See Appendix A for a detailed discussion of

belief networks and influence diagrams).

A belief network and its associated probabilities determine a complete joint prob-

ability distribution for the problem area represented. Given the joint distribution,

we can compute the posterior probability of all hypotheses given any set of observa-

tions. Influence diagrams and belief networks have allowed investigators to examine

the complexity of probabilistic inference, and to design techniques to take advantage
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of independence in the world. In 1987, Cooper confirmed intuitions about the com-

plexity of probabilistic inference by showing that inference within belief networks is

in the NP-hard class of problems (Cooper, 1990b). Almost all investigators working

with influence diagrams have attempted to generalize the simplified inference mod-

els of the 1960s by identifying and introducing dependency among variables, and by

countering combinatorial explosion by exploiting conditional independence.

Large belief networks have been constructed by AI researchers for computer-

based inference about medical diagnosis (Heckerman et al., 1990; Beinlich et al.,

1989; Andreassen et al., 1987), robot navigation (Dean and Kanazawa, 1988) and

the comprehension of stories (Charniak and Goldman, 1989). Several investigators

have developed approximation methods and specialized exact algorithms designed for

processing belief networks of different topologies (Pearl, 1986; Pearl, 1988; Shachter,

1986; Lauritzen and Spiegelhalter, 1988; Henrion, 1988). Other investigators have de-

veloped techniques for identifying independence efficiently at knowledge-acquisition

time (Heckerman, 1990b; Heckerman et al., 1990).

1.4 A Normative-Metareasoning Perspective

The use of belief networks to represent and exploit conditional independence has

allowed investigators to build large knowledge bases of probabilistic information, and

to increase the efficiency of engineering normative systems. Nevertheless, we still must

grapple with the possible great complexity of normative reasoning. Such complexity

is highlighted by Cooper’s analysis of the worst-case run times for belief-network

inference, and by our recent experience with large belief networks (Shwe et al., 1990a).

There is little hope that we will be able consistently to avoid potentially costly delays

when we solve large normative models in time-pressured settings.

I have explored normative metareasoning—the use of decision analysis at the met-

alevel, to make decisions about the nature and extent of problem solving (Horvitz,
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1987c; Horvitz, 1988; Horvitz et al., 1989c). Key components of normative meta-

reasoning addressed in this dissertation are (1) the development of new flexible infer-

ence strategies that allow us to reason about a continuous spectrum of the complete-

ness of an analysis, and (2) the optimization of the value of approximate inference

under constraints in computational resource. I have sought to optimize the value of

normative reasoning by developing and intelligently controlling flexible approxima-

tion strategies. I shall show that we can use normative principles to increase the value

of a normative reasoning system, and that these techniques have promise for maxi-

mizing the value of a variety of computational procedures. Normative analyses at the

metalevel have the ability to take into consideration uncertain knowledge about the

cost of reasoning and about problem-solving efficacy.

1.4.1 Reflective Decision-Analytic Models

We can apply normative metareasoning to make decisions about the best way to

solve a variety of computational problems. In this dissertation, we shall examine the

use of normative metareasoning to guide normative reasoning of greater complexity

at the base level. In particular, we shall explore the ideal control of approximate

inference strategies in belief networks. I use reflective decision-analysis to refer to

the use of normative metareasoning for guiding base-level decision-theoretic reason-

ing. From the DA perspective, reflective decision-analytic models are richer than

traditional decision models, in that they consider autoepistemic information about

the process of problem solving in addition to distinctions and relationships in the

world. Autoepistemic distinctions include predicates that represent knowledge about

the value of continuing to compute with a particular inference strategy, about the

cost of resources consumed by a deliberation step, and about the value and costs of

the mechanisms used for metareasoning. We take the use of normative procedures

to control base-level normative reasoning as a model of rationality under resource

constraints.

Figure 1.1 highlights different classes of knowledge that we can apply in a reflective

decision analysis. We can use probability distributions to represent the uncertainty

in the costs and efficacies of different reasoning strategies, and of expected challenges
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from the environment. Other factors include uncertain knowledge about what a deci-

sion maker’s preferences are and how utilities assigned to states will be weighted and

combined in the future. I use bounded optimality to refer to the optimization of the

value of actions taken by a reasoning system, given assertions about the system’s rea-

soning abilities, the problems expected in an environment, and costs and constraints

on reasoning resources. That I have pursued the optimization of reasoning under

bounded resources does not necessarily mean that verifiable bounded optimality is

my end-goal. Rather, I have sought to make explicit the relative performance of al-

ternative reasoning methodologies, and to generate additional insight about how we

might further enhance the activity of our computational systems.

1.4.2 Naive Versus Reflective Normative Systems

In many contexts, the intuitions of AI investigators on the inapplicability of decision-

theoretic reasoning strategies can be supported by normative meta-analyses. Given

constraints on time or on engineering resources, the solution of a problem with an

approximation or more ill-characterized heuristic technique can have a higher expected

value than does a detailed normative analysis—in spite of ensured suboptimality or

uncertainty in the performance of the strategy. In the case of a high-stakes decision

problem, such as determining whether a patient in an intensive-care unit should be

treated for left-ventricular failure or hypovolemia, or whether a power plant should be

shut down, given evidence about a possible breach of coolant, we may not be able to

wait while a complex probabilistic model is evaluated. The ideal model or inference

strategy to use depends on the cost and availability of time for computation. We wish

to endow reflective normative decision systems with such knowledge.

We shall view rational decisions as actions dictated by the principle of maximum

expected utility: A reasoning system should choose an action (whether it be a problem-

solving action or an action in the world) that optimizes the expected utility of a

system user or client. From this perspective, committing to an involved decision

analysis in time-pressured situations can be irrational. It is easy to find examples

where the use of systems based on single-level or “naive” normative reasoning models

may be irrational. For example, a normative meta-analysis of a heuristic rule that
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directs a rapid “reflex” response in a time-pressured setting might demonstrate that

use of the heuristic has a higher expected utility than would be assigned to a real-

time decision analysis of the same problem. The analysis might further reveal that,

although the heuristic frequently results in inappropriate action, the long-term losses

associated with these inaccuracies are trivial compared with the costs incurred when

the normative method misses a deadline for response. In other contexts, the same

normative model could be more valuable than the heuristic strategy. Theoretical or

empirical analyses of the value of the alternative methods, or of different approximate

inference strategies for normative reasoning, could yield rules that we could apply to

select the procedure with the greatest expected utility.

To date, normative computer-based inference procedures and representations have

not included an explicit consideration of the cost of reasoning. We have few computa-

tional tools for addressing the naivety of complex analyses, given limitations in

computational or engineering resources. We also have few techniques that could

allow a reasoning system to react to variation in the problem difficulty and in the

time criticality of taking action. Potential benefits of the pursuit of optimal nor-

mative reasoning under resource constraints include the construction of reasoning

systems that can custom-tailor their response to different contexts dynamically, and

that have greater expected value than do simple policies or heuristic approaches.

Perhaps more important, the study of normative metareasoning can provide insight

about principles of reasoning under scarce resources.

1.4.3 Real-Time Versus Design-Time Metareasoning

Normative metareasoning includes the use of decision-theoretic procedures to rea-

son about alternative problem-solving procedures strategies in an offline engineering

setting, and in a real-time setting. Offline analyses can be useful for developing a

priori computational policies that are tuned to an expected set of problem instances.

These a priori policies include simple default control rules, or may be more sophis-

ticated schemata for the control of computation designed to react, in real-time, to

simple patterns of evidence about a problem instance. Offline normative analyses

may indicate that the best real-time strategies for solving a set of problems should
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Figure 1.1: Knowledge used in normative metareasoning.
Normative metareasoning systems consider the costs of reasoning and the efficacy of alterna-
tive solutions. In the engineering of reasoning systems, we can also consider the frequency
of different classes of problems, to create reasoning policies that are ideal for use over
time. These classes of knowledge may be uncertain, as indicated by the probability density
function representing uncertainty in problem size. As indicated by the icons, techniques
for optimizing reasoning under resource constraints can be valuable for decision-support
systems, as well as for autonomous reasoning systems.
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not rely on the explicit representation and manipulation of probability and utility

information. Alternatively, an offline analysis can suggest that real-time normative

metareasoning is valuable for solving a class of problems. If an analytic regress is

to be avoided, real-time decision making must be far less expensive than base-level

inference (we shall touch on analytic-regress issues in Chapters 5 and 9). We wish

to identify inexpensive meta-analyses to direct expensive computational processes at

the base level. Thus, real-time metareasoning typically depends on the development

of metalevel decision analyses with tractable solutions or approximations. We shall

explore the real-time control of approximate probabilistic reasoning strategies with

inexpensive closed-form solutions. Besides time constraints, we may also consider

other classes of resource in an offline meta-analysis. Other constraints include the

cognitive resources required by a human to understand the conclusions of complex

reasoning, and the work required in the knowledge-acquisition phase of building an

expert system.

1.5 Flexibility Through Graceful Degradation

We could apply normative metareasoning to compare the value of a large set of nor-

mative and nonnormative approaches to reasoning under uncertainty. I have focused

my attention on normative approximation methods. Traditional approaches to au-

tomated decision-theoretic reasoning and representation have been inflexible. That

is, the reasoning methodologies have been directed at performing a complete analysis

at a single level of detail. People in many professions are familiar with the 80–20

rule. This rule is invoked often to describe the sense that, in many problem-solving

arenas, it is possible to solve a great portion of a problem of a problem for a small

fraction of the effort required to do a complete or perfect analysis. Despite our com-

monsense knowledge about the typical relationship between the effort expended on

an analysis and the quality of a solution, computer scientists have offered few formal

methodologies for making such tradeoffs. Instead, a great majority of research on

computational problem solving has dwelled on all-or-nothing strategies that provide
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Figure 1.2: Principled control of normative reasoning.
Normative meta-analyses could be performed to choose among alternate heuristic and
normative-approximation strategies; we examine the control of approximation strategies
S for normative problem solving. We desire approximation procedures that can provide
partial results along a spectrum of precision or accuracy as more resources are committed
to problem solving. The availability of flexible strategies provides a normative metareasoner
with a continuum of decisions about the amount of resources to commit to reasoning.
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a single final answer: If a reasoning system has enough time for a complete analy-

sis, a precise answer is made available. If fewer resources are available, reasoning is

worthless.

We would like to have the ability to perform increasingly complete analyses as time

becomes less expensive, and to trade off accuracy for timeliness as the pressure to

act increases. I have pursued the development and investigation of flexible reasoning

strategies that can perform analysis at different levels of detail, and that can trade

off different dimensions of quality for computation time. I use flexibility to mean the

ability of a strategy to generate results spanning a continuum of quality, paralleling

the quantity of computational resource that is allocated. The ability to adjust the

detail and level of normative analysis, and to appropriately focus the attention of

computational resources, can help us to improve the tractability and naturalness of

computation.

Figure 1.2 expresses schematically the value of flexible normative-approximation

procedures that can provide partial results along a spectrum of precision or accuracy

as more resources are committed to reasoning. The figure highlights how flexible

strategies allow for the graceful degradation of the precision of the results of prob-

abilistic inference as fewer resources are applied to the problem. Flexible strategies

can be viewed as increasing the number of control decisions available to a reasoning

system. Such strategies are especially valuable for a system that must reason under

varying and uncertain resource constraints. We shall describe in Chapter 2 how giving

a reasoner the opportunity for making decisions about the best tradeoff between time

for computation and quality of results frequently translates into increased expected

utility.

We can apply normative metareasoning to reason about the selection, and opti-

mal halting time, of reasoning strategies that refine results as costly resources are

expended. Designing decision-theoretic strategies with a range of precision can en-

dow automated reasoners with the ability to respond effectively to decision-making

challenges over great ranges of computational resource costs and constraints.
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1.5.1 Flexible Probabilistic Inference

After exploring basic properties of flexible computation and normative control, we

shall turn to the problem of computing beliefs and ideal actions under varying resource

constraints. I shall present flexible approximation strategies, including bounded condi-

tioning (Horvitz et al., 1989c). Bounded conditioning decomposes inference problems

into sets of subproblems, and solves these subproblems in the order of their ability to

refine the upper and lower bounds on a probability of interest. Figure 1.3 highlights

the manner in which this algorithm refines the bounds on a probability of interest

with computation. As we shall see in Chapter 5, the algorithm has been designed to

perform in the spirit of the 80–20 rule; if possible, most of the inference problem is

solved early on.

1.5.2 Economics of Flexible Computation

We shall investigate the ideal control of computation for the automated determination

of beliefs about the truth of relevant propositions, and for determining optimal actions

in the world, based on those beliefs. However, exploring the computational founda-

tions of rationality will require a clear elucidation of general principles for controlling

computation under resource constraints. Such principles can be useful for optimizing

the value of computer-based problem solving in a large number of application areas.

Figure 1.4 highlights the generality of normative metareasoning about flexible

computation. Beyond decision-theoretic inference, the focus of my dissertation work,

we can apply normative metareasoning for optimizing the value of a variety of computa-

tional goals. In Chapter 3, we shall touch on illustrative examples that highlight the

potential gains of using flexible computation and normative control of reasoning for

solving tasks as diverse as sorting a file of records or searching a large tree of possi-

bilities.

We shall explore flexibility with regard to sorting before delving into the details

of flexible probabilistic inference and normative control of inference in Chapters 4

and 5. The task of sorting a file of records provides a source of pedagogical examples

of flexible reasoning and of multiple dimensions of value in a partial result. We
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Figure 1.3: A flexible probabilistic-inference strategy.
The graph demonstrates the convergence of the upper and lower bounds on a probability
of interest with the application of the bounded-conditioning approximation strategy. With
computation, the interval between the lower and upper bounds is diminished.
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Figure 1.4: A generalization of normative metareasoning to general problem solving.
We can apply normative reasoning about flexible computation for controlling the allocation
of resource in a variety of computational tasks. For example, the principles of decision-
theoretic control and the value of graceful degradation of complete analysis described for
discussions about control of decision theory apply to sorting and searching.
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shall see how several sorting algorithms can produce partial results, and can refine

the results with continuing computation. I shall describe a system I constructed,

named Protos/Algo, that enables us to build and inspect the value of partial sorting

results, and to observe different patterns of problem refinement. The system displays

partial sorts as two-dimensional graphs of points with the y coordinate equal to the

sorting key of a record, and an x coordinate equal to the position of that record in

a file. Protos/Algo’s graphical output and associated economic analysis is displayed

in Figure 1.5. These graphs show the position of record keys of different values in a

file before and during the sorting process. The graph in the foreground of Figure 1.5

plots the value over time of continuing to compute.

1.6 The Protos System

In Chapter 6, I shall present the architecture and behavior of a reflective decision sys-

tem, named Protos.3 I implemented Protos to demonstrate key issues of normative

metareasoning about probabilistic inference. The system is a prototype of norma-

tive metareasoners that may someday find application in expert systems, closed-loop

decision-making systems, and autonomous agents that make use of large probabilistic

knowledge bases for making decisions.

The operation and basic components of Protos are displayed in the schematic

in Figure 1.6. Protos’ architecture consists of (1) an inference base, which contains

probabilistic inference strategies, (2) a probabilistic-dependency base, consisting of

a belief network representing domain knowledge, and (3) a normative metareasoner.

At run time, a problem-specific decision model (in the case of medical reasoning, a

patient-specific model) is constructed from a utility model and decision problem that

are passed to the system. The metareasoner uses knowledge about the efficacy of

problem solving to make a decision about the best computational strategy to apply.

As highlighted in Figure 1.6, the metareasoner trades off the cost of delay with the

value of additional reasoning to determine the best action to take, and the time

at which to take that action. In response to evidence (e.g., observations about a

3Protos is a partial acronym for project on computational resources and tradeoffs.
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Figure 1.5: Exploration of the value of partial results.
The Protos/Algo system displays partial results and optimal halting times of different sort-
ing algorithms. Points in each graph represent the position (x axis) and the value of the
sorting key (y axis). The system enables a user to define multiattribute utility models that
assign value to partial sorts. The costs and benefits of the sorting algorithm are summa-
rized in a graph (foreground). Note that the net value begins to drop because the constant
increase in computational cost begins to dominate diminishing improvements in the result.
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patient’s symptomology), Protos makes use of knowledge about the time-dependent

utility of alternate outcomes to decide how long to dwell on an inference problem

before recommending action.

As an example, let us consider the case where Protos helps a physician to decide

whether a patient showing signs of respiratory distress should be given assistance

with mechanical ventilation. Given information about a patient’s symptoms, Protos

begins to apply a flexible probabilistic inference strategy. Graphical output of Protos,

used to justify the system’s actions, is displayed in Figure 1.7. One graph shows the

convergence with computation of the upper and lower bounds on the probability

that the patient is in a state of respiratory failure, a state that requires immediate

mechanical ventilation. The system also graphs changes over time in a probability

threshold that dictates optimal action. The probability threshold is determined from

the costs and benefits of treating a patient that may or may not have have a disease.

In our example, the threshold is the probability of respiratory failure that would

dictate treatment of the patient with a mechanical respirator.

Under the pressure of time, Protos can dictate action before a point probability

is computed, and before the bounds on the probability that a patient has a disease

passes over the threshold. Another graph in Figure 1.7 shows the expected value of

continuing to compute. It is worthwhile to continue as long as the expected value of

computation (EVC) is positive. Protos can show different perspectives on the decision

making under bounded resources. Figure 1.8 is a representation of the state of belief

and utility at the time a decision to act was recommended.

Protos’ behavior demonstrates how ideal computation and decisions change with

alterations in the time criticality of a situation. Figure 1.9 displays the same inference

problem in a less critical context. In this case, a later halting time is indicated.

Figure 1.10 demonstrates the partial result at the new halting time for this context.

Details about the design, functionality, and performance of Protos will be presented

in Chapter 6.
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Figure 1.6: Architecture and behavior of Protos.
In response to observations (such as the symptoms of a patient in a critical-care setting),
Protos decides on the most valuable reasoning strategy. Protos consists of an inference
base, which makes available alternate probabilistic-inference strategies, a probabilistic de-
pendency base, representing uncertain relationships in a problem area, and a normative
metareasoner, which decides how complete an analysis should be undertaken given the
costs and benefits of reasoning. This decision depends on the stakes and time-dependent
utility represented in a problem-specific model that is passed to the system or constructed
at run time.
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Figure 1.7: Ideal reflection before action.
Protos determines to halt inference and to recommend action after reflecting about a prob-
lem for 20 seconds. (a) A graph drawn by Protos, showing the convergence of upper and
lower bounds on the probability of a crucial state (ub, lb), the mean of the current belief
(line between the upper and lower bounds), and the probability threshold (p∗) for taking
action. The graph also shows the ideal time for taking a treatment action (vertical line).
(b) A graph of the value of continuing to compute.



0.0

0.5

1.0

U
til

ity

Probability of H1

0.0

0.5

1.0

0.5       

1.6. The Protos System 27

Figure 1.8: A state of partial information.
This graph represents the state of information about the decision problem from Figure 1.7
at the time Protos recommended action. The two plots are the utilities of treating (A2)
and of not treating (A1). The lines cross at a a probability threshold (p∗) and intersect the
sides of the graph at the utilities of four possible outcomes. The upper and lower bounds
(lb,ub) indicate the state of the probability calculation when inference ceased. These and
other components of this graph are explained in detail in Chapter 6.
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Figure 1.9: A less critical decision-making context.
Protos now reasons for 42 seconds before halting its deliberation and recommending action.
(a) A graph demonstrating a new reasoning policy in a less time-critical situation. In
this case, the dominance of one of the decisions is proved with greater refinement of the
probability. (b) The value of computation remains positive longer in the less time-critical
situation.

1.7 Dissertation Overview

I shall present basic concepts and definitions useful for the analysis of problems of

computation under bounded resources in Chapter 2. In Chapter 3, I shall describe

the use of multiattribute utility to probe dimensions of value of computational proce-

dures and to reason about the costs and benefits of continuing to compute. Flexible

computation and its relationship to the utility of problem solving shall be discussed

in the context of sorting algorithms. We shall investigate the value of computation

for decision-theoretic inference in Chapter 4. There, I shall develop closed-form so-

lutions to the expected value of computation (EVC) for bounding algorithms. In

Chapter 5, I shall introduce the flexible bounded-conditioning approximation strat-

egy, describe its properties and limitations, and discuss possible extensions to the

basic approach. In Chapter 6, I present details about the implementation of Protos.

Details of the system’s functionality and output shall be reviewed. Chapter 7 contains

a discussion of the value of metareasoning. I also validate Protos’ performance by
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Figure 1.10: A different state of information.
In the less critical situation, Protos halts at tighter bounds on the probability of interest. In
this case, the upper bound (ub) has moved below the threshold probability (p∗). When the
lower bound on the probability moves below the decision threshold, the system has proved
that decision A2 is the best action.
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running analyses of problems with different stakes and time criticalities. In Chapter

8, I shall present related research on normative reasoning under cognitive resource

constraints. Readers interested primarily in the comprehensibility and explainability

of decision-theoretic inference can review this work as a standalone chapter. Finally,

I shall summarize this work and discuss future research on normative metareasoning

in Chapter 9. Readers unfamiliar with decision theory, influence diagrams, or belief

networks may wish to review Appendix A to understand better Chapters 4 through

6.



Chapter 2

Flexible Computation and

Principled Control

To formalize reasoning and action under bounded resources, we must develop a lan-

guage and a set of metareasoning procedures that allow us to consider the expected

value of alternate computational methods and runtimes. In this chapter, we shall

review a set of concepts and definitions about the costs and benefits of computation,

and shall use these concepts to introduce the notion of partial computation and par-

tial results. After discussing computation under uncertainty and multiple dimensions

of value in partial results, we shall explore desirable properties of flexible computation

for problems under varying and uncertain time constraints. Finally, we shall analyze

the problem of computing the expected value of computation (EVC).

2.1 Flexibility and Control

Much of theoretical computer science has been founded on analyses of the difficulty

of achieving well-defined single answers to computational problems (Aho et al., 1983;

31
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Garey and Johnson, 1979). Investigators studying computational complexity have im-

plicitly assigned only one of two measures of utility to computational behavior: Either

a final solution can be computed, which has maximum object-level utility, or that so-

lution cannot be found in the time available, and the effort is worthless. Although

such an assumption has brought useful simplification to analyses of computational

complexity, it has biased research toward policies that are indifferent to variation

in the value of an answer, or to the costs and availability of resources. Computer

scientists have done substantial work on approximation procedures that give results

guaranteed to be within some measure of error from ideal solutions (Papadimitriou

and Steiglitz, 1982; Lawler et al., 1985). However, little attention has been devoted

to the formalization of methods that can be used to consider the costs and benefits

of alternate strategies or of computing for additional quantities of time in different

situations.

An examination of the dynamic nature of decision making in the real world high-

lights the narrow focus of worst-case time-complexity analyses. It is easy to demon-

strate wide variations in the value of a result and the cost of delay to a decision maker.

In situations of varying and uncertain resources, we may, in some cases, have time to

solve a problem completely; in other cases, we will not have enough time. If we do

not have enough time to perform the computation required to generate a complete

solution, we must rely on some approximation method. Approximation strategies

generate nonoptimal or partial results in a fraction of the time required to generate

the complete or ideal answer.

We seek to increase the expected value of computation by devising machinery for

custom-tailoring solution procedures to specific problems and contexts. In particular,

we wish to make our computational methods sensitive to time criticality, the value

of likely outcomes, and the expected refinement of solutions with additional compu-

tation. Such problem-specific information may be deterministic or uncertain. Our

ability to optimize the behavior of problem-solving in varying situations hinges on the

identification of one or more dimensions of flexibility that allow us to trade increases

in computational resource for increases in the utility of results, or to balance alternate

attributes of value in a solution.
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We can introduce flexibility—and thus provide new opportunities for directing

computation—at different levels of analysis. At the strategic level, we seek to select

a reasoning strategy from a set of predefined strategies, and to determine the length

of time to apply a strategy before acting in the world or reevaluating that strategy.

Control decisions at the structural level are finer-grained decisions that determine

a single or small number of computational steps. Structural control includes fine-

grained decisions about the next best node to expand in a search, the best records to

swap in sorting a file of records, and the best way to decompose a problem into a set of

subproblems. The fundamental principles of normative metareasoning and control are

insensitive to the level of analysis. For directing computation at any level of detail, we

must consider (1) the expected costs and benefits of alternate computational paths,

(2) the value of initiating or continuing to compute, relative to that of taking an

action in the world, and (3) the costs of metareasoning and control.

2.2 Approximation and Partial Results

Before delving further into issues of control under uncertainty, let us consider the

nature of approximation and partial results. We can consider an approximate or

partial result to be a representation of a state of information about a complete or

ideal solution. We can view a computation strategy S as generating a partial state of

information π(I) about a ideal solution φ(I) by applying a sequence of computation

steps to a problem statement or problem instance I, and by expending some quantity

of reasoning resource r—typically, computation time. We associate with each problem

instance an initial state of information πo(I). We write

S[πo(I), r]→ π(I)

As an example, we consider the initial positions of items in a randomly permuted

file of records to be a problem instance, a sorting algorithm to be a strategy, and

partial results to be the intermediate states of information representing the position

of records in the file. Allocating additional quantities of time to the strategy changes

the state of information about the ideal ordering of records in the file.
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2.2.1 Value and Cost of Problem Solving

There are benefits and costs associated with the transformation of a problem instance

into a partial or final result. We shall use comprehensive value, uc, to refer to the

utility attributed to the state of information represented by a problem instance or

partial result. The comprehensive utility is a function of the object-level utility, uo,

and the inference-related cost, ui. The object-level utility is the value associated with

the information represented by the computer result and state of the world without

regard to the cost of reasoning that may be necessary to generate the result.

Typically, we must spend time waiting for a computational result. In this case,

the inference-related cost is the penalty incurred while delaying to arrive at a more

accurate result. Beyond the cost of time, expensive reasoning resources may also

include the memory required by a problem-solving procedure. From the perspective

of a computer operating system, a cost can be associated with the dynamic allocation

of memory to a specific problem-solving procedure, as this memory cannot be used

by other procedures.

Assuming that the inference-related cost and the object-level utility are decompos-

able, and are related by addition, the comprehensive utility, at any point in the rea-

soning process, is the difference of the object-level utility of a partial result, uo(π(I)),

and the inference-related cost, ui(r),

uc(π(I), r) = uo(π(I))− ui(r) (2.1)

The net expected change in uc, in return for an allocation of some computational

resource to reasoning, is the expected value of computation (EVC). If we use uo(π(I))

and ui(r) to refer to initial measures of the object-level and inference related costs

and use uo(π′(I)) and ui(r
′) to refer to the object-level utility and inference-related

cost after expending a larger amount of resource on computation (r′ > r), we can

write

EV C = uc[π
′(I), r′]− uc[π(I), r] (2.2)

or

EV C = [uo(π′(I))− uo(π(I))]− [ui(r
′)− ui(r)] (2.3)
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If the resource expenditure and the object-level value are zero at the outset of com-

putation, we can drop the second term of Equation 2.2; thus, under this condition,

the EVC is equivalent to uc.

We shall use EVC to compare the value of alternate reasoning strategies and to

reason about the length of time to apply a strategy before halting computation and

acting with the information represented in the current result. We shall examine the

formulation of EVC in this chapter, and shall explore tractable formulations of EVC

for probabilistic-inference problems in Chapter 4.

2.2.2 Multiple Dimensions of Value in Partial Results

Most approximation methods make available some measure of error between an ap-

proximate and complete answer to a problem. Traditionally, investigators have sum-

marized the difference between approximate and ideal results along a simple dimen-

sion of quality. We take a multiattribute utility view of approximation. For each

problem instance, we associate a multidimensional approximation space AI that con-

tains the ideal answer φ(I) and approximations to φ(I). As we shall see in Chapter

3, dimensions of AI are based on the use made of the result and are rooted in hu-

man preferences. From the perspective of an approximation space, most analyses

of approximation procedures center on the ability of alternate methods to reduce a

real-valued measure of distance between points constrained to a single line within the

space. An example of a widely used, context-independent distance among results is

the numerical approximation, where the distance is a measure of accuracy or precision

(e.g., the result of a Taylor series carried to a particular term).

The characterization of the way an approximation strategy refines a single di-

mension of quality of a result can be inadequate for describing the value of alternate

computational strategies because such analyses can overlook multiple dimensions of

value in a partial result. Identifying multiple dimensions of quality allow us to in-

vestigate the sterotypical patterns of refinement displayed by different approximation

methods. They also can help us to identify fundamental tradeoffs among attributes

of quality in solving problems under specific resource constraints. Richer distance

metrics D : AI ×AI → R include cases where D represents the distance of π(I) from
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φ(I) along more abstract and higher-dimensional properties of a computational re-

sult. The most meaningful distance between partial results is the difference in utility

itself, uo(φ(I))− uo(π(I)).

Identifying multiple dimensions of quality in a partial result can highlight direc-

tions for research on approximation strategies. For example, we can elucidate a rich

multiattribute structure in partial results produced by such basic computational tasks

as sorting a file of records. As an example, a librarian may ascribe value to various

attributes of a partially sorted file of tardy borrowers. If a sorting task cannot be

finished, he may assign value to sorting algorithms according to their respective ef-

ficiencies in identifying records on the m most tardy book borrowers out a total of

n records. The value of a recommendation generated by a medical expert system in

a particular context might be a function of the status of several attributes, includ-

ing speed of computation, accuracy of a recommendation, and clarity of explanation.

Similarly, a reasoner attempting to maximize a robot’s expected utility in a complex

environment will generally have to consider multiple dimensions of value in goals.

For example, in making decisions about its next set of goals, a robot may have to

consider the distance and accessibility of costly staples of electrical power and oil, the

positions of alternative crate-stacking tasks, the speed with which it can create a new

plan, and its distance from other robots that might require or lend assistance.

We can describe the value and cost of computation with vectors of object-level

attributes ~v = (v1 . . . vm), and of inference-related attributes ~r = (r1 . . . rm). We

define each scalar attribute, vi, as a real number that lies between 0 and v∗i (φ(I)),

the value of vi in a precise answer or final result φ(I). From this perspective, the

object-level utility of partial results is represented as a point at some distance from

a desired ideal or final result φ(I) in a multidimensional space. The value of vi

reflects the degree to which a dimension of quality is embodied by a result. For all vi,

vi(π(I)) ≤ vi(φ(I)). Unless otherwise specified, we shall assume that the object-level

utility of a result increases monotonically with increasing values of any vi, if other

attributes are held constant. To simplify my notation, I use uo(π(I)) as shorthand

for uo[V (π(I))], where V (π(I)) is a function that returns a vector ~v of relevant scalar

attributes for a partial result π(I). I shall express attributes of value when their
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Figure 2.1: Components of value in computation.
We consider vectors of object-level and inference-related attributes in reasoning about the
value of computation. Object-level attributes are dimensions of preference in a computa-
tional result considered in the context of the state of the world. Inference-related attributes
are dimensions of preference that are intrinsic to the use of a reasoning system to gener-
ate an informational result. The comprehensive value of computation uc is a function of
object-level and inference-related attributes.

explicit introduction is necessary for clarity.

We shall examine the case of sorting, as a source of illustrative examples of multi-

ple dimensions of value in partial results, in Chapter 3. We shall explore in Chapters 4

through 7 the use of approximation strategies for probabilistic inference. Such strate-

gies produce and refine with computation different families of probability distributions

that describe the uncertainty in probabilities of interest. In Chapters 4 through 9, we

shall concentrate on the ideal allocation of resources for inferring recommendations

from large decision models.
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2.2.3 Prototypical Classes of Computation Cost

The cost of reasoning includes the cost of short-term uses of memory needed for com-

putation and the cost of delay. We shall dwell on the cost of delay in this dissertation;

nevertheless many of the key concepts can be applied to constraints in memory re-

source. The cost of delay can be described by several classes of penalty for delay.

Functions describing ui(r) include the urgency and deadline models (Horvitz, 1988).

Urgency refers to the general class of inference-related utility functions that assign

cost as some monotonically increasing function of delay. The deadline pattern refers

to cases where ui(r) is 0 until a certain amount of resource is expended. At the time

of the deadline, r = td, a result must be reported, or must be used to direct action,

immediately. Otherwise, the computation is worthless or a fixed cost is incurred. A

deadline can be hard or deterministic or can be uncertain. An uncertain deadline

exists in cases where a deadline is described by a probability distribution over a hard

deadline.

We can construct functions to express different time dependencies by combining

the urgency and deadline models. The urgent deadline represents situations where a

cost is incurred for delay, and a deadline requires all computation to halt. Delayed

urgency captures the case where computation is free until a particular point in time; at

this time, an urgent cost model is assumed. The urgent-deadline and delayed-urgency

patterns can be subdivided into certain and uncertain deadline situations. Several

of the prototypical models that I have defined for penalizing delay are displayed in

Figure 2.2.

2.3 Flexible Computation

We have discussed characterizing the performance of partial-result strategies with

probability distributions that are conditioned on information about a problem and

computation time. We have not discussed how partial results—or probability distri-

butions that describe uncertain partial results—might change with alternate expendi-

tures of time. Under situations of varying or uncertain resource costs and constraints,

it can be valuable to refine partial results incrementally in exchange for additional
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Figure 2.2: Prototypical classes of reasoning cost.
The top of the figure displays (a) deterministic deadline, (b) uncertain deadline, and the
more general (c) urgency model of cost. The bottom of the figure shows two combinations
of simple deadline and urgency models. In (d), the urgent-deadline model is displayed. In
this situation, a cost is incurred for reasoning until a deadline. In (e), the delayed-urgency
model is displayed. In this case, no cost is incurred until some future time.
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quantities of computation time. Incremental refinement of partial results enables us

to avoid dramatic losses given small changes in the amount of resources applied to

reasoning. We often can view incremental refinement algorithms as having the ability

to use the output of a previous partial analysis as the problem-instance input for

additional refinement. That is,

Si[π
o(I), r]→ π(I)

Si[π(I), r′]→ π′(I)

Some reasoning strategies S produce results that increase in quality smoothly and

monotonically with increasing amounts of computation. Other strategies produce

results that do not change at all, or that become less valuable before becoming better.

2.3.1 Desiderata of Flexible Computation

We can define useful properties of computation under bounded resources in terms of

the resources consumed by a reasoning strategy, and by object-level attributes of a

computational result. For the definition of the properties, we shall assume that the

object-level utility of a partial result is a continuous and monotonically increasing

function of the value of an attribute. Desirable properties of flexible computation

include solution convergence, resource monotonicity, and resource continuity (Horvitz,

1987c):

• Solution convergence: We desire our strategies to converge on the optimal

object-related value at some level of resource expenditure,

lim
r→∞

Si[π
o(I), r]→ φ(I)

Solution convergence ensures that a flexible strategy can compute an optimal

object-level result with sufficient resources. We define the complete resources,

rc(Si, π
o(I)), to be the minimal quantity of resources we need to solve com-

pletely a problem instance I with that strategy. The weaker property of partial

convergence is defined in terms of convergence on an ideal value of one or more

attributes of value; that is, vi[π
′(I)] converges on v∗i = vi[φ(I)] with computa-

tion.
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• Resource monotonicity: We wish to refine attributes of a result with

computation. A strategy shows resource monotonicity over a range of resource

expenditure if, for any two quantities of resource r and r′, r′ ≥ r, within that

range, for partial results π(I) and π′(I) generated by computational processes

S[πo(I), r]→ π(I) and S[πo(I), r′]→ π′(I),

v′i[π
′(I)] > vi[(π(I)]

for one or more attributes vi. We say that strategy S shows resource monotonic-

ity for vi. Because digital computation is intrinsically discrete, we typically are

limited to the weaker property of bounded monotonicity, which constrains r and

r′, r > r′, to be multiples of a minimal quantity of resource investment rmin,

r = nrmin, where n is a whole number.

• Resource continuity: We desire a strategy to show continuity in its abil-

ity to refine attributes of a result with continuing computation. For any two

resource expenditures r and r′ and partial results π(I) and π′(I) generated

by computational processes S[πo(I), r] → π(I) and S[πo(I), r′] → π′(I), we

wish, for any ε > 0, that there exist a δ > 0 such that, if |r′ − r| < δ, then

|v′i[π′(I)]− vi[π(I)]| < ε. Although we desire a continuous refinement of results

with computation, the intrinsic discrete nature of digital computation intro-

duces discontinuities. Thus, we must settle for a weaker property of bounded

discontinuity, in which we characterize a reasoning strategy in terms of limits

on the discontinuity in the refinement of an attribute with the allocation of

small amounts of resources. For any two resource expenditures r and r′, where

r′ − r = x, x > rmin, and resulting partial results π(I) and π′(I), we constrain

the discontinuity in the change of an attribute vi by specifying a function f(x)

such that

|v′i[π′(I)]− vi[π(I)]| ≤ f(x)

Some approximate reasoning strategies may not converge on a final answer. Other

strategies may show resource monotonicity in only certain regions, or may show re-

source monotonicity but not converge on a final result. We use the term spanning
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Figure 2.3: Value of flexible reasoning under varying resource constraints.
The upper graph shows a probability distribution over deadline times. The lower graph
shows, on the same time scale, the all-or-nothing performance of strategy S1 and the utility
of partial results generated by an incremental refinement strategy (S2). In this case, the
flexible algorithm converges on a final result with ideal object-level utility, u∗. The utility
of using S2 at any halting time is indicated by the height of the object-level utility curve
at the time of the deadline (vertical line). Unlike that of the incremental strategy S2, the
utility of S1 is worthless if the deadline occurs before the algorithm is finished.
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strategies to denote reasoning methods that exhibit resource monotonicity that ex-

tends from an initial problem instance to convergence on a final result.

The desirability of solution convergence, resource monotonicity, and resource con-

tinuity (or its approximation) is founded on the pursuit of an economic “fairness” in

the production of partial results. We would like to have some valuable refinement of

a result in return for an expenditure, no matter how little we expend. Traditional

computational methods provide us with a return only after we make a large invest-

ment. Such problem-solving “pricing schemes” are worthless when we do not have

the minimum resources required to purchase a refined result.

2.3.2 Value of Flexibility Under Uncertainty

As highlighted in Figure 2.3, flexible computation is especially useful for reasoning

under uncertain challenges and deadlines; flexible problem solving generates immedi-

ate object-level returns on small quantities of invested computation, and minimizes

the risk of dramatic losses in situations of uncertain resource availability. The incre-

mental nature of flexible strategies provides a reasoning system with the opportunity

to select from a broad spectrum of alternate resource expenditures. Intuitions about

the value of strategies that show monotonicity, continuity, and convergence can be

strengthened by considering the utility of adding additional partial results to a rea-

soning strategy.

Consider a strategy S that generates a partial result π(I) from an initial problem

instance I with the allocation of a quantity of resource r; that is S[πo(I), r]→ π(I).

Assume that S cannot generate a result with object-level utility greater than uo(π(I))

until a quantity of resources r′ is expended, where r′ > r. In return for r′, S gener-

ates π′(I). We call π(I) and π′(I) adjacent results for strategy S. For all-or-nothing

algorithms, the initial state of information and the final answer are adjacent results.

Now, let us determine the value of modifying S by adding the capability to generate

results of intermediate value between two adjacent results π(I) and π′(I). An inter-

mediate result (π′′(I) is a new partial result, generated for an intermediate allocation

of resource r′′, r < r′′ < r′, such that uo(π(I)) < uo(π′′(I)) < uo(π′(I)).

Let us consider the value of modifying an all-or-nothing strategy S by adding an
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ability to generate an intermediate result. We shall refer to the new strategy as S ′.

S requires r to generate a result π(I). If we commit a smaller amount of resources

to S, we have only the initial state, πo(I). S ′ computes an intermediate result π′(I)

for resources r′, r′ < r. We know that, if uc increases monotonically with increases

in uo, then uc(π
′(I), r′′) > uc(π

o(I), r′′) for expenditures of intermediate quantities

of resource, r < r′′ < r′. To analyze how this possibility for achieving greater value

increases the expected utility of a strategy under uncertainty, we consider the case of

an uncertain deadline.

We shall compute the difference in the utility of applying S and S ′ under an un-

certain deadline, described by a probability distribution p(td|ξ) over a halting time

td. The symbol ξ refers to the background state of knowledge that is not stated ex-

plicitly as a condition of the probability distribution (see Appendix A for a discussion

of ξ). Under a pure deadline, ui(r) = 0. Thus, we can compute uc in terms of the

object-level utility of partial results. We compute the expected utility by integrating

over the probability density function that describes the likelihood of computing each

partial result. The utility associated with S is

uc =
∫
td<r

p(td|ξ)uo(πo(I)) +
∫
td≥r

p(td|ξ)uo(π(I)) (2.4)

The revised utility, u′c, associated with S ′, is

u′c =
∫
td<r′

p(td|ξ)uo(πo(I)) +
∫
r′≤td<r

p(td|ξ)uo(π′(I)) +
∫
td≥r

p(td|ξ)uo(π(I))(2.5)

Thus, under a deadline, adding an intermediate partial result increases the expected

utility by

∆uc =
∫
r′≤td<r

p(td|ξ) [uo(π′(I))− uo(πo(I))] (2.6)

Endowing a reasoning system with a capability to make decisions about partial com-

mitments of resource can be translated into increased expected utility under uncertain

and varying resource constraints. We can continue to increase the utility of a strat-

egy under an uncertain deadline by adding additional intermediate results. We refer

to the preference of using strategies with greater numbers of intermediate states as

incremental dominance.
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In our analysis of the value of flexiblity, we assumed that, with the exception

of the addition of an intermediate state, all else about the behavior of a strategy

is unchanged. However, we do not always prefer a flexible strategy. A computer-

based reasoner may have to pay a resource penalty for flexibility under uncertain and

varying resource constraints: Overhead is often incurred in generating π(I). Figure

2.3 highlights how an inflexible, all-or-nothing approach may be more efficient than a

flexible approach in producing a final result and thus would be preferred in contexts

where sufficient resources are guaranteed.

2.4 An Economics of Flexible Computation

Let us explore the ideal control of flexible computation strategies in the special situa-

tion where we have a functional characterization of the value and cost of computation.

We rarely have such simple a priori deterministic characterizations of value and cost

of computation in real-world problems. Thus, in Section 2.5, we shall resort to the

use of the more general difference-equation representation to reason about changes in

utility. Nevertheless, a priori deterministic characterizations can illustrate a funda-

mental economics of computation, and provide insight about more complex analyses

of ideal computation under uncertainty in the quality of results that we shall review

in Section 2.5 of this chapter and in Chapter 4.

The availability of functions that describe the performance and cost of reasoning

strategies enables us to determine quickly the ideal object-level utility and computa-

tion time for each strategy, in turn enabling us to prove efficiently the dominance of

one computational strategy over another, and to determine how long to apply that

strategy. Such analyses are similar to methods employed in microeconomic theory

for considering optimal levels of an industry’s production of a commodity, given the

value of product and expenses of manufacturing (Nicholson, 1984; Samuelson, 1973).

Let us turn to the graphical representation of the value and cost of flexible com-

putation demonstrated in Figure 2.4. Assume that the graph represents a flexible

strategy for the generation of a result needed for making a time-pressured medical-

therapy decision. In this case, the object-level utility function is modeled by an
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Figure 2.4: Economic relationships among components of utility in flexible reasoning.
In this example, the refinement of the object-level utility (uo) is modeled by a function with
a positive derivative and a negative second derivative, and the inference-related cost (ui)
is linear with time (for clarity, we graph −ui). The optimal comprehensive value (u∗c) is
reached at time r∗. At this time, the rate of refinement is equal to that of the cost of delay.
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Figure 2.5: Ideal computation in a more critical context.
If we increase the cost of reasoning, from ui to u′i, we have a new optimization. The revised
optimal comprehensive value (u′c) is reached at a new ideal halting time (r∗′) when the rate
of refinement object-level utility is equal to the revised rate of the cost of delay.

inverse-exponential process. Specifically, uo = 1 − e−k(I)r, where k is a parameter

that describes the curve as a function of an instance. The graph labeled uo in Figure

2.4 displays the object-level utility delivered by a flexible strategy as a result is refined

with additional time r. Assume that we find, through preference assessment, that a

patient incurs a cost that grows as a linear function of time when a clinician delays an

action. Figure 2.4 shows a specific linear inference-related cost function ui(r) = Cr,

where C is a constant representing the time-criticality of a context. For clarity, we

plot −ui. As portrayed in Figure 2.4, uc rises to a maximum u∗c at an ideal stopping

time r∗. After we reach u∗c, it is not worthwhile to expend additional resource: For

each tick of the clock past r∗, we lose more in the cost of delay than we gain through

additional object-level refinement.

To determine the ideal halting time and maximum comprehensive value generated

by a single flexible reasoning strategy, we need to find the ideal resource allocation r∗

that optimizes the uc. To identify such utility maxima, we can differentiate Equation
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2.1 and identify halting times where the derivative of uc with respect to r is zero, and

the second derivative of this function is nonpositive. At these points, the object-level

value delivered per second is equal to the inference-related cost of delay, ∂uo

∂r
= ∂ui

∂r
.

In our example, the refinement of the object-level utility of a partial result with time

is modeled by a function that has a first derivative that is everywhere nonnegative

and a second derivative that is everywhere negative. In this case, if the first and

second derivatives of the function describing the cost of reasoning are everywhere

nonnegative (as in the example), then there is a single maximum that indicates the

optimal comprehensive value, u∗c. In such cases, the ideal time r∗ needed to compute

the result with the ideal comprehensive value is reached when the rate of refinement

is equal to the cost of reasoning. For the exponential function, we can determine from

a simple optimization that r∗ = − ln[ C
k(S,I) ]
k(I)

, and u∗c = 1− C
[

1−ln[ C
k(I) ]

k(I)

]
.

Flexible reasoning strategies allow us to optimize reasoning over large ranges of

resource. As indicated in Figure 2.5, we can use such a rule to determine quickly the

revised r∗ and u∗c with changes in the costliness of delaying action. For more complex

families of value and cost functions, we may have to compare several allocations of

resource to distinguish local from global maxima.

So far, we have optimized the application of a single strategy. In the case where

we have a set of flexible methods, we must decide which strategy is the most valuable,

in addition to what is the optimal length of time to use that strategy. In such a case,

we solve for the ideal resource allocation, r∗i , and associated global maximum, u∗c,

for each strategy, Si, and then choose the strategy, S∗i , with the greatest value. A

reasoning system optimizes utility of computation by applying strategy S∗i for r∗Si .

Figure 2.6 shows the ideal resource allocations and object-level utilities associated

with two different strategies, S1 and S2. Notice that the most valuable strategy to

apply changes from S1 to S2 as the cost of reasoning increases.

2.5 Normative Metareasoning

In general, the refinement of a partial result is not a simple, monotonic function

of the resources applied to reasoning. Thus, we typically do not have deterministic
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Figure 2.6: Consideration of two incremental strategies.
(a) We compare the optimal resource allocation and ideal comprehensive value of strategy
S2 (as indicated by the open circle) with strategy S1 (as indicated by the filled circle). Given
the current cost of reasoning, strategy S1 is more valuable than S2. (b) The strategy with
the greatest ideal comprehensive value changes from S1 (open circle) to S2 (filled circle) for
a situation of greater criticality.
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information about the partial results we shall achieve with computation. We also do

not have deterministic knowledge about resource cost and availability. Therefore, we

cannot use simple economic arguments to decide on optimal strategies and reasoning

times. In such cases, we need to reason under uncertainty to make decisions about

the best means of solving a problem. To do this, we typically need to apply a fraction

of available reasoning resources to deliberate about how to reason about a problem.

Our goal is to decide efficiently which available policy has the greatest value, or

whether it is better simply to take action with the current partial state. Thus, we

need to calculate the EVC by summing over a probability distribution of object-level

attributes expected with computation, and by diminishing the value of the object-

level result by the cost of that result’s generation.

2.5.1 Uncertainty in Partial Results

We are typically uncertain about the partial results that will be reached with com-

putation. We must consider uncertainty about reasoning performance of a reasoning

strategy, given such information about a problem instance as the size of the prob-

lem. Uncertainty about computation can be represented as a probability distribution

over the partial result itself or over one or more random variables that represent the

different attributes of a partial result. Under uncertainty, we may have knowledge

about computational results of the form p(π(I) |S, I, r, ξ), a probability distribution

over different possible partial results π(I), conditioned on the allocation of resource r,

problem instance I, and strategy S. Such probability distributions that describe the

behavior of a reasoning method as a function of classes of problem instances and quan-

tities of resource can be gathered with empirical analyses, through theoretical study,

or through direct assessment of an engineer experienced with the performance of an

algorithm. We shall explore the acquisition of performance knowledge in Chapters 3

and 5.

2.5.2 Control of Reasoning Under Uncertainty

Let us consider a probability distribution over a single attribute of a partial result

reached with the application of a unidimensional resource, r, representing the time
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used for computation. The extension to multiple independent attributes of result

and resource requires a straightforward summation of the value associated with each

dimension of value in a result. We shall assume that we have deterministic knowledge

about the initial utility, uo(πo(I)), of a computer-based reasoner facing a challenge,

where I captures the current problem instance or state of the reasoner in the world.

We shall focus on strategic control. I use strategic bounded optimality to refer to

the maximization of an agent’s expected utility by selecting the best strategies and

lengths of time to deliberate with each strategy. A chief task in the pursuit of strategic

bounded optimality is to evaluate the value of applying alternative strategies Si to

the current instance to generate a better state under uncertainty.

2.5.2.1 General Formulation

Under uncertainty, the expected value of computation is the difference between the

increase in the expected object-level utility and the cost of the additional computation.

Let us first consider the EVC without considering the cost of metareasoning itself.

The EVC of applying strategy Si with a quantity of resource r is

EVC(Si, I, r, ξ) =
∫
π(I)

uo(π(I))× p( π(I) |Si, I, r, ξ )

−uo(πo(I))− ui(r) (2.7)

In complex problems, we may be also uncertain about the nature of the functions

uo and ui used to map an object-level utility to attributes of partial results, and

disutility to resource expenditures. In such cases, we can extend Equation 2.7 to

sum over different weighted combination functions, in addition to considering the

uncertainty over different attributes of partial results.

2.5.2.2 Rational Computation in Urgent Situations

Given several alternative strategies, a rational controller should choose the strategy

S∗ with the highest EVC. Under situations of urgency, we identify the strategy with

the greatest EVC by optimizing Equation 2.7 for each strategy, with respect to the
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Figure 2.7: An influence diagram for normative metareasoning.
This influence diagram represents uncertainty about the performance of reasoning strategies
for making strategic decisions. The goal of the meta-analysis is to identify the most valuable
strategy, and to determine the length of time to apply that strategy, before acting in the
world. The expected value of comptuation to a decision maker is a function of the strategy
selected, the initial and final partial results, and the time allocated to the strategy. In
contexts of urgency, the metalevel decision about computation time dictates with certainty
the quantity of time that will be expended on the generation of a partial result.
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allocated resource. We determine an ideal resource allocation r∗i ,

r∗i (Si, I, ξ) = arg max
r

[EVC(Si, I, r, ξ)] (2.8)

and examine the maximum EVC of each strategy to determine S∗,

S∗ = arg max
Si

[EVC(Si, I, r
∗
i , ξ)] (2.9)

It can be useful to portray metareasoning decision problems graphically with in-

fluence diagrams (see Appendix A for an introduction to influence diagrams). An

influence-diagram representation of the problem of determining optimal strategies

and allocations of resource for urgent situations is displayed in Figure 2.7. The

square nodes represent possible actions, the diamond represents the utility of alter-

native outcomes, and the oval nodes represent uncertain propositions. Arcs between

oval nodes represent probabilistic dependencies.

2.5.2.3 Rational Computation Under a Deadline

Beyond considering the cost of reasoning, a reasoner immersed in a world of deadline

situations must also wrestle with uncertainty about the amount of time available

for computation. For the case of a certain deadline, we merely need to determine

the strategy with the optimal EVC at the deadline time. Let us examine the more

complex situation of determining the EVC under an uncertain deadline.

To determine the optimal strategy under the general urgent-deadline class of re-

source cost, we first calculate the optimal quantity of resource r∗i to allocate to each

strategy in a pure urgency setting, as described by Equation 2.8. Then, we consider

the probability that the deadline, td, will occur before, versus after, that r∗i for each

strategy. Thus, the most valuable strategy S∗ under an uncertain deadline is

S∗ = arg max
Si

[
∫
td<r

∗
i

p(td|ξ) EVC(Si, I, td, ξ)

+ EVC(Si, I, r
∗, ξ)

∫
td≥r∗

p(td|ξ)] (2.10)

As indicated by Equation 2.10, the value associated with the use of alternative flex-

ible and inflexible reasoning strategies depends on the probability distribution that
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Figure 2.8: Consideration of knowledge about a deadline.
We can add knowledge about a deadline that dictates that we must cease deliberating and
act with the best result generated. We introduce an explicit SOLUTION TIME node to
distinguish the computation time we decide to commit to solving a problem, barring an
earlier deadline (IDEAL COMPUTE TIME), from the time spent if a deadline occurs before
that ideal halting time. SOLUTION TIME is a deterministic node (as indicated by the double
circle) because its value is determined by the values of its predecessors (IDEAL COMPUTE
TIME and DEADLINE).
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describes a deadline, the uncertainty about partial results, and the cost of reasoning.

An influence diagram for decisions about computation under an uncertain deadline

is displayed in Figure 2.8.

2.5.3 Consideration of the Cost of Metareasoning

The influence diagram for normative metareasoning in Figure 2.7 is incomplete in that

it does not represent the cost of normative metareasoning itself. Indeed, a metarea-

soner imposes some irrevocable cost of meta-analysis on a reasoning system. Even

the relatively simple metalevel optimization for the deterministic cases, described in

Section 2.4, require some resource for metareasoning procedures. Because the total

computation time is the sum of solution time and metareasoning time, metareasoning

diminishes the quantity of resources available for object-level computation, and, thus,

reduces the quality of partial results. A central goal of research on decision-theoretic

control is to identify efficient solutions and approximations to the EVC evaluation

problem. We cannot always be assured that metareasoning costs will be negligi-

ble. To make explicit the inclusion of metareasoning costs, we denote by EVCM the

expected value of computation, including the costs for computing the EVC. Assume

that rM is a fixed cost of metareasoning. The EVCM is

EVCM(Si, I, r) =
∫
π(I)

uo(π(I))× p( π(I) | Si, I, r − rM )

−uo(πo(I))− ui(r) (2.11)

where r − rM ≥ 0. This EVCM formula is reflective in that it represents the costs

associated with its own calculation. The value of our metareasoning apparatus de-

creases as the expected difference in ui(r) and ui(r
M) grows. An reflective influence

diagram for metareasoning, that includes a consideration of the cost of metareasoning,

is displayed in Figure 2.9. In this figure, we portray metareasoning cost as being de-

pendent on the nature of the problem instance.
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Figure 2.9: Considering the costs of metareasoning.
A normative-metareasoning system must also consider the costs of computing the value of
computation. We can view the computation required by metareasoning as imposing an irre-
vocable tax that reduces the quantity of resources available for solving a base-level problem.
We add a node representing METAREASONING TIME to the influence diagram displayed
in Figure 2.7. We also add a new deterministic variable to distinguish the total time com-
mitted to problem solving (DELIBERATION TIME) from the portion of time available for
solving the base problem (SOLUTION TIME).
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2.5.4 Approximate and Offline EVC Analyses

I have sought to reduce the reflective control problem represented in Figure 2.9 to

the problem in Figure 2.7, by elucidating tractable closed-form solutions to EVC esti-

mation for different families of partial computation. We shall describe such tractable

approximations to EVC computation for problems of belief and action in Chapter

4. These approximations are based on calculation of the value of small quantities

of resource in myopic analyses, and on the use of economic analyses of functional

forms to model the expected behavior of computation. Another promising EVC ap-

proximation methodology is the use of offline normative meta-analyses to generate a

priori computational policies for solving problems in different problem classes. That

is, we move the burden of detailed analysis to the engineering setting, and develop

simple real-time control rules that react to a small set of observable problem fea-

tures. In this approach, we trade off the optimization of the value of solving specific

problem instances for less valuable, yet more tractable, blanket policies that can be

applied to large numbers of instances. These compiled policies can provide valuable

average responses to large classes of problems in situations where the complexity of

meta-analysis limits the gains of finer-grained, yet more complex, real-time decision-

theoretic control.

2.5.4.1 Iterative Greedy Analysis

In principle, we could apply a costly global EVC analysis to compute an ideal rea-

soning strategy for a decision-making agent. With such a comprehensive analysis, we

begin with an initial state, and consider alternative strategy sequences and actions

over large ranges of resources. As demonstrated in Section 2.4, a comprehensive anal-

ysis, for a small set of reasoning strategies, is feasible in some situations. However,

global analyses typically impose unacceptable burdens on a reasoner. We can reduce

the costs of EVC meta-analysis by developing approximation strategies that perform

greedy optimization over a prespecified small quantity of resource R, which increases

the previously expended resource r to a new total expenditure r′. In such single-step

or myopic analyses, we continue to deliberate with additional packets of resource until
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(1) a deadline is reached, (2) another strategy has a greater EVC, or (3) the expected

costs of delaying for another prespecified amount of computation time R outweigh

the benefits for any deliberative strategy. In the latter case, we halt deliberation and

take action in the world.

A greedy formulation of EVCM, emphasizing the marginal utility of expended

additional resource R, is

EVCM(Si, π(I), R) =
∫
π′(I)

uo(π′(I))× p( π′(I) | Si, π(I), R− rM )

−uo(π(I))− ui(R) (2.12)

where R = r′ − r, π(I) is our current result, and π′(I) is the result expected after

the next computation. That is, we continue to sum over the expected future utility,

weighting each possible state by the probability of achieving that outcome, and to

subtract the object-level value of our current state until the expected marginal gain is

nonpositive. At this point, we halt, and then act in the world. The total cost of myopic

metareasoning includes the costs of metareasoning for each productive computation,

in addition to a nonrefundable metareasoning penalty ui(r
M), associated with the

last meta-analysis which indicated that computation should cease.

Figure 2.10 portrays the behavior of a greedy EVC estimator that takes as inputs

the current state of a partial solution, a characterization of a problem, the object-

level and inference-related utility functions, and a quantity of resource that a system

is considering investing in additional computation. The estimator computes efficiently

the expected value of alternative strategies.

2.6 Metametareasoning and Analytic Regress

Discussions about metareasoning provoke questions about analytic regress. If control

is so valuable, why not control the controller itself? And why stop there? Will our

computational agents have to grapple with infinite regress to optimize their decisions?

This latter question is provocative in the context of seeking a provably optimal solu-

tion. However, concerns about infinite regress have less significance given the theme

of this dissertation research to increase the value of object-level analyses by invigorat-

ing base models with one or several levels of tractable meta-analyses. An assumption,
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Figure 2.10: Pursuit of tractable EVC estimators.
We seek to develop tractable EVC-estimation machinery that reports the value applying
of a computational strategy Si to problem instance I for R additional seconds. Such EVC
estimators make use of information about the object-level (uo) and inference-related (ui)
components of utility, and the most recently computed partial result π(I).

implicit in some discussions of analytic regress, is that the metareasoning problem

necessarily will be at least as complex as the base problem and, therefore, will benefit

from the same kind of control as the base problem. Assuming such metareasoning

complexity overlooks the feasibility of enhancing the comprehensive value of reasoners

by constructing simpler metalevel problems. Such metareasoners consider particular

aspects of object-level problem solving, and make use of specific classes of meta-

knowledge. We shall examine, in Chapter 4, tractable metalevel analyses that require

a small amount of resources, relative to the time allocated to object-level problem

solving. It is likely that introducing such tractable, closed-form analyses at a sin-

gle level of meta-analysis offer the greatest opportunities for enhancing the value of

object-level problem solving.

Nevertheless, it may be valuable to control particular metareasoning processes

with metametareasoning techniques. Such control policies can be developed at design

time or at computation time. Metametareasoning can be especially useful when alter-

nate metalevel procedures are available, and where ideal metalevel deliberation may

consume a significant portion of valuable computational resources. Given a problem,

a context, and the details of a computational architecture, it may be best to expend

at the metalevel a significant proportion of the total consumed resources. At other

times, it may be best to expend few or no resources on metareasoning. Systems em-

ploying metareasoning procedures in the absence of an explicit metametalevel analysis
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are necessarily guided by implicit metametalevel policies. As a simple example, a sys-

tem’s use of a tractable metareasoner to control its problem-solving procedures relies

on an implicit metametalevel decision that the benefits of metareasoning outweigh its

cost. Developing metametalevel procedures to optimize the value of metareasoning

is analogous to designing procedures for controlling object-level computation. In

Chapter 6, I shall describe several inexpensive metametareasoning procedures that

enable a reasoning system to forego more costly EVC metareasoning and, instead,

to take immediate or reflex action. Additional investigation of the ideal partition of

resources between metalevel and object-level reasoning can be found in (Horvitz and

Breese, 1990) and (Breese and Horvitz, 1990). We shall return to explore problems

and opportunities with analytic regress in Chapter 9.

2.7 Summary

In this chapter, we reviewed basic terminology for considering the benefits and costs

in systems that must solve problems under varying and uncertain resources. I in-

troduced the nature of partial results and discussed the assignment of measures of

utility to multiple attributes of computation. After presenting desirable properties

of flexible computation, we examined a simple economics of computation in settings

where we have deterministic knowledge about the costs and benefits of reasoning.

We then moved into the realm of characterizing uncertain performance. I intro-

duced the problem of normative metareasoning and described a family of resource

contexts in terms of urgency and deadline models. Finally, we touched on issues of

metametareasoning—the control of metareasoning. In Chapter 3, we shall explore

illustrative examples of the multiattribute nature of partial results with sorting algo-

rithms. In Chapter 4, we shall apply some of the ideas discussed in this chapter to

the control of probabilistic inference.



Chapter 3

Utility of Partial Results:

Analysis of Sorting

In Chapter 4, we shall turn to the central topic of this dissertation: the decision-

theoretic control of normative reasoning. We shall see how the ideas and formulae

developed in Chapter 2 can be applied to control probabilistic inference. In this

chapter, I shall illustrate key concepts of multiattribute utility in partial computation

with the solution of sorting problems. I shall not attempt to address pragmatic

concerns about sorting efficiency; sorting is a tractable task with a computational

complexity of O(n log n). Rather, I shall use sorting as a pedagogical example of

partial computation that highlights (1) multiple dimensions of value and problem-

solving activity, (2) relevance of preference to the value of computation, (3) value of

flexible reasoning under uncertain and varying resources, and (4) cost–benefit analyses

under certainty. We can generate salient graphical examples of partially sorted files,

and can inspect alternate patterns of computational activity. As we shall see, the

refinement of different dimensions of partial results for sorting has significance to the

solution of more difficult problems.

61
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Figure 3.1: Examination of the value of an incompletely sorted file of records.
We use the task of sorting a file of records under varying resource constraints as an illus-
trative example of partial-computation concepts.

3.1 Complete and Partial Sorting Analyses

The task of sorting a file of records has served a distinguished role as one of the most

well-studied computer-science research areas (Knuth, 1973; Rivest and Knuth, 1973).

Sorting is one of the central applications for computers. Investigators reported, in a

1988 study, that the sorting of files accounted for about one-fourth of all computer

cycles in the world (Aggarwal and Vitter, 1988). The most efficient strategies for

sorting a file of n records require c n log n time, where c is a constant factor, and

n is the size of a file. Traditional versions of these algorithms—such as heapsort

and quicksort—are handed a disordered file and return a completed sort. These

strategies do not make partial results available. In contrast, several polynomial-

time sorting strategies, such as shellsort, selectionsort, and bubblesort continuously

refine one or more object-level attributes of a partial sort. On average, shellsort

requires approximately c n1.5 to sort a file completely. Selectionsort and bubblesort

have quadratic run times. Although the average-case and worst-case completion times

of many sorting strategies have been characterized, the exact time required by an

algorithm to sort a specific file depends on the details of the order of records in a file.
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Figure 3.2: A representation of partial-sort results.
We can represent partial sorts as a two-dimensional graphs of points. This schematic dis-
plays a representation of an initial sorting problem-instance (left) and a completely sorted
file (right). Sorting algorithms, fueled by time and memory, convert a disheveled file into
an ordered list, with each item in its correct position.

In contrast to the long history of investigation on the quantity of resource needed

to complete a sort (Knuth, 1973), there has been little work on the analysis of the

ability of different sorting algorithms to produce valuable approximate results.

3.1.1 Protos/Algo: A Tool for Exploring Partial Results

I constructed a program, named Protos/Algo, for exploring the partial results of

alternative sorting strategies under uncertain and varying resources. An investigator

can use Protos/Algo to generate randomized files, and to examine the sorting process

exhibited by different sorting algorithms. Protos/Algo has a facility for allowing a user

to specify a multiattribute preference model that summarizes her preferences about

partial results (Horvitz, 1988). The system can be instructed to display the position

and value of records in a file graphically, and to graph the value of partial results,

based on the user-specified utility model as the process of sorting progresses. The

system can also perform economic analyses of the costs and benefits of computation,

and graph uo, ui, and uc as a partial result is refined.

Protos/Algo displays partial sorts as two-dimensional graphs of points, as por-

trayed in the schematic in Figure 3.2. The y coordinate of the graphs denotes the

value of the sorting key of a record and the x coordinate denotes the position of that

record in a file. With this representation, a completely randomized file appears as a
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Figure 3.3: A Protos/Algo display of a stream of results produced by shellsort.
With increasing amounts of resource, a problem-instance of a randomized file (a) is trans-
formed [graphs (b) through (e)] into a final result (f).

cloud of points. A completely sorted file appears as a diagonal curve. For problem

instances consisting of a randomly mixed file of n records, containing exclusive keys

of values 1, . . . , n, the final result is a straight line, indicating that records of sort key

value x are in position x.

Figure 3.2 represents the all-or-nothing conception of sorting. In contrast to this

traditional view, Protos/Algo’s output can reveal a stream of intermediate results,

and, thus, the pattern of activity produced by sorting algorithms. The sequence of

partial results generated over time by shellsort is exhibited in Figure 3.3. Figure 3.4

displays Protos/Algo output describing the behaviors of shellsort, selectionsort, and

bubblesort algorithms simultaneously.
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Figure 3.4: Patterns of refinement of three sorting algorithms.
The activities of (a) shellsort, (b) selectionsort, and (c) bubblesort are captured by these
sequences of partial results. In each case, the sorting strategy is handed a randomized file
and, with sufficient computation, transforms the result into a completely sorted file.
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Figure 3.5: Considering the relative abilities of two algorithms under a deadline.
We wish to consider the value of different problem-solving methods under uncertain
resources. The probability distribution over the deadline, td, at the left represents un-
certainty in the time the sorting algorithm must halt.
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Figure 3.6: Inspection of the utility structure of a partial sort.
By focusing on users’ preferences, we can reason about the relative value of different partial
results. This figure shows us several components of a partial sort. The record represented
by the open circle is at the maximum distance from its final location and so represents the
partial result’s bounded disarray.

3.2 Attributes of Value in a Partial Sort

Let us assume that we may not have enough time to complete a sort. Which algorithm

should we choose? How long should we run that algorithm before stopping and using

our result in the world? These questions provoked me to examine the value of different

partial sorts. Figure 3.5 schematically represents the problem of choosing among two

computational policies under an uncertain-deadline situation.

We can refine the definition of desired attributes by assessing the preferences of

users. As an example, given a choice of partial-sort results, a university librarian

might prefer a partial sort that would allow him to identify and order the largest

possible group m of most tardy book borrowers out of n offenders. Another librarian

might not require a precise order over identified offenders. She might prefer instead

to use a sorting algorithm that can identify in the same time a larger group of g

offenders that have books that are overdue by w weeks. As highlighted in Figure 3.6,

a close inspection of a partial sort can reveal basic dimensions of quality.

We can define a set of sorting attributes and explore the trajectories of the partial

results generated by several sorting strategies. Dimensions of value that may be useful
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in characterizing a partial sort include the following:

• Partial order: the proportion of the file in which records at positions of increas-

ing value have keys of increasing values

• Disarray: the average absolute distance between the current locations and

expected final locations for records in a file or within specified portions of a

file

• Bounded disarray: an upper bound on the distance between the current position

and final position for any record in a file.

• Low- and high-end completion: the contiguous length of a file, starting from

the low or high end of the file, that contains records that are currently in the

positions they will occupy after the file has been completely sorted.

Each of these attributes of a file, vi, is defined to range between 0 and 1, where 1 is

the value of the attribute in a completely sorted file, vi(φ(I)).

Starting with an initial file consisting of randomly permuted records, alterna-

tive algorithms demonstrate stereotypical patterns of refinement along the different

dimensions. For example, shellsort is striking in its ability to refine disarray and

bounded disarray gracefully; selectionsort is efficient for refining low-end completion.

Figure 3.7 displays the manner in which shellsort enhances the disarray, the low-end

completion, and the partial order of a randomized file of 100 randomized records.

Figure 3.8 shows the comparative refinement of partial order, low-end completeness,

and disarray for shellsort, selectionsort and bubblesort for files of size 100. The shapes

of these curves are invariant to the size of the problem instance at hand.

Alternative trajectories through a multiattribute value space are portrayed schemat-

ically in Figure 3.9. In the figure, the x and y coordinates represent two attributes,

vi(π(I)) and vj(π(I)), of a sort (e.g., completeness and partial order). The z coordi-

nate represents the time required to generate a particular result. The figure depicts

the alternate trajectories that two algorithms take through a multiattribute space,

as defined by a sequence of points with coordinates (vi, vj, t), representing partial
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Figure 3.7: The refinement of a partial sort by shellsort.
These graphs display the ability of shellsort to refine three attributes of value in a partial
sort: (a) disarray, (b) low-end completeness, and (c) partial order.
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Figure 3.8: Refinement by three algorithms.
These graphs display the abilities of three algorithms to refine the same attributes of value
in sorting a file of 100 records: (a) shellsort, (b) selectionsort, and (c) bubblesort.
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results generated over time t. The trajectories terminate on reaching a final result,

represented by a vertical line at point (v∗i , v
∗
j ) in the x–y plane.

3.2.1 Combination of Multiple Attributes

We can employ preference models for computation that assign utility to multiple

attributes of partial results. Parametric utility models can be personalized through

the assessment of constants that specify how different attributes are weighted by an

individual. The value assigned to alternative results is deemed to be a function of a

set of attributes or an n-tuple, That is,

uo(π(I)) = f(a1, . . . , an)

As an example, we may be able to express preferences about sorting with a parametric

multilinear value equation

uo(π(I)) = i(a1) + j(a2) + k(a3) + . . . +m(an)

where i, j, k, and m are weighting constants that can be changed to generate valuation

functions that approximate the preferences of different classes of user. As this model

assumes value to be a linear function of attributes, an individual subscribing to this

utility model would behave as though attributes i, j, k, and m are independent

from one another. If the sorting example were to be extended, genuine utility models

might be assessed and validated through utility-assessment techniques (Howard, 1970;

Raiffa, 1968).

Figure 3.10 demonstrates how the value of a partial result produced by shellsort

depends on the details of the preference model. In this case, we manipulate the relative

weighting of a two-attribute preference model, based on low-end completeness and

disarray. The graph in Figure 3.10(a) shows the value of the sort for a preference

model weighting low-end completeness by 0.7 and disarray by 0.3. The graph in

Figure 3.10(b) displays the value of the partial results for a preference model weighting

low-end completeness by 0.2 and disarray by 0.8.
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Figure 3.9: Trajectories through a multiattribute space.
Different algorithms take different paths through a multiattribute space representing di-
mensions of value in partial results. This three-dimensional schematic represents the paths
of two incremental sorting strategies (Sa and Sb) as the amount of time allocated increases.
The strategies halt when they reach a final result φ(I), represented by a line piercing a
plane defined by two attributes. A third all-or-nothing strategy Sc, is shown to generate a
complete sort at a time indicated by the height of the circle.
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Figure 3.10: Value of shellsort for two preference models.
These graphs show the value of two different preference models for the same results over
time: (a) the value of the sort for a preference model weighting low-end completeness by
0.7 and disarray by 0.3, and (b) the value of partial results for a preference model weighting
low-end completeness by 0.2 and disarray by 0.8.

3.3 Economic Analyses of Sorting

Although there is often clear dominance of the best sorting algorithm to select given

a file, based in large run-time differences, a variety of experiments with randomly

permuted instances has demonstrated ranges of file sizes where the best algorithm

to apply is sensitive to the availability and cost of resources, to the nature of the

object-level and risk preferences of an agent, and to the structural details describing

the refinement of results by strategies (Horvitz, 1988).

3.3.1 Sensitivity to Preferences and Resources

Decisions about a preferred sorting algorithm can be sensitive to details of the pref-

erence model function and resource constraints. Figure 3.11 shows a comparative

analysis of shellsort and selectionsort for two different preference models. Figure

3.11(a) shows the value of the two sorting strategies for a preference model that

weighs low-end completeness by 0.7 and disarray by 0.3. With this preference model,

the two strategies perform equivalently in the early portion of the analysis, and shell-

sort dominates after 400 computation steps. However, if we modify the preference
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Figure 3.11: Sensitivity to preferences under scarce resources.
Under a deadline situation, shellsort can be dominated by the slower selectionsort. (a)
Given a preference model of 0.7 low-end completeness and 0.3 disarray, shellsort dominates
selectionsort. (b) However, given a preference model of 0.5 low-end completeness and 0.5,
disarray, selectionsort dominates shellsort for a length of time.

model and weight both attributes equally, we find a length of computation time where

selectionsort is more valuable than shellsort. Under a deadline situation in that period

of time, selectionsort would be preferred to shellsort, even though shellsort dominates

in the later phases of the sorting, and finishes the problem earlier. The values of

shellsort and selectionsort assigned by this preference model is displayed in Figure

3.11(b).

In Figure 3.12, we move beyond a comparison of polynomial algorithms, and view

the performance of the all-or-nothing heapsort algorithm. Although the O(n log n)

heapsort is faster than shellsort and selectionsort, if a deadline occurs at some time

before completion φ(I), uo(π(I)) = 0. In fact, the inference-related delay can incur

a net cost. Thus, under resource constraints, we can generate a more valuable result

by committing to the more conservative, yet more graceful O(n 1.5) shellsort.

3.3.2 Balancing Costs and Benefits of Computation

Application of the normative metareasoning methods described in Section 2.5 to the

case of sorting requires that we assess probability distributions by sampling the refine-

ment of important attributes of value for different amounts of run time. As indicated
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Figure 3.12: Flexible versus all-or-nothing approaches.
We add a consideration of heapsort. In situations where great cost or a deadline is expected
before the completion of heapsort, we may wish to derive partial value by committing to
an analysis with shellsort.

by Equation 2.8, these probability distributions are conditioned on attributes of the

problem instance that are useful for distinguishing among problem instances. Such

attributes include the size and initial disarray of the file. Approximate approaches

to this problem center on modelling the ability of an algorithm to refine different di-

mensions of value with parameterized functions, and performing economic analyses,

as described in Section 2.4.

Protos/Algo can model situations of different urgencies. The system can be used

to identify the strategy in its library of sorting algorithms that is most valuable for

a problem and urgency, and to decide on an optimal allocation of resource for that

strategy. Figure 3.13 shows an analysis of the optimal halting time for shellsort, using

a preference model based on the attribute disarray. The graphs indicate how a change

in urgency can indicate that less sorting should be performed.

3.4 More Sophisticated Control

The graphs produced by Protos/Algo can help us to visualize the economics of al-

ternative strategies and to appreciate the multiattribute nature of partial results for

sorting. Although we reviewed the benefits and costs of sorting under time pressure

for its visual examples of multiattribute utility, it is possible, nevertheless, to develop
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Figure 3.13: Economic analysis of ideal allocation of resources to shellsort.
(a) Shellsort’s refinement of disarray for a randomized problem instance is modeled by a
concave function. Thus, the ideal allocation of resource occurs in a region where the costs
of reasoning are equal to the benefits of reasoning. (b) The ideal time for sorting a file can
change depending on the urgency of the situation.
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serious applications of normative metareasoning for sorting, and for other fundamen-

tal computational procedures, such as searching. In this vein, I shall describe several

extensions of the work on partial computation for sorting.

We did not review the use of procedures for generating an EVC for selecting among

alternative sorting algorithms or to reason in an a priori fashion about the ideal halt-

ing time for a single algorithm. Extensions of the utility-directed sorting work to

EVC analyses would begin with the characterization of alternate algorithms, given a

set of problem-instance features (e.g., size of instance and distribution of records in

instance). Such characterization would require the assessment of probability distri-

butions about the refinement of different attributes of value p(vi(π
′
(I))|S, π(I), r, ξ).

The assumption of parameterizations of named probability distributions might allow

for efficient analysis. Given the speed of sorting, it is likely that difficult portions of

the analyses would be performed offline, to generate policies about algorithm selec-

tion at run time. Such policies might be engineered to take advantage of run-time

information about the distribution of records in a problem instance, as determined

from evidence about the origin of a file, or gleaned from a brief, precursory phase of

stochastic sampling of records from the file.

In another extension if this work, the ability of incremental-refinement strategies

to make intermediate problem-solving states available can be useful for creating new

policies from sequences of strategies (e.g., apply selection sort to bolster low-end

completion efficiently and shellsort to refine the bounds on disorder). A custom-

tailored sequence of strategies for generating φ(I) or π(I) will often have greater

computational utility than do more general, predefined policies. Thus, offline analysis

of the efficiency of alternate sequences of partial-result “baton passing” could lead to

new integrated algorithms that are ideal for a situation, given the cost of delay, the

preferences of the person querying a computer for information, and the nature of the

problem instance.

We can introduce even more flexibility into reasoning by moving the level of anal-

ysis from strategic to structural control, to consider control opportunities at the

microstructure of computational activity. Although this task is more complex, the

finer patterns of computation and control possible may enable a reasoner to generate
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more ideal refinement trajectories in the multiattribute utility space. Such research

may also elucidate the control strategies implicit in familiar policies and stimulate

the creation of more general, decision-theoretic strategies that could implement the

familiar policies as special cases. That is, we may find that alternate sorting or

searching algorithms can be viewed as making implicit assumptions about nature of

the problem instance, the costs of computation, and the computer user’s preferences.

Identifying useful dimensions of utility in computation and examining the refine-

ment of partial results as a function of invested resources can also direct attention

to new classes of approximation. For example, there is opportunity for developing

inexpensive strategies for transforming valueless, intermediate states of traditional

inflexible all-or-nothing algorithms into valuable partial results or into states that

can be handed-off to other methods by a control reasoner. For example, in the realm

of sorting, such techniques could be useful for concatenating O(n log n) strategies,

in reaction to a specific problem instance, intermediate states, or observed real-time

problem-solving trends.

3.5 Summary

Experimentation and analysis of the multiattribute structure of value in partial sort-

ing results highlights several issues about reasoning under varying and uncertain re-

source constraints. First, we can demonstrate that interesting dimensions of value in

partial results have been overlooked by computer scientists; more attention has been

directed on techniques for computing a pretargeted goal. There is value in exploring

the multidimensional structure of partial-result strategies. Also, we showed that the

selection of a new strategy or the decision to cease computing, can be sensitive to

details of the timewise-refinement trajectories, to the object-level utility function, and

to the uncertainties in the functions describing the cost and availability of reasoning

resources.

We shall now move beyond the definition of useful concepts and illustrative ex-

amples, and shall investigate the original motivation for normative metareasoning:

the control of complex decision-theoretic inference. In Chapter 4, I shall focus on
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normative metareasoning about belief and action. I shall extend the general work on

partial results specifically to partial results for inference. In Chapter 5, I shall present

work on a new flexible inference algorithm. Then, in Chapter 6, we shall describe the

operation of a system, named Protos, that uses normative metareasoning to control

probabilistic inference. As we shall see, Protos applies the basic principles described

in Chapters 2 and 4, to determine the ideal amount of time to devote to refining a

problem before taking action in the world.
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Chapter 4

Inference Under Bounded

Computational Resources

In Chapter 2, I introduced partial results and reviewed principles of normative meta-

reasoning for controlling the computation of these results. In this chapter, we shall

examine the problem of computing beliefs and actions under bounded resources. I

shall show how we can apply, in real-time, a small portion of reasoning resources to

make decisions about the nature and extent of probabilistic inference. The normative

control of automated decision analysis shall be posed as a model of rational action

under resource constraints. I shall define the EVC in terms of the likelihood of fu-

ture probability distributions over the truth of propositions about the state of the

world. We shall make use of knowledge in the form of incomplete characterizations

of the progression of probabilistic inference. EVC analyses, based on such knowl-

edge, can tell us about the value of continuing to reflect about a problem versus that

of taking immediate action in the world. In Chapters 6 and 7, we shall apply the

normative-metareasoning techniques in the Protos system. Protos generates custom-

tailored approaches to inference problems, under different time criticalities. We shall

investigate how such flexibility can be useful in situations characterized by uncertain

81
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Figure 4.1: Reflective decision-analysis as a model of rationality.
We examine metalevel decision analyses for determining the ideal amount of time to perform
inference about an object-level problem, considering the decision stakes, costs of delay, and
knowledge about the likelihood of future probability distributions obtained with computa-
tion.

deadlines and challenges.

4.1 Building Versus Solving Decision Models

Two key phases of decision analysis are (1) the formulation of a decision problem, and

(2) the solution of that decision problem. The formulation of a decision model includes

the determination of possible actions and outcomes, the specification of a probabilistic

model that relates the likelihood of outcomes to actions, and the specification of a

preference ordering over outcomes. A general computer-based reasoner for performing

automated decision analysis under varying resource constraints might be expected to

perform the formulation and the solution of a decision problem. Thus, in principle,

reasoning about beliefs and actions under bounded resources entails an analysis of

the ideal control of processes for formulating a decision model, as well as for drawing

conclusions by performing inference upon that model.
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The formulation of problems that serve as the basis for inferential analysis has

been considered the most ill-characterized phase of machine reasoning (Simon, 1972).

Several investigators have speculated that there can be no principled machinery for

problem formulation (Simon, 1973a; Buchanan, 1966). Decision analysts have re-

ferred to the construction of decision problems as the framing of a decision. Framing

includes the identification and structuring of relevant distinctions and dependencies.

Investigators have considered framing to be a complex task that requires human in-

sight and domain knowledge. Thus, decision scientists have focused their analyses on

the development of machinery for refining models created by people. There has been

little progress on principled and robust approaches to the construction of decision

models. Research to date on problem formulation, at the crossroads of AI and DA,

includes the work by Holtzman on the rule-based manipulation of decision-problem

templates (Holtzman, 1989), the use of production rules of fundamental relationships

(Breese, 1990), the application by Wellman of a qualitative dominance analysis of

important tradeoffs (Wellman, 1988), and the work by Heckerman and Horvitz on

the reduction of a large decision model (Heckerman and Horvitz, 1990).

We shall not investigate the ideal control of the formulation of decision problems.

Instead, to build decision models, I shall instantiate preexisting influence diagrams

and belief networks with specific decision and utility information, and shall examine

the use of normative metareasoning for solving decision problems under time pressure.

Nevertheless, the principles of normative metareasoning, described in this disserta-

tion, may be applied to the guidance of model-construction processes. Ideal control

of the model formulation and model-solution phases of decision analysis awaits the

development of robust problem-formulation machinery. We shall address this issue in

more detail in Chapter 9.

4.2 Time-Dependent Utility

Let us explore concerns that arise in automated decision making under scarce resources.

The graph in Figure 4.2 depicts an object-level influence-diagram representation of
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Figure 4.2: An influence diagram for an ICU decision problem.
The square node represents the possible actions. The diamond represents the utility of
alternative outcomes. The oval nodes represent uncertain propositions. In this case, we are
interested in the costs and benefits of talking action to assist a patient with breathing. We
must consider the uncertainty in our knowledge about the respiratory status of the patient.
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a time-pressured problem that might face an automated physician’s assistant: A 79-

year-old woman in the intensive-care unit (ICU) suddenly shows signs of breathing

difficulty. The patient may be merely showing signs of stable respiratory distress, or

may be facing imminient respiratory failure, the potentially fatal collapse of effective

respiration. In this context, the primary decision is whether or not to recommend

that the patient be placed on a mechanical ventilator. The decision (square node) de-

pends on the value of respiratory status, which, in turn, depends on the probabilities

of propositions in a large belief network serving as a medical knowledge base. The

large oval nodes in the base decision problem represent uncertain states associated

with placing an older person on a ventilator. The diamond represents the utility

associated with different outcomes. Factors to consider in a decision to act include

the possibility that the patient’s breathing may become fatally blocked during inser-

tion of a ventilation tube, and that it may take a long time to wean a patient from a

ventilator; a patient may face a long hospital stay and be placed at high risk of mor-

tality from a disease such as pneumonia after being placed on a respirator. However,

if a patient turns out to be heading into respiratory failure, and is not placed on the

ventilator immediately, she faces a high risk of cardiac arrest based on the disrupted

physiology associated with abnormal blood levels of oxygen and carbon dioxide.

As indicated in Figure 4.3, we assume that the crucial probability of respiratory

failure, given a set of observations, is made available to a computer-based reasoner

only through inference in a complex belief network. Belief-network algorithms com-

pute the conditional probability of propositions, given observations. A closeup of this

network is displayed in Figure 4.4. This experimental 37-node belief network, named

ALARM (Beinlich et al., 1989), represents distinctions and probabilistic relationships

that are important in ICU medicine.

4.2.1 Actions and Outcomes in the World

In our example, there are only four outcomes. The patient either is in respiratory

failure (H1) or is not in respiratory failure (H2), and we either will commit to assisting

the patient with ventilation (A1) or will not do so (A2). Thus, we may erroneously

decide not to treat a patient who is suffering from respiratory failure (A2, H1), we
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Figure 4.3: Computing a relevant probability with a belief network.
In response to observations, a computer-based reasoner applies a probabilistic-inference
algorithm to a belief network (graph above influence diagram). The inference algorithm
can be used to compute the conditional probability of one or more states of interest, given
the observed findings (represented as lighter belief-network nodes). In this case, we are
interested in the status of respiratory failure.
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Figure 4.4: A multiply connected belief network for medical diagnosis.
This belief network represents the uncertain relationships among important propositions
used in reasoning about the care of patients who are in an ICU. (See Appendix B for a
legend to abbreviations in this belief network.)

may correctly treat a patient who is suffering from respiratory failure (A1, H1), we

may erroneously treat a patient who is not suffering from respiratory failure (A1, H2),

or we may correctly forego treating a patient who is not suffering from respiratory

failure (A2, H2). Given the utility of different outcomes, we can compute the expected

value of taking different actions A in terms of the likelihood of alternative outcomes

H.

4.2.2 Assigning Utility to Outcomes

A system for reasoning about high-stakes medical decisions must assign utility to

outcomes that are associated with a significant probability of death. Howard has de-

tailed techniques for using decision analysis to assist people with decisions involving

the possibility of severe health outcomes and death (Howard, 1980). Howard devel-

oped the worth-numeraire model to make possible the direct comparison of utilities

for minor and major health outcomes. With the worth-numeraire model, utilities

associated with major risks to life are measured in terms of life-and-death gambles.



Future
life lottery

Die
p

1-p

Live Pre-incident
future

life lottery

A  Hi  j,

88 Inference Under Bounded Computational Resources

Figure 4.5: Assessing the utility of costly outcomes.
To assess the utility of an outcome Ai, Hi, we query a decision maker for the probability p
of instant, painless death that would make him indifferent between continuing in his current
situation (future life lottery) or having a 1− p chance at continuing his life as if the acute
incident facing him had not occurred (pre-incident future life lottery).

Utilities associated with minor diagnoses are measured in terms of dollars. The model

determines what an individual would have to be paid to assume some greater proba-

bility of death, and what he would be willing to pay to avoid such a risk. A person

is modeled as willing to pay a quantity of money that grows linearly in p for small

risks of death (p < 0.001). The model suggests that, for small risks of death, people

behave like expected-value decision makers, with some finite value assigned to their

lives.

For significant risks of death, we would like our model to deviate significantly from

a linear growth in the willingness to pay to avoid risk. Howard’s model allows such

deviation from linearity as the risk of death grows: As we would expect intuitively,

the worth-numeraire model allows there to be some maximum probability of death,

beyond which a person will accept no amount of money to be exposed to that risk of

death.

To measure the utility of a major health disorder or misdiagnosis, we ask a decision

maker to imagine that he is in a particular acute situation—say—acute respiratory

failure, and that he is about to be treated as if he has respiratory distress. We

then imagine that there is a treatment available that could rid the decision maker of

the acute health incident instantly with probability 1 − p, but that could kill him,
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immediately and painlessly, with probability p. If the patient accepts the treatment,

and wins the associated lottery, we assume that he will continue his life-lottery as if

the acute incident had not occurred. We assess from the decision maker the value of

p that makes him indifferent between his untreated acute situation and the lottery

associated with accepting the treatment. A decision tree that represents this decision

problem is displayed in Figure 4.5. We take, as the utility of the current situation,

the probability that the decision maker will win this lottery, or 1−p(death). In time-

critical life and death decision making, we can view the disutility of an outcome in

terms of the probability of of death associated with that outcome. We assume that,

if the patient does not die, he shall continue his life lottery, as if the acute incident

did not happen.

Howard provides a means to convert utilities expressed in monetary terms to

small probabilities of immediate, painless death. He describes the conversion of small

probabilities of death to dollars in terms of dollars per micromort. A micromort is

a one–in–1-million chance of immediate, painless death. Availability of a dollar per

micromort conversion rate vµmt allows us to reason about alternate sources of risk in

terms of dollar amounts.

4.2.3 Utility of Immediate Action

Returning to the respiratory patient, let us assume that an expert clinician—who has

previously received consent from a set of patients to serve as the principal agent for

a patient—has assigned the following utilities to the four outcomes: u(A2, H2) = 1.0,

u(A1, H2) = 0.7, u(A1, H1) = 0.4, and u(A2, H1) = 0.05. In general, the expected

utility of taking action Ai is

eu(Ai, p(H|Ek, ξ)) =
n∑
j=1

p(Hj|Ek, ξ)u(Ai, Hj) (4.1)

where p(Hj|Ek, ξ) is the conditional probability of state Hj, given observations Ek

and implicit, or background state of information, ξ. In the context of computing

probabilities with belief networks, ξ includes background information implicit in the

structure and assessments of conditional probabilities of a belief network. Equation
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4.1 expresses the notion that the expected utility of each action is determined by

summing the utilities of each outcome, weighted by the probability of the outcomes.

In terms of our binary decision problem, we can reason about the utilities of the

two actions in terms of the probability of respiratory failure, one of two mutually

exclusive and exhaustive hypotheses about the physiology of the patient. Given ob-

servation of evidence Ek, the expected utilities of action (A1) and of no action (A2)

are described by the following equations:

eu(A1, p(H1|Ek, ξ)) = p(H1|Ek, ξ)u(A1, H1) + (1− p(H1|Ek, ξ))u(A1, H2) (4.2)

eu(A2, p(H1|Ek, ξ)) = p(H1|Ek, ξ)u(A2, H1) + (1− p)(H1|Ek, ξ))u(A2, H2)(4.3)

The linear plots described by these equations, portrayed in Figure 4.6, intersect at

a threshold probability of H1 denoted p∗. The desired action (the decision with the

highest expected utility) changes as the utility lines cross at p∗. A utility analysis

dictates that a patient should not be treated unless a decision maker’s belief in the

truth of H1 is greater than p∗. When a practitioner’s belief falls below p∗, it is better

to not treat the patient. When his belief rises above p∗, he should take action to

treat.

4.2.4 Costs of Inference-Based Delay

In Section 4.2.3, we considered outcomes, and the utilities associated with alterna-

tive outcomes to be independent of time. The example of a patient gasping for

breath, facing the risk of a long hospitalization or a cardiac arrest depending on our

decision, poignantly demonstrates the significance of time-dependence of the utility

outcomes in a high-stakes situation. Let us now integrate explicit knowledge about

time-dependence of the utility of outcomes, and of the process of reasoning, into

the decision problem. In answer to a query for assistance, an automated reasoner

might have to propagate observed evidence about a patient’s symptomology through

a complex belief network. The results of approximate probabilistic inference can be

expressed as some probability distribution over a final probability–the value that the

computer would calculate with a belief network, given sufficient time to finish an
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Figure 4.6: A graphical representation of the utility of two actions under uncertainty.
The lines indicate the utility of action A1 and action A2 as a function of the probability of
hypothesis H1, p(H1|Ek, ξ). The lines cross at a probability of hypothesis H1, called p∗. At
this probability, the optimal decision changes.

exact computation. Assume that our reasoner may apply one of several incremental-

refinement algorithms that can iteratively tighten the distribution on the probability

of interest over time. We wish the system to make a rational decision about whether

to make a treatment recommendation immediately based on a partial analysis, or to

defer its recommendation and to continue to reason and thus to refine the analysis,

given its knowledgeabout the costs of time needed for computation.

In critical settings, the utility associated with alternate actions can change with

time. Let us redefine our decision problem in terms of the time an action is taken. We

assume that the utility of correctly treating a patient threatened by a pathophysiologic

state depends on the length of time a patient remains in the state before treatment.

This assumption frequently is valid for severe health problems. For example, the

utility of acting to treat respiratory failure can depend on how long the patient has

been in failure. To consider the cost of a delay in action, a reasoner must determine

how long a challenge has been present when the problem first comes to the system’s

attention. For our example, we shall assume that the presentation of respiratory
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Figure 4.7: Assessing time-dependent outcomes.
We use Ai, Hi, t to refer to the outcome of action taken when state Hj has been true for time
t. For assessing the utility of this outcome, we query a decision maker for the probability p′

of instant, painless death that would make him indifferent between his future life lottery at
time t after Hj becomes true or having a 1− p′ chance at continuing his life as if the acute
incident facing him had not occurred.

symptoms occurs at the initiation of the pathophysiologic state, and that our reasoner

begins its computational analysis of the problem at this time, tα. In the more general

case, a reasoner must consider uncertainty in tα given some set of observations.

We represent the cost of delaying treatment, when that treatment is needed, by

considering a continuum of decisions to treat at different times t after the initiation

of a state. Let us use (Ai, Hi, t) to refer to the outcome defined by taking action

when state Hj is true for time t. Figure 4.7 displays the lottery for assessing the

utility of an outcome at progressively later times. To assess the utility of (Ai, Hi, t),

we query a decision maker for the revised probability p′ of instant, painless death

that would make him indifferent between his future life lottery at the new time t or

having a 1−p′ chance at continuing his life as if the acute incident facing him had not

occurred. Rather than assess a utility for each time of action, we can assess functions

that describe the cost of delay in terms of expected loss of dollars or increasing risk

of instant, painless death. In work with an expert intensive-care physician, I found it

useful to assess the change of utility of an action in a time-pressured setting in units

of micromorts per second or micromort flux. In the case of the respiratory decision

problem, the primary source of cost with delay is the increasing probability of cardiac
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arrest as a function of the time that we delay therapy.

For the respiratory problem, at some time t, the expected utility of acting in the

presence of respiratory failure reverts to the utility of not acting at all. We substitute

the static equation and functions for the expected utility of action defined previously

in Equation 4.2, with a time-dependant equation:

eu(A1, p(H1|Ek, ξ), t) = p(H1|Ek, ξ)u(A1, H1, t)+(1− p(H1|Ek, ξ))u(A1H2, t)(4.4)

where u(A1, H1, t) reverts to u(A2, H1, tα) as some function of time t. In this example,

we have assumed that delay of action will not affect the utility of a patient who does

not require the intervention. That is,

∀ t : u(A1, H2, t) = u(A1, H2, tα)

However, in the general case, any outcome can be a function of time. With the time-

dependent utility function, we must consider p∗ as p∗(t), a decision threshold that

changes with time.

The arrow at the right side of Figure 4.8 indicates that the utility of treating

a patient in respiratory failure converges on the utility of not treating a patient in

respiratory failure over time. Note that, as the utility of treating a patient in failure

falls, p∗ increases.

4.3 Normative Metareasoning for Inference

A more comprehensive decision problem for our computer-based reasoner requires us

to consider explicitly the costs of reasoning. We represent the more global decision

problem in Figure 4.9. As indicated by the network in the upper portion of Figure 4.9,

a more complete representation of the respiratory decision problem includes knowl-

edge about the costs and benefits of applying different inference strategies for different

amounts of time. This influence diagram represents the metareasoning problem, de-

scribed in Chapter 2. Rather than our computer-based agent’s goal being to optimize

the object-level value, it is to optimize the utility associated with the value node in

the metareasoning problem, labeled uc. The consideration of inference-related, and



10

U
til

ity

p(H |E,ξ)1
p* p* '

2 1
u(A ,H ,t  ) 

A2

+time

1A ,t

1 1u(A ,H ,t)

2 2
u(A ,H ,t)

1 2u(A ,H ,t)

α

94 Inference Under Bounded Computational Resources

Figure 4.8: Representation of time-dependent utility.
This graph displays how the utility of an outcome can diminish as a function of time. In
this case, the utility of outcome (A1, H1), taking action in the case of respiratory failure,
decays to the utility of outcome (A2, H1), not taking action, as a function of time. Notice
that the decision threshold, p∗, is also a function of time; in this case, p∗ increases as the
utility of (A1, H1) decreases.
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Figure 4.9: A more comprehensive analysis of a time-pressured decision problem.
We add a level of reflective analysis to the computer-based decision problem by representing
the costs and benefits of continuing to reason as well as representing the costs of the meta-
analysis itself.
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object-level components, of the comprehensive utility allows a reasoner to treat de-

cisions and outcomes regarding the control of computation just like decisions about

actions in the world. Decisions about strategies and about continuing to reason for

different amounts of times before taking action can be viewed as additional decision

alternatives.

In answer to a query for assistance, an automated reasoner must propagate the

evidence through a complex belief network. The system makes a decision to apply

one of several inference approximation algorithms that refines an approximation of a

probability of interest. We shall address the decision about employing a strategy to

reason for some quantity of time before halting with a recommendation. A sound met-

alevel decision requires us to analyze the EVC for alternative approximate inference

schemes. Let us now examine this problem, and, in so doing, generate an equation

for EVC for inference from the general statement of Equation 2.11 in Chapter 2.

4.3.1 Partial Results for Inference

Our computer-based reasoner’s attention is focused on the calculation of p(H1|Ek, ξ),
the probability of respiratory failure, given a set of observations Ek and background

knowledge ξ. Let us place this computational goal in the framework introduced in

Chapter 2. The problem instance facing the reasoner is to compute an answer to the

query p(H1 = ?|Ek, ξ). We shall refer to such a target probability in a computational

inference problem as φ(I), where the problem instance I is the query, and φ(I) is the

exact probability that a computer-based reasoner would calculate if it had sufficient

time to finish its computation. To simplify our notation, we shall use the shorthand

of φ to refer to the φ(I).

Before an inference task is completed, our automated reasoner may be uncertain

about the value of φ. Thus, partial results for probabilistic inference are probability

distributions that describe the current uncertainty about the final probability that would

be calculated with sufficient time to solve an inference problem completely. Flexible

inference strategies incrementally tighten bounds or second-order probability distri-

butions over a probability of interest before converging on the exact answer. We shall

use p(φ) to represent partial results in inference problems to capture the essential
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notion that we are uncertain about an exact answer to a query.

Inference approximation strategies include methods for computing bounds for per-

forming stochastic simulation.1 These methods generate different classes of probabil-

ity distributions, displayed in Figure 4.10.

Probability-bounding strategies generate partial results of the form of categorical

(or deterministic) upper and lower bounds on point probabilities of interest (Cooper,

1984; Peng, 1986). Bounding techniques determine bounds on probabilities through

a logical analysis of constraints acquired from a partial analysis. Bounds on the

probability that would be computed with sufficient computation become tighter as

additional constraints are brought into consideration.

Stochastic-simulation algorithms approximate a probability of interest by sam-

pling the total probability space (Henrion, 1988; Pearl, 1987; Chavez and Cooper,

1989b). The methods generate a sequence of probability distributions over a set of

states with ongoing computation. Some simulation algorithms produce distributions

over a final result that is approximated by the binomial distribution. The variance

with which the distribution converges on a probability with additional computation

depends on the topology of the network, and on the nature of the probabilistic depen-

dencies within the network. Another class of simulation algorithms, called random-

ized approximation strategies (RAS), produce partial results of the form of worst-case

bounds on an error of a point probability estimate. RAS results take the form of

inequalities on error bounds on an ideal result of the form the probability that the di-

vergence of a partial result, or estimator, π(I) is less than α from the final result φ(I)

is greater than δ. Additional computation can be applied to increase the probability

that the result lies between the error bounds, or to tighten the error bounds.

4.3.2 Belief about Future Beliefs

Let us develop a language for characterizing the progress that can be made by ap-

plying an inference strategy. We have used p(φ) to describe the uncertainty about φ,

at the present moment, to, typically some time after tα. Computational agents and

human decision makers typically gain access to new information about a query by

1We review probabilistic inference strategies in more detail in Appendix A.
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Figure 4.10: Families of partial results generated by computer-based inference.
(a) With additional computation, some approximation methods generate categorical lower
(lb) and upper (ub) bounds on a probability of interest, and work to tighten the bounds
to produce new bounds lb’ and ub.’ (b) Other methods generate and tighten incrementally
a probability distribution approximated by the binomial distribution. (c) Randomized ap-
proximation strategies (RAS) methods generate results that take the form of an inequality
on the probability that an error α on a probability estimate p̄ of the actual probability is
greater than a constant δ. Ongoing computation can increase δ or decrease α.
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continuing to refine a result. An agent may be uncertain about how a second-order

probability distribution p(φ) will change with computation. It can be useful to de-

compose uncertainty about a probability into a third-order distribution over possible

second-order distributions that might be obtained after performing some inference.

We use pt(φ) to refer to a future second-order distribution at future time t. We

refer to third-order distribution information about the current uncertainty about this

future belief as p(pt(φ)). Such belief-constellation knowledge describes uncertainty

in terms of a current probability distribution over a set of possible future second-

order distributions. Because uncertain knowledge about future beliefs depends on

the reasoning strategy S, we must, in general, index belief about future beliefs by

the strategy being used. We use p(pt(φ)|S, t) to refer to a distribution of probability

distributions over φ after applying inference strategy S for time t.

Belief-constellation knowledge can take the form of uncertain or logical constraints

on parameters that define families of future stereotypical or named probability distri-

butions over a probability. I will describe the use of third-order distributions in EVC

calculations for bounding algorithms in Section 4.4. In Chapter 5, I will present an

algorithm that generates belief-constellation knowledge, and demonstrate its appli-

cation in EVC computation in Chapters 6 and 7. An example of belief-constellation

knowledge is a probability distribution that describes the interval between upper

and lower bounds over φ after some computation with a probability-bounding al-

gorithm. We shall explore how information about the current bounds interval, and

future bounds interval obtained with additional computation, can constrain the pt(φ).

Knowledge about both classes of belief about future belief may be acquired through

empirical analysis of a belief network, may be made available by an inference algo-

rithm at run time, or may be proved theoretically.

4.3.3 Partial Results for Action

We have discussed classes of partial results for beliefs. What are partial results for

decisions? We can consider partial results for decisions, given uncertainty about the

probabilities of important propositions, to be actions in the world dictated by p(φ).

If we are forced to act immediately, our best action is dictated by the mean of the
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distribution (Howard, 1970). We take action A that maximizes our expected utility,

given the mean of p(φ), denoted < p(φ)>. Note that the mean of p(φ) is

<φ>=
∫
φ
φ p(φ) (4.5)

The utility of that best decision is equal to the utility of the action that would be

taken if belief in φ had been a point probability at the mean of p(φ). That is,

arg max
A

eu(A, p(φ), to) = argmax
A

eu(A,<p(φ)>, to)

4.3.4 Expected Value of Perfect Computation

What if our reasoner could compute an exact answer to a query for a relevant probabil-

ity instantaneously? How valuable would this reasoning be? To answer this question,

we introduce the expected value of perfect computation on φ, denoted by EVPCφ.

Suppose that, after reasoning for a few milliseconds, an automated reasoner has gen-

erated a probability distribution over φ. The EVPCφ is the value of instantaneous

complete computation of a target probability in a decision setting. Instantaneous

complete thinking would collapse the current probability distribution over φ into an

impulse (i.e., φ would be known with certainty). Thus, we say that EVPIφ is equal

to the value of clairvoyance about the final state of the computer. Unfortunately,

real-world computers do not have the ability to be clairvoyant about the end result

of reasoning.2

Given the current probability distribution p(φ), we define EVPCφ as follows:

EVPCφ =
[∫
φ
p(φ) max

A
eu(A, φ, to)

]
−max

A
eu(A,<p(φ)>, to) (4.6)

where maxA eu(A,<p(φ)>, to) is the utility, associated with the best action A, based

on taking an immediate action using the current mean belief, <p(φ)>. This measure

tells us that the value of computing the final answer is just the difference in utility

between the current best action and the summation of the best actions weighted by

the probability of different final beliefs.

2Theoretical computer scientists have used the notion of an omniscient oracle as a tool in the
analysis of algorithms.
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4.3.5 Value of Computation for Inference

Real computers rarely deliver the full EVPC on difficult problems because they must

expend valuable resources to reason. We shall now examine the EVC for inference.

The EVC analysis for inference follows from the general principles elucidated in Chap-

ter 2. The EVC of an inference method depends on the nature of uncertain or partial

knowledge that can be used to reason about what p(φ) will be after computation for

time t.

Let us examine the EVC as a function of p(φ) and pt(φ). We can use these two

quantities to adapt Equation 2.11 in Chapter 2 to inference, with π(I)→ p(φ(I)) and

the inclusion of a decision variable A:

EVC(S, t) =
∫
pt(φ)

p(pt(φ)|S, t)
∫
φ

max
A

eu(A, pt(φ), t)× p(pt(φ)|S, t)

−max
A

eu(A, p(φ), to) (4.7)

In Equation 4.7, we sum over the new probability distributions on φ expected at time

t, weighted by the current belief, p(pt(φ)), that thinking with some strategy S for

time t will lead to each of the revised distributions, pt(φ).

If we assume that we shall have to act immediately after computing for t seconds,

we can simplify Equation 4.7 by reformulating that equation in terms of the mean of

φ. Thus,

EVC(S, t) =
∫
pt(φ)

p(pt(φ)|S, t) max
A

eu(A,<pt(φ)>, t)

−max
A

eu(A,<p(φ)>, to) (4.8)

To add a consideration of metareasoning time for the calculation and optimization of

EVC, we decrease the time available for updating the probability distribution by the

cost of the EVC-based optimization, rM. Thus,

EVCM(S, t) =
∫
pt(φ)

p(pt(φ)|S, t′) max
A

eu(A,<pt(φ)>, t)

−max
A

eu(A,<p(φ)>, to) (4.9)

where t′ = t − rM, the time delay diminished by the time rM required for the com-

putation of 4.9.
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We can substitute Equation 4.9 into the computation-optimization formulae of

Section 2.5 to select the best strategy, and the length of time that strategy should

be applied, given uncertain distributions about how probability distributions will

change with computation. Such a global analysis is complex. Instead, we shall

explore the use of a myopic or greedy approximation of EVC for small constant

amounts of computation time, T . A tractable myopic analysis allows us to continually

recompute the EVC during inference. Under uncertainty, relying on an a single a

priori analysis of the EVC after a long delay for computation requires us to throw

away detailed information about future belief made available during inference. We

would like to have the ability to incorporate new information about φ generated

during inference incrementally, to condition knowledge about future belief on the

most recently computed p(φ). For applying the greedy formulation of the EVC, we

compute the EVC for a quantity of time for each candidate algorithm and select the

algorithm with the greatest EVC.

As displayed in Figure 4.11, our goal is to develop tractable EVC-evaluation ma-

chinery for use in real-time incremental EVC analyses. We shall examine examples of

the greedy application of Equation 4.9 for the construction of such EVC evaluators.

In an approximate incremental analysis, when the cost of computation (embodied

in our comprehensive utility function) becomes greater than the benefit of comput-

ing (EVC(S, t) ≤ O) for any available algorithm, a computer reasoner should cease

reflecting about a problem and should take (or recommend) action in the world.

4.4 EVC for Probability Bounding: A Constraint-
Based Analysis

I have investigated tractable EVC analyses of bounding and simulation algorithms.

We shall review the derviation of a tractable greedy EVC analysis for probabilistic

inference algorithms that post upper and lower categorical bounds on a probability

of interest. I call the special case of EVC, the EVC/BC, for bounds categorical.

In Chapter 5, I shall describe a new flexible probability-bounding strategy named

bounded conditioning that can be analyzed with EVC/BC.
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Figure 4.11: Toward tractable EVC estimators for controlling probabilistic inference.
We wish to develop tractable EVC-estimation machinery, that reports the EVC in response
to (1) a problem-instance (I), (2) object-level and inference-related components of utility
(uo, ui), (3) the current uncertainty about probability of interest p(φ), and (4) a quantity
of computation time (T ). Such EVC estimators use uncertain knowledge about future
probability distributions, indicated by the quantity, p(pt(φ)), at the bottom of the figure.

Let us turn back to our ICU problem. Assume that our automated reasoner, facing

the challenge described in Section 4.2, has applied a probability-bounding algorithm,

and has computed upper and lower bounds on φ, with an upper bound at ub and

lower bound at lb. Let us assume that our reasoner has no information about where

φ is within the bounds—except that the final computed result will be between the

current bounds. We shall perform a myopic EVC analysis, given only one piece of

information that is made available to our reasoning system at each step of the myopic

analysis: We know how tight the interval shall be on future bounds obtained after

computation for an additional time t. What is the value of continuing to compute,

given only information about the current bounds and about the new bounds interval?

If we have no information except for the constraints dictated by the current

bounds, we can model our knowledge about φ with a uniform distribution between

the bounds.3 Figure 4.8 shows the lower and upper bounds and the mean of the

uniform distribution (or any distribution that is situated symmetrically between the

bounds). Recalling the decision rule from Equation 4.3.3, if an immediate decision is

3We can weaken this assumption in the EVC/BC analysis by assuming only that p(φ) is some
symmetric distribution between the bounds. Detailed knowledge about convergence would further
specify this distribution.
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Figure 4.12: The probabilistic-bounds EVC problem.
This schematic captures the problem statement: Given the current bounds (lb,ub) calcu-
lated by an automated reasoner and the additional convergence expected with computing
for some additional time T , what is the value of the additional computation? To calculate
the EVC, we must reason about the expected location of the tighter bounds (lb

′
, ub

′
) within

the current bounds.

forced, a reasoner should take the action with the greatest utility, given the mean of

the distribution. Because the current mean is greater than p∗, in this case, the best

action is A1.

Let us explore how a system can make use of certain or uncertain knowledge about

how bounds converge with computation to calculate an EVC of continuing inference

versus halting and acting with the best decision available. In our myopic analysis, we

assume that we shall make a decision after computing for t additional seconds. Our

decision at that time will depend on the value of the future mean <pt(φ)>. We shall

compute the value of computation by considering the ideal decision after t seconds

for each possible value of the future mean of pt(φ), <pt(φ)>.

At the present moment, we know the current upper and lower bounds on φ.

Assume that one additional piece of information is revealed to us: We are told the
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value of a future, tighter interval between the upper and lower bounds on φ that will

result from additional inference. Although we now know the size of the future interval,

we do not know the location of the future upper and lower bounds. Given no other

information, we assume that the new bounds may be found with equal likelihood

at any possible position within the current bounds, and that when we compute the

tighter bounds, φ will again be uniformly distributed between the new bounds. As

indicated by Figure 4.12, given information about an interval, we must consider all

possible configurations of the new bounds given the current constraints. We consider

the value of computing the tighter bounds by moving the interval uniformly within

the current interval, and considering all values of the mean of the future distribution.

Certain or uncertain information about a new bounds interval is belief-constellation

knowledge: It dictates a set of revised distributions. To compute an EVC, we shall

sweep the new bounds through all positions of the new distribution, and integrate

the value of the best decision for each possible φ, weighted by belief in that φ.

Figure 4.13 displays a graphical analysis of the probabilistic-bounds EVC prob-

lem. As we sweep a set of bounds, separated by an expected future interval, over the

current bounds interval, the mean of the future uniform distributions sweeps between

positions within the current bounds. The figure shows that the mean of the distri-

bution on φ, after computation for t, will range over an interval defined, at the lower

end, by the sum of one-half of the new interval and the current lower bound, and, at

the upper end, by a point the same distance below the current upper bound.

In the EVC calculation, we sum the distributions and the value associated with

the best decisions over the new intervals for each position of the new bounds. When

the mean is above p∗, we sum over the utility of acting for all states of belief greater

than that threshold; when the mean is below p∗, we similarly consider the utility of

not acting. Given our current bounds and a convergence fraction, we sum the utilities

of the best decision at the future means and subtract the utility of the best action

without additional computation. The EVC/BC formula is an approximation because

of our single-step myopic assumption.

I shall first review several definitions useful in expressing formulae for EVC/BC.

At the current time to, we have some upper and lower bounds (lb, ub) on a probability
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Figure 4.13: A constraint-based EVC analysis.
At the present moment, we know the current upper and lower bounds (lb,ub). We can use
knowledge about a new interval between the revised upper and lower bounds (lb

′
,ub
′
) to

compute an EVC. We sweep the new bounds through all positions of the new distribution.
This figure graphically demonstrates that the mean of the distribution on φ, after compu-
tation for t, will range over an interval defined, at the lower end, by the sum of one-half of
the new interval and the current lower bound, and, at the upper end, by a point the same
distance below the current upper bound. We sum the distributions and the value associated
with the best decisions over the new intervals for each position of the new bounds.
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of interest. The current bounds interval, int(to), is the difference, ub− lb. Assuming

a symmetric distribution between the bounds, the current mean is

<p(φ)>=
lb+ ub

2

Let us assume that we have certain knowledge of the form int(t), the bounds interval

after computing for some time t. Such knowledge imposes constraints on future

second-order distributions. Let us consider the possible values of the mean of the

future distribution, <pt(φ)>. As highlighted in Figure 4.13, we assume the mean will

be distributed symmetrically between upper and lower bounds on the future mean

(lm, um). We shall consider a greedy analysis in terms of a constant increment of

time T. In terms of int(to + T ), the bounds on the mean of the future distribution

are defined as

lm = lb+
int(to + T )

2

um = ub− int(to + T )

2

A simple subtraction between these equations reveals that the interval on the value

of the mean, is just the difference between the old and new intervals. That is,

um− lm = ub− lb− int(to + T )

= int(to)− int(to + T )

= ∆int(to, to + T )

Using these definitions,

EVC/BC =
1

∆int(to, to + T )

∫ um

lm
max
A

eu[A,<pt(φ)>, to + T ]d<pt(φ)>

−max
A

eu(A,<p(φ)>, to) (4.10)

Let us now apply the EVC/BC to inference about a binary decision problem. We

substitute into Equation 4.10 knowledge about the utility of different decisions. Re-

ferring to our original decision problem, as displayed graphically in Figure 4.8, we see

that, as the probability of H2 increases, the decision that dominates changes from A2

to A1 at p∗(t).
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Thus, Equation 4.10 can be rewritten as

EVC/BC =
1

∆int(to, to + T )
[
∫ p∗(t)

lm
eu(A2, <pt(φ)>, t)d<pt(φ)>

+
∫ um

p∗(T+to)
eu(A1, <pt(φ)>, T + to)d<pt(φ)>]

−max
A

eu(A,

(
lb+ ub

2

)
, to) (4.11)

I shall substitute information about the expected utility of treating and not treating

a patient with a suspected ailment, and integrate. The expected utilities of these

actions are described by 4.4 and 4.3. To simply the formulae for substitution, we use

the following abbreviations:

W = u(A2, H2)

X = u(A1, H2)

Y = u(A1, H1)

Z = u(A2, H1)

We can assume that any of the outcomes may be a function of time. The utility of

acting and not acting, for the case of the respiratory problem, in terms of the mean

of a future distribution at time to + T , is

eu(A1, <pt(φ)>, to + T ) = Y (t) <pt(φ)> +X(1− <pt(φ)>) (4.12)

eu(A2, <pt(φ)>, to + T ) = Z <pt(φ)> +W (1− <pt(φ)>) (4.13)

Although only Y is assigned a time-dependent utility function in our respiratory

example, we shall develop a formula that allows the utility of any of the outcomes to

be a function of time. By setting Equations 4.12 and 4.13 equal to each other, we

can express p∗(t) as a function of W,X, Y, Z:,

p∗(t) =
W (to + T )−X(to + T )

W (to + T )−X(to + T ) + Y (to + T )− Z(to + T )
(4.14)

Now, by substituting Equations 4.12 and 4.13 into 4.11, we have for theEVC/BC,

1

∆int(to, to + T )
[
∫ p∗(to+T )

lm
Z(to + T ) <pt(φ)> +W (to + T )(1−<pt(φ)>)d<pt(φ)>
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+
∫ um

p∗(to+T )
Y (to + T ) <pt(φ)> +X(to + T )(1−<pt(φ)>)d<pt(φ)>]

−max
A

eu

(
A,

[
lb+ ub

2

]
, to

)
(4.15)

Integrating Equation 4.15, we have

EVC/BC =
1

∆int(to, to + T )
[
X(t)(p∗(t)2 − lm2) + Y (t)(lm2 − p∗(t)2)

2
+ Y (t)[p∗(t)− lm]

+
W (t)(um2 − p∗(t)2) + Z(t)(p∗2(t)− um2)

2
+ Z(t)[um− p∗(t)]

−max
A

eu

(
A,

[
lb+ ub

2

]
, to

)
(4.16)

where, for brevity, we use t for t0 + T . The last term of Equation 4.16 depends on

whether the mean of the current distribution is greater or less than p∗(to),

max
A

eu(A,<p(φ)>, to) =

X(to)(
lb+ub

2
)+Y (to)(1− [ lb+ub

2
]), ( lb+ub

2
)≤p∗(to + T )

W (to)(
lb+ub

2
)+Z(to)(1− [ lb+ub

2
]) otherwise


Equation 4.16 assumes only one of the outcomes is time time-dependent. In general,

we make any of the outcomes time-dependent.

Thus, equation 4.16 yields the EVC of inference as a function of

• The utilities for each of the four outcomes

• The current bounds on φ

• The convergence of bounds with time (∆int[to, to + T ])

• Functions describing the cost of delay for any of the outcomes

4.4.1 Myopic EVC/BC Approximation for EVC

Let us pause to consider the relationship between the myopic EVC/BC and more

accurate, global measures of the expected value of computation. One area of interest

centers on the consistency of parameterized descriptions of future probability distri-

butions and the current probability distribution. When information about the size of

a future bounds interval is revealed to an agent that previously had knowledge only
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about the current bounds on a probability of interest, the current distribution must

be updated. For example, learning the value of future, tighter bounds, and consid-

ering these bounds to be uniformly distributed in positions allowed by the current

bounds, updates the agent’s previous uniform probability distribution to a trapezoidal

distribution. To generalize our metareasoners so that they can use knowledge that

is available about the iterative tightening of bounds, we need to identify conjugate

distributions that can be used to describe and to make consistent the probability

distributions within current and possible future bounds. The essential form of such

desirable reflective-conjugate distributions would be invariant to the width of bounds.

The current EVC/BC formulae may be viewed as approximate for making sound

use of knowledge about a sequence of EVC analyses: if the future bounds are much

smaller than the current bounds, the probability distribution implied by a uniform

distribution over the future distributions approximates a uniform distribution.

There are also questions about the effectiveness of the myopic EVC/BC analysis

to identify global EVC trends in real problems. Great nonmonotonicity in the EVC

of reasoning can lead a metareasoner to halt computation when it reaches an EVC

local minima. In Chapter 6, we shall explore this potential problem and describe

alternate techniques for giving metareasoners the ability to peek over the valleys

defined by EVC local minima. We shall have the opportunity to observe examples of

EVC nonmonotonicity and monotonicity in the case analyses presented in Chapter 7.

4.4.2 Use of EVC/BC

The tractable EVC/BC formula (Equation 4.16) was formulated for binary decision

problems that depend on the truth of a single proposition. We can identify relevant

decisions of interest and apply the EVC/BC to the decision problem iteratively until

we see the EVC/BC become zero or negative. For situations where we are concerned

with whether to act now or to delay addressing a potential problem, we default to

inaction and wait until the EVC/BC becomes zero or negative and the mean <p(φ)>

is greater than p∗ for the action. If EVC/BC becomes negative while the mean is less

than p∗ for the action, we continue to reason.

We can apply the EVC/BC more generally to sets of n binary decisions. For



4.4. EVC for Probability Bounding: A Constraint-Based Analysis 111

each possible fault or disorder of interest Hi (e.g., all the treatable faults in a belief

network), we identify a treatment action Ai. In every cycle of EVC analysis, we

consider in turn each binary decision problem. That is, for each hypothesis Hi, we

determine the value of taking action (Ai) versus not taking action (¬Ai) to address

that fault. If the EVC/BC is positive for any Hi, we delay the corresponding action

Ai, and continue to deliberate. If the EVC/BC becomes negative for any hypothesis

and the mean of the probability distribution over that hypothesis is greater than p∗,

we act with Ai. If the EVC/BC becomes negative for any hypothesis and the mean of

the probability distribution for that hypothesis is less than p∗, we continue to keep the

action under consideration. The appropriateness of considering n treatment actions

as independent decisions depends on the interactions among the treatments. If we

consider interactions among treatments to be negative in the general case, the p∗ for

each treatment decision is likely to be smaller than the decision threshold that would

be derived in a more comprehensive decision analysis (Heckerman and Horvitz, 1990).

Thus, a more comprehensive decision model will tend to perform more conservatively

than the independent treatment approach.

The EVC/BC solution for binary decision problems also has applications in areas

of decision making where a task is structured into a hierarchy of tasks and where one

decision must be made before another. In such a tree of decisions, this approach can

be used to make a decision about how long to dwell on one problem before moving

on to the next decision.

We shall explore the use of the EVC/BC in the Protos system in Chapter 6.

First, we shall examine the properties of a new probabilistic reasoning method, named

bounded conditioning, developed as part of this thesis research. I shall show how we

can use Equation 4.16 to evaluate iteratively the value of continuing to compute for a

small amount of time, versus halting computation and acting with the best decision.

At each step of the iterative EVC/BC analysis, the latest computed probability and

knowledge about the likelihood of future probability distributions is considered by

the system.
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4.5 Relationship to Other Research

This dissertation research is distinguished from earlier studies of probability and util-

ity in AI by its focus on the use of decision-theoretic principles to control the decision-

theoretic reasoning of limited agents that must act under constraints in computational

resources. I introduced the notion of pursuing bounded optimality—optimizing the

design, reasoning, and actions of agents with explicit consideration of the limitations

in an agent’s computational abilities and resources—to highlight the motivation and

long-term goals of this research (Horvitz, 1986; Horvitz, 1987c; Horvitz, 1987b). My

study of the control of probabilistic reasoning (Horvitz et al., 1989a) and the use of

multiattribute utility to evaluate and control basic computational processes (Horvitz,

1988) comes in the context of other previous and ongoing efforts to explore the use

of decision theory in automated reasoning.

The use of decision theory for the control of reasoning was discussed over a decade

ago by the statistician I.J. Good in speculation about an effective way to control

game-playing search. Good had earlier discussed the explicit integration of the costs

of inference within the framework of normative rationality, defining type I rationality

as actions that are consistent with the axioms of decision theory, regardless of the

cost of inference, and type II rationality as behavior that takes into consideration

the costs of reasoning (Good, 1952). Good described how a chess playing machine

might someday be based on knowledge about how belief in the value of alternative

moves would change with computation (Good, 1977). Related work on the richer

notion of rationality that includes the cost of reasoning has been performed by several

investigators in the decision science community. Logan (Logan, 1985) and Heckerman

and Jimison (Heckerman and Jimison, 1989) have explored the costs and benefits of

expending additional effort in assessing probabilistic quantities from people for use in

decision analyses. Matheson and Watson have explored the use of knowledge about

how the quality of a decision analysis might change with the expenditure of additional

computational or modeling effort (Matheson, 1968; Watson and Brown, 1978).

Several AI investigators have previously examined the use of probability and util-

ity to control reasoning. Barnett examined the use of probability and expected utility
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to reason about the value of control for ordering the application of search operators

in a problem solver (Barnett, 1984). Shortly after Barnett’s work, Smith and Gene-

sereth, explored the use of decision theory for selecting alternative logical reasoning

strategies (Smith, 1986). In this work, the ordering of conjunctions of propositions

in a theorem-proving system is controlled by uncertain estimates of the size of search

problems associated with alternate orderings. Several more recent studies on decision-

theoretic control of search algorithms have been undertaken during the course of this

dissertation research. Russell and Wefald have studied the interpretation of heuris-

tic measures used in search as utilities. They elucidated several assumptions about

utility in search and explored how utility estimates can be employed to make deci-

sions about the value of taking alternative paths through a search tree (Russell and

Wefald, 1989). Hansson and Mayer have explored the promise of performing prob-

abilistic inference for determining the probabilities and utilities of alternate search

paths (Hansson and Mayer, 1989). That is, instead of relying on heuristic estimates

for evaluating nodes, Hansson and Mayer examine the control of search as a problem

of gathering information and making decisions based on coherent evidential reasoning.

Several investigators have sought recently to apply probability and utility to

computer-based planning. In planning, an automated reasoner must determine a

sequence of actions to achieve a goal. Planning requires a consideration of the pre-

conditions and effects of applying alternative operators to change states of the world.

Dean and Boddy (Dean and Boddy, 1988) described notions of partial computation

and flexibility similar to the ideas presented in (Horvitz, 1987c), with a focus on

planning. Dean’s group later investigated methods for the control of planning, em-

ploying techniques similar to the decision-theoretic methods we had developed for

controlling computation under uncertain resource constraints. To date, researchers

in Dean’s group have performed interesting studies of the use of probability and util-

ity in several planning tasks, including problems with temporal reasoning (Kanazawa

and Dean, 1989) and path planning (Boddy and Dean, 1989). In related research,

Fehling and Breese explored the application of decision theory to the control of a robot

planning problem (Fehling and Breese, 1988). In other work, Agogino and colleagues

have sought to apply principles of decision theory to select the best computational
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model to employ in real-time reasoning in the control of milling machinery (Agogino

and Ramamurthti, 1989). In related research on rational problem solving in AI, Doyle

has described a representation and analysis of a distributed approach to rationality

(Doyle, 1988), and Etzioni and Mitchell have analyzed the use of decision analysis for

the control of automated learning (Etzioni and Mitchell, 1989).

4.6 Summary

In this chapter, I described the development of EVC formulae for controlling the

nature and extent of probabilistic inference in a time-pressured setting. I highlighted

the use of partial characterizations of probabilistic inference to reason about the value

of continuing to reason about a problem versus that of taking action in the world.

After defining the expected value of perfect computation, I developed a formulation

of EVC for probabilistic inference in a decision context, focusing on the analysis of

two classes of knowledge about future probability distributions over the truth of a

proposition of interest. I enumerated an efficient EVC formulation for probabilistic-

bounding algorithms, called EVC/BC, and instantiated the formula for the case of a

binary decision problem. Finally, I reviewed related research on decision theory in the

control of reasoning. In Chapters 6 and 7, we shall use the EVC formalism to study the

value of normative metareasoning. First, in Chapter 5, I shall introduce the bounded-

conditioning approximation strategy. This probabilistic bounding strategy satisfies

several properties of flexibility. In Chapter 6, I shall show how the Protos system

can use EVC for inference to control bounded conditioning and other approximate

inference strategies. We shall explore the value of continuing to reason with bounded

conditioning under time-pressured contexts.



Chapter 5

A Flexible Inference Algorithm

As I described in Chapter 1, several AI investigators have recently structured and

assessed large, complex belief networks. The complexity of inference in belief networks

is related to the number and complexity of loops in the networks. A singly connected

network or polytree is a belief network that has no more than one path between any two

nodes. There are efficient algorithms for solving singly connected networks, including

a distributed algorithm, developed by Kim and Pearl, that has a time complexity

that is linear in the number of nodes of the network (Kim and Pearl, 1983). Belief

networks with loops or multiply connected networks pose more difficult computational

challenges. A variety of exact and approximate methods for performing inference

with these belief-networks have been developed. Exact methods for reasoning with

multiply connected networks typically exploit the special topologies of sparse belief

networks. Several of the approximate methods exhibit resource monotonicity and

convergence. Readers unfamiliar with belief network inference strategies may wish to

review Section A.3 in Appendix A.

I shall introduce a flexible algorithm for probabilistic inference called bounded con-

ditioning. Bounded conditioning demonstrates resource monotonicity in its ability to

refine the bounds on probabilities in a belief network, and it converges on a queried
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probability with the allocation of a complete resource fraction. As such, the ap-

proach serves as an example of an inference technique for reasoning under the general

conditions of uncertain and varying reasoning resources. The method works by de-

composing an inference problem into a set of tractable subproblems, each representing

a particular truth assignment or context. With bounded conditioning, a reasoner can

consider subsets of all subproblems. We compute logical upper and lower bounds on

target probabilities by accounting for the contexts that have not yet been examined.

The method orders the solution of the subproblems by the ability of each subproblem

to tighten the bounds on the probabilities of interest. As we shall see, the value of

performing inference with bounded conditioning can be evaluated with the calcula-

tion of EVC/BC, described in Section 4.4. I shall introduce bounded conditioning and

present its performance on a complex belief network. Then I shall discuss theoretical

characterization of the worst-case performance of bounded conditioning and I shall

examine the basis for the stereotypical convergence we have observed in the use of the

algorithm. In Chapter 6, I shall describe Protos, a reasoning system that combines

bounded conditioning with the principles of normative metareasoning described in

Chapter 4.

5.1 Method of Conditioning

The method of conditioning is an exact algorithm developed by Pearl (Pearl, 1986)

for inference in belief networks. The approach provides the basis for bounded condi-

tioning. The method of conditioning operates by transforming a multiply connected

network to a set of singly connected network problems. With this method, depen-

dency loops in a belief network are broken by a set of nodes called a loop cutset, so

named because its members are selected such that every loop (a minimal multiply

connected subset of the network) is cut by at least one member of the set. After the

loop cutset is identified, the method of conditioning requires the consideration of all

possible truth assignments of cutset variables. Each combination of truth assignments

defines a distinct cutset instance, and defines a singly connected belief-network sub-

problem. Given observed evidence, the probabilities of variables in each instance are
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solved with an efficient method for computing conditional probabilities with singly

connected networks. Finally, in the method of conditioning, the conditional proba-

bilities computed from the singly connected subproblems are combined to calculate a

final probability of interest. The combination method sums the probabilities inferred

in each subproblem, weighted by the probability of the instance. The method of con-

ditioning is also referred to as the method of reasoning by assumptions because of the

key notion of disentangling a belief network into a set of simpler network subproblems

by generating a set of assumptions about the value of cutset variables.

Figure 5.1 illustrates the fundamental technique used in the method of condi-

tioning and in the bounded-conditioning approximation method. The simple belief-

network in this figure defines a dependency loop. The gray node is the single loop

cutset variable. We generate distinct inference subproblems by setting this variable

to its possible values (in this case values T and F). After instantiating the cutset node

for this network, we can solve two simpler problems. For one subproblem, we assume

that the cutset variable is set to T. In the other, we assume that the variable is set

to F. We then combine the separate answers, making use of knowledge about the

probability of each instantiation.

Unlike the simple example displayed in Figure 5.1, loop cutsets in complex net-

works usually contain several nodes. We shall refer to cutset instances as c1 . . . cn

to denote a specific combination of values of loop cutset nodes C1 . . .Cn. With the

method of conditioning, the number of subproblems that must be solved is equal to

the product of the number of values of each node in the loop cutset. That is, we must

solve
∏n
i=1 V(Ci) where Ci is a node in the cutset, and V(Ci) is the number of possible

outcomes for Ci. Figure 5.2 shows a 5-node cutset (darkened nodes) for the ALARM

belief network for intensive-care medicine, introduced in Chapter 4. This cutset has

108 instances.

For binary-valued variables, the number of instances that must be solved is 2|cutset|.

Because this number grows exponentially with the size of the cutset, it is typically

useful to expend effort to search for the smallest cutset. Problems, approximations,

and empirical testing of ways of identifying good cutsets in complex networks are

discussed in (Suermondt and Cooper, 1988). Techniques for controlling the search for
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Figure 5.1: Instantiating belief-network loops with a cutset.
Setting variables in a belief-network loop to particular values breaks the loop. In this case,
we generate two instances by setting the binary-valued cutset node (gray node) to T (true)
and F (false). With the method of conditioning, a set of nodes that can be instantiated to
render the network singly connected are identified. This cutset determines the number and
configuration of subproblems that must be solved.

smaller cutsets are addressed in (Breese and Horvitz, 1990).

The method of conditioning relies on the computation of the joint probabilities or

weights of the loop-cutset variables. These probabilities represent the likelihood of the

state of affairs assumed in each subproblem. We compute the prior joint probabilities

of the loop-cutset variables, given background information ξ, p(c1 . . . cn|ξ), during a

preparatory phase referred to as the initialization of the belief network. At run-time,

we compute the posterior weights, p(c1 . . . cn|E, ξ) for new observations E.

An algorithm for computing the prior joint probabilities from information in the

belief network is described in Suermondt and Cooper, 1989. Initially,

p(c1 . . . cn|ξ) = p(c1|ξ)p(c2|c1, ξ) . . . p(cn|c1 . . . cn, ξ)

During computation for initializing the network, we calculate, for each cutset instance,

the marginal probabilities for each node in the network, given the values assigned to

the loop-cutset nodes in that instance. For each value x of node X, and for each
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Figure 5.2: A cutset for the multiply connected belief network for ICU diagnosis.
The darkened nodes are a cutset for the multiply connected belief network introduced in
Figure 4.4 in Chapter 4.

instance c1 . . . cn, we obtain

p(x|c1 . . . cn, ξ)

Thus, calculating p(x|ξ),

p(x|ξ) =
∑
c1...cn

p(x|c1 . . . cn, ξ)p(c1 . . . cn|ξ)

If we change the truth status of one or more propositions in a belief network, as is

the case when we observe evidence, we must update the weights of each instance sub-

problem. We update the probabilities for each loop-cutset instance such that, when

added together, they are equal to the joint probability of the loop-cutset nodes and

the evidence. We perform this update for each instance subproblem by multiplying

the prior probability of each instance by the probability of the evidence given the

truth assignments that define the instance (Pearl, 1986). If we observe a value e of

node E, we calculate the new probability of an instance as follows:

p(c1 . . . cn|e, ξ) = αp(c1 . . . cn, e|ξ) = αp(e|c1 . . . cn, ξ)× p(c1 . . . cn|ξ)
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where

α =
1

p(e|ξ) =
1∑

c1...cn p(e|c1 . . . cn, ξ)p(c1 . . . cn|ξ)
After the revised probabilities of each instance are calculated, we can apply one of

several probabilistic inference algorithms to propagate evidence in the polytree sub-

problems to solve for the posterior probabilities of all nodes in each polytree instance.

For example, we can use Pearl’s distributed algorithm for propagating evidence in

singly connected belief networks (Pearl, 1986). Thus, we assign a probability to each

value x of node X, p(x|e, c1 . . . cn, ξ) This, in turn, allows us, at any time, to ob-

tain p(x|E, ξ) for any node; we sum the belief in x for all instances, weighted by the

likelihood of each instance:

p(x|e, ξ) =
∑
c1...cn

p(x|e, c1 . . . cn, ξ)p(c1 . . . cn|e, ξ)

For additional evidence, we repeat this procedure, each time multiplying the prob-

ability assigned to an instance by the probability of the observed value given that

instance, and renormalizing the weights. Thus, the method of conditioning provides

a mechanism for performing general probabilistic inference in multiply connected be-

lief networks.

5.2 Bounded Conditioning

The computational complexity of the method of conditioning is an exponential func-

tion of the size the cutset. If we have a large number of cutset instances, exact

probabilistic inference using this method may not be feasible in situations where suf-

ficient time is not available or where delay is costly. To provide computation that

has maximal value to a computational decision system or system user under varying

and uncertain deadlines and urgencies, we must balance the net costs and benefits

of computation. As opposed to using inference techniques, such as the method of

conditioning, that completely solve a problem in some specified period of time, we

may wish to do inference in a manner that provides results that span a range of

precision. As described in Section 2.3.1, flexible approaches to inference provide us

with an opportunity to choose an optimal halting time, given the costs and benefits



5.2. Bounded Conditioning 121

of computation. These strategies allow us to distill the most inferential value out

of a problem under an uncertain deadline by continuing to refine a result until the

deadline arrives. I shall now introduce a probability-bounding method, based on the

method of conditioning, that allows us to perform inference in situations where we

may not have the luxury of a complete analysis.

With bounded conditioning, we do not necessarily consider all problem instances.

Rather, we consider instances based on truth assignments in order of the probability of

the truth assignments. Rather than being constrained to wait until a point probability

is generated, we can determine, with a fraction of the complete resources, upper

and lower bounds on a target probability—the probability that would be calculated

with sufficient computation to solve the problem. We obtain exact upper and lower

bounds on the probability of each value of each node in the network by computing the

maximal positive and negative contributions of the yet unsolved problem instances.

We continually probe the unexplored portion of the reasoning problem to order the

analysis of instance subproblems by their expected contribution on the tightening of

bounds.

5.2.1 Inference from a Complete State

In bounded conditioning, we initialize a belief network as we do in the exact method

of conditioning. After observing some evidence, we (1) calculate the revised weights

of each subproblem, (2) sort the subproblems by weight, (3) update each instance

in sequence, and (4) integrate the results of each loop-cutset instance, based on the

weights of the instances and information about the contribution of the unexplored

problem instances. We shall now examine calculi for computing the upper and lower

bounds of a probability of interest in cases where we begin inference on a completely

initialized belief network and in cases where we observe new evidence before we com-

plete inference with previous observations.

Let us first consider the case where a fully-initialized belief network is updated

given the observation of a piece of evidence. After observing value e of evidence node

E, we first recalculate the loop-cutset weights for each instance in the context of the

evidence. Next, we solve the marginal probabilities of values of nodes in each instance,
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in order of the prior weight of the instances. To simplify our notation, we shall

associate with the ith instance c1 . . . cn of the cutset an integer label i, and designate

p(c1 . . . cn|ξ) as the weight wi of that instance. We shall use w∗i to distinguish the

weight of an instance given the most recent observation e
′
, p(c1 . . . cn|e

′
, e, ξ), from the

previously calculated weight of an instance, based on the initial state of the network

or on a previous observation e, p(c1 . . . cn|e, ξ).
For those loop-cutset instances that we have updated, we compute p(x|e, instance i, ξ).

For the loop-cutset instances that we have not yet updated, we know with certainty

that

0 ≤ p(x|e, instance j, ξ) ≤ 1

Therefore, for any node X and value x, we can obtain a lower bound on p(x|e, ξ) by

substituting 0 for those probabilities we have not yet calculated. We can calculate an

upper bound on p(x|e, ξ) by substituting 1 for p(x|e, instance j, ξ).

Let us assume that we only propagate the evidence through the network for a

subset of instances 1 through j; therefore, we do not update the probabilities for

instances j + 1 through n. After propagating the evidence for instances 1 through j,

we can calculate bounds on p(x|e, ξ) as follows:

Lower bound on p(x|e, ξ) =
j∑
i=1

p(x|e, instance i, ξ)× w∗i +
n∑

i=j+1

0∗w∗i

=
j∑
i=1

p(x|e, instance i, ξ)× w∗i

Similarly, for the upper bound,

Upper bound on p(x|e, ξ) =
j∑
i=1

p(x|e, instance i, ξ)× w∗i +
n∑

i=j+1

1× w∗i

=
j∑
i=1

p(x|e, instance i, ξ)× w∗i +
n∑

i=j+1

w∗i

Thus, the difference between these bounds is

Upper bound− Lower bound =
n∑

i=j+1

w∗i
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Note that the width of this interval is the same for every marginal probability in the

network; after j instances have been updated, our uncertainty about the probability

of a value of a node in the network does not depend on the node or the value.

This form of bounded conditioning assumes that we begin with a completely

initialized network. We are in this state after initialization of the network, and after

we solve all instances of a problem given evidence. Such bounding from a complete

state is most useful in situations where pieces of evidence are seen at intervals long

enough to allow the eventual complete updating of the network, yet where decisions

may have to be made as soon as possible after the observation of that evidence.

5.2.2 Bounding from an Incomplete State

We shall now generalize the bounding calculus to allow us to update a network with

new evidence before previous evidence has been completely analyzed. Recall that the

revised weight for an instance, in light of new evidence, is obtained by multiplying

the old weight for that instance by the probability of the observed evidence in that

instance. Then, this product is normalized by dividing it by the marginal probabil-

ity of the evidence. To compute the weights, we must first calculate the marginal

probabilities within each instance. If we did not update the belief in values of the

nodes in a particular instance when we added the last piece of evidence, it is not

possible to obtain the probability of the new evidence, since all of the instances have

not been updated. To reason about the relevance of additional pieces of evidence,

given a previously incomplete analysis of a subset of instance subproblems requires

us to apply a bounding analysis to the weights themselves. This makes our bounding

calculus more complicated.

Suppose we observe evidence e for node E, recalculate the weights for all instances

given this evidence, and then only propagate this evidence for a subset of instances

i = 1 to j. After completing the propagation of evidence in instance j, we observe

value f for node F . To update probabilities of interest given e and f , we need to

compute revised weights w∗i = p(instance i|e, f, ξ). For i = 1 to j we can calculate

the belief in the conjunction of the new evidence and the old. For i = 1 to j we know

p(f, instance i|e, ξ) = p(f |e, instance i, ξ)× p(instance i|e, ξ)
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If we knew this for all instances i, we would simply normalize; this is equivalent to

w∗i = p(instance i|e, f, ξ) =
p(f, instance i|e, ξ)∑
k p(f, instance k|e, ξ)

However, we cannot normalize p(f, instance i|e, ξ) over all instances i, as we do when

we begin with a complete set of instance weights. Now, in addition to bounding

the target probabilities through considering the minimal and maximal contributions

of unsolved instances, we need to consider upper and lower bounds on the weights

themselves.

For i = j + 1 to n, we know only that

0 ≤ p(f, instance i|e) ≤ p(instance i|e, ξ)

The upper bound follows from the fact that p(a ∧ b) ≤ p(b). Therefore, we can use

our last-calculated cutset weight for instance i as an upper bound on the weight for

that instance. For instances i = j + 1 to n, we know that

0 ≤ p(instance i|e, f, ξ) ≤ 1

Thus, 0 ≤ w∗i ≤ 1 for i = j + 1 to n.

Therefore, we can bound instances i = 1 through j,

p(f, instance i|e, ξ)∑j
k=1 p(f, instance k|e, ξ) +

∑n
k=j+1 p(instance k|e, ξ)

≤ w∗i ≤
p(f, instance i|e, ξ)∑j
k=1 p(f, instance k|e, ξ)

(5.1)

Now we can return to updating the cutset instances. Let us assume that for the

new observation f , we only propagate evidence in instances 1 through h where h ≤ j.

Because instances j + 1 through n were not updated when the last piece of evidence

was added, they cannot be updated now either. Thus, we can update and sort only

instances 1 through h. Let PL(x|e, f, ξ) and PU(x|e, f, ξ) represent, respectively, the

upper and lower bounds on the conditional probability of interest, wL
i indicate a lower

bound on the weight of instance i (left side of Equation 5.1), and wU
i indicate an upper

bound on the weight (right side of equation 5.1). After updating instances 1 through

h with the new evidence, we have the following bounds on p(x|e, f, ξ):

PL(x|e, f, ξ) =
h∑
i=1

p(x|e, f, instance i, ξ)× wL
i
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PU(x|e, f, ξ) =
h∑
i=1

p(x|e, f, instance i, ξ)× wU
i

+
j∑

i=h+1

wU
i +

n∑
i=j+1

wi

5.3 Performance of Bounded Conditioning

The performance of bounded conditioning has been analyzed with several belief net-

works. Let us examine sample runs with the ICU network described in Section 4.2.

The behavior of bounded conditioning was studied for several loop cutsets for this

network. One cutset consists of 5 nodes that lead to 144 different singly-connected

network subproblems. The convergence of the bounds with the solution of additional

subproblems, for a sample update, is displayed in Figure 5.3. The figure shows the

upper and lower bounds, as well as the mean probability as the belief-network sub-

problems are sequentially solved. Figure 5.4 shows the decay of the interval between

the upper and lower bound on a probability of interest with computation. We found

that the bounds interval for many updates can be approximately modeled with a

negative exponential, int = e−kt. In the case portrayed in Figure5.4, convergence

is modeled with a decay constant of k = 0.02. Figure 5.5 shows the convergence of

bounded conditioning for the same problem, making use of a different cutset.

Figure 5.6 shows the behavior of the iterative application of bounded conditioning

to incomplete states, as new evidence is observed before earlier evidence is completely

analyzed. The graph shows that the interval of the bounds at maximal convergence

grows with each new observation.

This convergence information can be used to calculate an EVC of inference, en-

abling us analyze the expected value of continuing to apply the bounding algorithm

in the context of the costs and benefits of taking action in the world. In fact, the con-

vergence information, based on the incremental reduction of the bounds interval by

the weight of each subproblem, is just the belief-constellation knowledge, p(pt(φ)), re-

quired by the EVC/BC calculation described in Section 4.4. Recall that the EVC/BC

makes use of future intervals between the lower and upper bounds on a probability of

interest with computation. This knowledge is made available after the initialization
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Figure 5.3: Convergence of bounded conditioning.
This graph shows the stereotypical convergence of upper and lower bounds on a probability
of interest generated by bounded conditioning, in response to the observation of evidence.
Each instance subproblem requires approximately 5 seconds of computation.
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Figure 5.4: Convergence of the bounds interval.
The convergence of the bounds interval (upper bound - lower bound) on a probability with
computation can be modeled by an exponential-decay model.



0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

Subproblems solved 

B
ou

nd
s 

in
te

rv
al

Cutset 1

Cutset 2

128 A Flexible Inference Algorithm

Figure 5.5: Convergence for a different cutset.
This graph shows the convergence behavior of bounded conditioning using two different
cutsets to decompose the multiply connected belief network on the same inference problem.
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Figure 5.6: Updating from an incomplete state.
When new evidence is observed before the complete solution of an inference problem, we
must bound the weight instances. This graph shows the convergence of the bounds interval
in response to a sequence of 4 sequential observations.
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of a set of instance weights. We shall review the use of the EVC/BC with bounded

conditioning in Chapter 6.

5.4 Caching of Instance Weights

An approach to extending bounded conditioning effectively to the case of multiple

observations, without resorting to the technique of bounding the weights of instances

is to compute instance weights ahead of time and to store them for retrieval at run-

time. Alternatively, we can compute and cache a small subset of potentially useful

instance weights during the idle time between observations.

5.4.1 Offline Caching

The offline compilation of evidence weights is in the spirit of recent work on the

compilation of probabilities by Herskovits and Cooper (Herskovits and Cooper, 1989).

These investigators explored methods for selecting important probabilities for offline

caching. The caching of all probabilities that can be inferred from a belief network

of binary variables would require the storage of 2n numbers, where n is the number

of nodes in the belief network. If we consider a subset of belief network nodes to

serve as a stable set of observable evidence E, the compilation of of instance weights

requires the storage of a set of weights for each possible combination of evidence;

we have to store 2|cutset| × 2|E| numbers. Thus, the quantity of memory required to

cache instance weights grows exponentially with the number of pieces of evidence

included in the cache and exponentially with the size of the cutset. The use of

bounded conditioning reduces the memory needed to store compiled probabilities by

a factor of 2n−|E|−|cutset|. Large networks with small cutsets are candidates for the use

of compilation in conjunction with real-time bounded conditioning.

In a diagnostic setting, decision makers typically are not interested in the complete

joint probability space represented by a belief network. Instead, they interested in the

probabilities of special hypothesis nodes H (e.g., diseases), given observed evidence.

If we have a stable set of binary-valued hypothesis and evidence nodes, we need only

to cache |H| × 2|E| probabilities. In such cases, the relative savings of the use of
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bounded conditioning depends on the number of loop cutset nodes versus the number

of special hypotheses, the cost of memory, and the cost of the delay associated with

the use of bounded conditioning.

We can reduce the quantity of memory used for compiling instance weights for

bounded conditioning by (1) caching loop-cutset instance weights for sets of observa-

tions that are associated with time-critical decisions, (2) weakening the convergence

criteria of bounded conditioning, so that the algorithm halts at a predetermined

bounds interval, or (3) adjusting such predetermined final bounds intervals to reflect

the criticality of sets of observations. The effectiveness of (2) and (3) is highlighted by

the rapid convergence of the bounds on a probability with a small fraction of instance

weights. All of these approaches could reduce dramatically the number of probabili-

ties we need to store for the effective general application of bounded conditioning.

5.4.2 Idletime Caching

We wish to make the best use of the idle time between the completion of a previ-

ous update and the observation of new evidence. In many applications, there may

be time between observations for planning future updating. In domains where we

expect infrequent bursts of sequences of observations, it can be effective to compute

instance weights for anticipated future observations during the idletime between ob-

servations. The computation of instance weights can be directed by the likelihood of

new observations, conditioned on the current state of the world.

5.5 Multiple Approximation Methods

There is potential for applying several different approximation methods in conjunction

with bounded conditioning, with the hope that the differences in the nature of the

approximations can be used to produce a result that captures the best aspects of each

algorithm.
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5.5.1 Bounded Conditioning for Topological Editing

We can use bounded conditioning to break a subset of loops in a multiply connected

network, producing alternate mixtures of singly connected and multiply connected

subproblem instances. The selective assignment of states of truth and use of bounded

conditioning can provide an effective means of topologically editing a network to gen-

erate subproblems that can be solved efficiently by other algorithms. For example, we

can break a complex problem into a set of multiply connected problems that can be

solved effectively by simulation or by the clique-tree methodology such as the method

of Lauritzen and Spiegelhalter (Lauritzen and Spiegelhalter, 1988). More generally,

the controlled decomposition of a belief network by bounded conditioning can gener-

ate subproblems that can be solved with different methods depending on the topology

of the subproblem.

5.5.2 Concurrent Bounded Conditioning

There are typically several loop cutsets for a belief network. Alternative cutsets up-

date the upper and lower bounds of a probability of interest in a different manner. In

preliminary experimentation, I investigated gains that could be ascertained through

the concurrent processing of a belief network with two different bounded-conditioning

analyses. As indicated in Figure 5.7(a), given a set of two or more bounding analyses,

we select the highest lower bound and the lowest upper bound to construct final upper

and lower bounds on a probability of interest. The less the overlap among different

sets of bounds, the greater the benefits of concurrency. Figure 5.7(b) displays graphs

of analyses based on two different loop cutsets. The convergence of the final bounds

is just the interval between the greatest lower bound and the smallest upper bound.

In analyses to date, the overhead of executing two different problems has been greater

than the gains. There may exist cases, however, where concurrent bounding yields a

net gain. However, we may find that the gains in convergence may outweigh the over-

head. In related work, a promising parallel implementation of bounded conditioning

that updates problem instances concurrently has been implemented.1

1The parallel version of bounded conditioning was developed by Adam Galper.
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Figure 5.7: Concurrent application of two different cutsets.
(a) The goal of concurrent bounded conditioning is to solve simultaneously different bound-
ing problems, and to combine the different bounds (U-1, L-1 and U-2, L-2) to construct
final bounds (U∗, L∗) on a probability of interest. (b) Upper and lower bounds associated
with two concurrent bounded-conditioning analyses of an ICU inference problem.
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5.5.3 Simulation for Calculating Instance Weights

There can be great synergy in the application of alternative algorithms for perform-

ing inference about components of the bounded-conditioning problem. For example,

there is promise in integrating stochastic-simulation methods (Shachter and Peot,

1989; Chavez and Cooper, 1989b) for computing cutset weights conditioned on sets

of evidence. A more robust version of bounded conditioning for multiple pieces of

evidence may result from this work.

5.6 Theoretical Analysis of Convergence

The rapid convergence of bounded conditioning provoked me to investigate grounds

for the method’s behavior. Insight about the convergence of bounded conditioning

can be gained by considering the distribution of instance weights. My analysis has

focused on the asymmetry in the way probability is apportioned to values of cutset

nodes.

5.6.1 Worst-Case Convergence

Consider a belief network that is cut by a loop cutset of n binary nodes. Let us

consider how probability is apportioned to values of nodes in the cutset of a belief

network. Recall that the instances are ordered by their associated weights. The

sorting operation insures that an instance in any position of the ordered list is greater

than or equal to the weight of any successor in the list. The weight of the first, or

largest instance, takes on a minimal value when it is equal to the weight of the smallest

instance in the sorted list. This condition is satisfied only when all of the weights are

assigned an equal value. Thus, in the worst case, all subproblem instances have the

same weight. With n binary nodes, we have 2n instances, each with weight 2−n. In

the worst case, bounds converge with 2−n with the solution of each problem instance.

After expending resource to recompute the weights, the worst-case convergence of the

bounds interval at time t is

1− (2−n × t

k
)
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where k is the amount of time required by each instance for solution.

Figure 5.8 shows an example of worst-case linear convergence for a loop cutset of

15 nodes. This linear convergence is the slowest rate of refinement we can expect with

bounded conditioning. Even in such worst cases, the utility structure of the decision

problem—for which the inference is being performed—can dictate that we need to

solve only a portion of the entire inference problem to derive a great fraction of the

value of perfect inference.

5.6.2 Better-Case Convergence

Asymmetric distributions over the conditional probabilities of alternative values of

specific cutset nodes, given values assumed for other nodes in a cutset, allow for a

wide range of differences among the weights for instances. Sorting and sequentially

solving these subproblems enables a reasoner to take advantage of the nonlinearity in

weights with subproblems. Such situations often enable a reasoner to capitalize on a

disproportionate amount convergence for early computation.

Consider the case where we again have a loop cutset of n binary nodes. Now,

however, we have an identical asymmetric contribution for values of each node in

the cutset, within each instance. Each node takes on one value (e.g., “true”) with

probability p, and another value (e.g, “false”) with probability 1− p. Within such a

network, we have several sets of instances with equal weight. We are assuming that

the dependence among cutset nodes is insignificant to this analysis. In particular, we

have sets of instances with weight

pn−j(1− p)j

each of cardinality n!
j!(n−j)! , from the largest to smallest weights as j varies from 0 to

n. The bounds interval, based on an incomplete analysis, in this case is described by

1−
m∑
j=0

n!

j!(n− j)!p
n−j(1− p)j

where m refers to the index of the set of instances of smallest weight [pn−m(1− p)m]

considered in the incomplete analysis.
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In juxtaposition to a scenario of worst-case convergence, Figure 5.8 displays a

better-case convergence, where each of the 15 loop-cutset nodes takes on the value

true with probability 0.75, and the value false with probability 0.25. This graph

shows a piecewise-linear convergence at different rates for each value of j. The rate of

convergence with the solution of subproblems is maximal at the outset of inference.

The proportions of total problem instances analyzed (215 = 32, 768) are listed on the

x axis. This analysis does not include the possible effects of dependencies among

cutset nodes that may exist in a real belief network. However, our analysis for the

case of the homogeneous loop cutset can give us intuition about the convergence of

bounded conditioning on the distributions of instance weights generated by real belief

networks.

5.6.3 Increase in Problem Difficulty with Cutset Size

We can explore the implications of a homogeneous asymmetric distribution over the

values of cutset nodes for the time required by bounded conditioning as the number

of cutset nodes grows. As described in Section 5.1, we know that the cost of complete

inference with bounded conditioning grows exponentially with the size of the cutset.

However, we are not interested solely in the computational complexity of inferring a

point probability. We wish to determine also how the resources required for solving

various fractions of the problem changes with the growth of the number of cutset

nodes.

Let us assume that the probabilities of the values of binary cutset nodes are 0.8

and 0.2. We can use Equation 5.6.2 to calculate the number of problem instances

that would have to be solved to tighten the bounds on a probability of interest to

any specified interval. Such an analysis reveals great disparity in the time required

for tightening the bounds and for converging on a point probability. Figure 5.9 shows

the difference in the growth of difficulty for computing a point probability and the

difficulty of computing a bounds interval of 0.5. For fourteen nodes, solution of the

complete problem requires the computation of 214 or 16,384 loop-cutset instances.

However, computing bounds of 0.5 requires only the solution of 107 subproblems—a

solution of less than 0.007 of the total problem. Problem growth curves for bounds
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Figure 5.8: Two theoretical scenarios.
The linear, worst-case (upper curve) and better-case (lower curve) convergence of bounds for
a marginally independent loop cutset consisting of 15 nodes. The better-case convergence is
based on an assumption of homogeneous asymmetry in the distribution over the probability
of values for each node (0.75, 0.25).
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intervals between 0.5 and 0.0 lay at increasingly higher positions between these two

curves.

The plots in Figure 5.10 graphically demonstrate with a linear and exponential

decay model, how the growth in the difficulty of generating a particular bounds

interval grows significantly more slowly with increases in the size of an inference

problem than it does with the growth of the complete solution of the problem. Figure

5.10(a), displays the traditional worst-case expected growth of difficulty for solving all

portions of a problem (similar to the worst-case plot at the top of Figure 5.8). In this

case, the time required to compute a portion of a desired attribute, such as one-half

of the original bounds (t.5) grows linearly with the growth of the whole problem. In

contrast, as highlighted in Figure 5.10(b), solutions like bounded conditioning tend

to deliver a rate of refinement on a result that is inversely proportional to the portion

of the problem that has been solved (similar to the better-case plot at the bottom

of Figure 5.8). For such problems, we can expect a reduced growth rate for solving

portions of the problem.

The bounded conditioning example suggests that we should be sensitive to attri-

butes of partial results that are not as affected by increases in problem size as is the

solution of the complete problem. Indeed, we may be able to identify desired attri-

butes, such as the bounds on a probability of interest, that require a quantity of time

that grows at a rate described by a low-order polynomial with increases in the size of

the problem instance—even when the amount of resource required to solve the entire

problem grows exponentially with increases in the problem size.

5.7 Summary

I have described the bounded conditioning method for probabilistic inference and

explained how we can use the strategy to compute bounds on the marginal proba-

bilities for any node in a belief network. Bounded conditioning exhibits the useful

properties of continuity, monotonicity, and convergence, enabling a reasoner to ex-

change arbitrary quantities of computational resource for incremental convergence on

probability bounds. The approach, and its future extensions, promise to be useful in
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Figure 5.9: Disparity in the growth of difficulty with problem size.
A graph demonstrating the great difference in the complexity of solving for bounds of width
0.5 and computing until reaching a point probability with a model of bounded conditioning
based on a homogeneous assignment of 0.8 and 0.2 to binary valued cutset nodes.
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Figure 5.10: Basis for disparity in growth rates.
(a) This graph demonstrates how, in the worst case, the time needed to solve a portion
of a bounded-conditioning problem can grow as fast as the time needed to solve the entire
problem. (b) Bounded conditioning takes advantage of asymmetries in instance weights.
This figure shows how a property of an algorithm, such as the “halflife” on bounds (t.5),
might grow only as a power of the size of a problem, while the complexity of solving the
complete problem grows exponentially. The graph captures intuitively the basis for the
computed results displayed in Figure 5.9.
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reasoning under the general conditions of uncertainty in available reasoning resources.

We have found, in complex belief networks, that the method solves a great portion

of a probabilistic inference problem with a solution of a fraction of the total number

of instance subproblems. Future efforts will seek to characterize the method more

fully and to take advantage of the structure of particular belief networks. Areas of

opportunity for additional research include mixing compilation of weights with de-

liberative concurrent bounded conditioning with multiple cutsets, idletime reasoning

about expected updating, the compilation and caching of instance weights, and the

use of complementary approximation methods for updating the weights on instance

subproblems. We shall turn, in Chapter 6, to this use of bounding algorithms in

normative metareasoning about beliefs and actions.
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Chapter 6

Protos: Implementation of a

Reflective Decision System

I shall describe, in this chapter, the architecture and functionality of Protos, a

prototype metareasoning system that demonstrates key principles of bounded ra-

tionality. The system exercises ideal control of probabilistic inference under resource

constraints, considering the stakes of a decision at hand and the time-dependent utili-

ties of outcomes. Protos was designed to demonstrate the control of decision-theoretic

inference for applications that use large probabilistic models to make decisions in

time-critical contexts.

Protos dynamically adjusts the length of time it dwells on an inference problem

before acting, depending on several classes of knowledge. The system considers the

probability distributions most recently computed and the expected refinement of those

probability distributions with additional computation time. Protos analyzes such

information about current belief and future belief, in conjunction with information

about the change in utility of alternative outcomes with delay, to make decisions about

the value of continuing to reflect, versus that of taking action. Protos analyses have

demonstrated that the optimal quantity of decision-theoretic inference to perform can

143
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Figure 6.1: A screen from Protos justifying the system’s reasoning and metareasoning.
When Protos is in an interactive mode, it produces a set of graphs to justify its decisions
about computation and action. The top row of graphs includes (from left to right) a
graph displaying the refinement of a probability distribution, information used to predict
the convergence of a probability distribution, and the EVC of an inference strategy. The
bottom row includes (from left to right) a graph showing the time-dependent utilities of
action and a graphical utility analysis of a recommended action.
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depend greatly on the degree of belief in states of the world, outcome utilities, and

time-dependent costs of delay.

I developed an interactive mode for justifying Protos’ control decisions. Although

the graphical interface was developed for validating and illustrating the rationale

behind Protos’ decisions, such justification abilities may be required in real-world

applications of the principles of bounded rationality. Future real-world versions of

reflective reasoners like Protos, even in autonomous decision-making situations, may

need to justify their behaviors with expressive human-oriented interfaces and expla-

nation facilities. An ability to justify decisions under bounded resources clearly may

be especially important in systems that are granted the responsibility for guiding

computation in high-stakes decision making.

When an investigator invokes the interactive mode, Protos presents graphically a

summary of its reasoning and metareasoning. The main screen of Protos is displayed

in Figure 6.1. Protos displays several classes of information that are crucial in the ideal

control of probabilistic inference. The system can display a comprehensive trajectory

of inference extending from the state of belief at the initiation of computation, to

the belief calculated with a complete analysis. This trajectory makes possible the

comparative analysis of belief and action, dictated under bounded resources, and ideal

belief and action that would be computed if sufficient time for a complete analysis

were available. In Section 6.4, we shall review in detail the information presented in

each window.

6.1 Architecture of Protos

The Protos system has four major components, pictured schematically in Figure 6.2:

(1) an EVC metareasoner, (2) an inference base containing probabilistic inference

algorithms, (3) a large knowledge-base of probabilistic relationships, represented as

belief networks; and (4) a problem-specific decision problem. The metareasoning

component makes use of knowledge about future distributions expected over target

probabilities with the use of an algorithm in the inference base to determine the

ideal amount of computation time that should be allocated to inference within the
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Figure 6.2: The architecture of Protos.
The Protos system has four major components, portrayed schematically from top to bottom:
(1) an EVC metareasoner, (2) a base of one or more probabilistic inference algorithms, (3)
a probabilistic knowledge base in the form of a belief network, and (4) a patient-specific
decision model.

probabilistic knowledge base. Knowledge about the problem instance and about

speed with which a problem is expected to be solved is computed and passed to the

metareasoner at run time. Protos also adds the time it requires for metareasoning to

the total time used in evaluating time-dependent utilities.

As indicated in Figure 6.3, for medical decision making, a patient-specific prob-

lem is passed to the Protos reasoner. This problem-specific decision problem contains

(1) possible actions and states of the world—these actions and states define possi-

ble outcomes; (2) time-independent utility of instantaneous action; and (3) the time

dependency of different outcomes that represent the loss (or possible gain) in the

utility of an action with time. In the current system, appropriate actions, states

of the world, and time-dependent utilities are predefined and passed to the system
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Figure 6.3: Instantiation of Protos with a patient-specific decision problem.
A set of outcomes and utilities of those outcomes specific to the case at hand is passed
to the Protos reasoner. The problem also includes time-dependent utility information that
defines the criticality of taking action. The system applies knowledge about the convergence
of a probability distribution over beliefs computed with a belief network to decide on the
optimal time to reflect on a problem before recommending or taking action.

as a compact frame of information. I have compiled and stored decision problems

that represent prototypical diagnostic dilemmas. However, the patient-specific deci-

sions, outcomes, and time-dependent utilities could be generated by computer-based

reasoning methods. I shall describe this feasible extension in Section 6.5.

6.2 Protos Decision Making

Protos computes the probability of propositions required for decision making by per-

forming inference in a large belief network. The sensitive states are defined by the

patient-specific decision information that is passed to Protos. Protos computes the
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Figure 6.4: Use of metaknowledge about the refinement of p(φ).
At run time, the decision problem and information about one or more salient observations
are analyzed by Protos’ EVC metareasoner. The metareasoner makes use of metaknowl-
edge about the progression of probabilistic inference. This metaknowledge is generated
dynamically or is accessed from a database of metaknowledge.
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EVC of inference as described in Chapter 4, employing an incremental analysis that

weighs the costs of dwelling on an inference problem, for a predefined additional quan-

tity of time ∆t = T before action, with the benefits of additional computation. In

operation, the incremental EVC computation involves interlacing probes for positive

values of EVC(S, T ) and performing additional inference with a belief network.

I shall describe the use in Protos of the bounded-conditioning method (discussed

in Chapter 5). Protos uses knowledge about the diminishment of the interval between

upper and lower bounds to compute the EVC/BC, described in Section 4.4. Recall

that the EVC/BC makes use of information about the expected reduction with com-

putation of the interval between upper and lower bounds on a probability of interest.

Such knowledge is made available by bounded conditioning. The current version of

Protos reasons about sets of independent binary decision problems. In each of these

problems, the system considers two actions, two hypotheses, and the four resulting

outcomes. (I shall discuss the extension of Protos to the case of multiple decisions

and multiple states of the world in 6.5.) One type of binary decision problem is the

treat–no treat decision, where we examine the decision to act now versus continuing

to delay. In another form of binary decision problem, we limit the world to the case of

For alternative p∗ boundary conditions, the solution of EVC/BC for a binary decision

problem yields closed-form quadratic functions that report the EVC as a function of

(1) the utilities for each of the four outcomes at time t, (2) the current bounds on φ

[p(φ)], and (3) the expected convergence of bounds with time.

6.2.1 Iterative EVC Analysis

With the use of bounded conditioning, Protos iteratively applies an EVC/BC analysis,

to consider the benefits of additional computation. In particular, Protos examines

the value of solving an additional polytree subproblem. Recall from the discussion of

bounded conditioning in Chapter 5 that additional computation tightens the bounds

on probabilities of interest by an amount equal to the likelihood, or weight, of the

next subproblem instance.

A view of the skeletal operation of Protos is displayed in Figure 6.5. At each

step of the EVC analysis, the latest computed probabilities and knowledge about
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the likelihood of future probability distributions are considered by the metareasoner

to determine whether additional computation has positive net value. If the EVC

is positive, the next most relevant subproblem is solved and the distribution over

belief is updated. The EVC analysis then focuses on the value and costs of solving

the next subproblem. Cycles of inexpensive computation of EVC followed by the

more expensive solution of the next probabilistic subproblem continue until action is

indicated by a nonpositive EVC. At this time, the system recommends taking the

action that has the greatest utility. This volley of reflection and inference, followed

by action in the world, is captured by the cycle in Figure 6.5.

The incremental analysis allows Protos to make use of information about the latest

probability distribution calculated. As the value of continuing to compute depends

on the constraints imposed by the current belief, using the most accurate result is

crucial in making an accurate assessment of computational value.

6.2.2 Extending the Horizon of EVC Analysis

The incremental EVC/BC computation in Protos is myopic or greedy in that the

contribution and cost of solving only the single next subproblem are considered. The

greedy solution has desirable and undesirable features. Its primary advantage is effi-

ciency: the tractable closed-form solution does not impose significant computational

burden on the base level. Also, the value of EVC is sensitive to the most recent

probability distributions calculated over time; it could be wasteful to expend great

quantities of computation on global EVC analyses when new information, useful for

updating the EVC estimate, becomes available with computation. Finally, my em-

pirical experience with the use of Protos on medical decision problems has indicated

that myopic EVC analyses typically report the same result that would be reported

by less myopic analyses. That is, the EVC frequently diminishes monotonically; the

EVC tends to remain zero or negative following an initial nonpositive result. In cases

where the EVC has a nonmonotonic trajectory, the EVC often becomes nonpositive

shortly following the first nonpositive EVC result. Unfortunately, this is not always

the case; there are cases where EVC becomes positive after dipping to a nonpositive

value. Thus, the myopic, one-step analyses can overlook a positive EVC that lies just
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Figure 6.5: Protos iterative EVC analysis.
Protos iteratively evaluates the value of allocating additional time for reflection about a
problem. At each step of the EVC analysis, the most recent beliefs and relevant meta-
knowledge about the probability of future probability distributions are applied to determine
whether that additional expenditure of time has positive net value. The process continues
until the system determines that future reflection has a negative expected value. At this
point, the system recommends taking the action that has the greatest value.
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Figure 6.6: Beyond single-step EVC analysis.
Protos has the ability to look beyond the costs and benefits of solving a single subproblem
by computing an EVC of solving additional subproblems. In this partial lookahead analysis,
the current probability distribution is assumed as a constraint on future distributions.

Figure 6.7: More general lookahead for EVC in Protos.
The lookahead analysis has been generalized to an n-step analysis. If the current EVC is
nonpositive, the system explores the EVC of solving additional subproblems, in order. If
a positive value is found, the system solves a single subproblem and reexamines the future
EVC with the constraints imposed by the new bounds on the probability. Otherwise, the
system directs action based on the current mean.
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beyond a negative swing in EVC.

To identify some of the inaccuracies arising from the myopia of the EVC/BC

evaluation, I implemented a partial lookahead EVC analysis in Protos. This partial

lookahead is still inexpensive, requiring a quantity of time that is a constant factor

greater than the time required for the single-step myopic EVC/BC analysis. In the

partial lookahead approach, we evaluate the value of tightening the bounds by solving

more than one subproblem. As portrayed in Figure 6.6, if the system determines that

the EVC of solving another subproblem is negative, the system repeats the analysis

for bounds that will result from solving the two next subproblems. This lookahead

has been generalized to an n-step lookahead analysis that continues to examine the

EVC of up to n additional subproblems, until a positive EVC is found. This approach

is displayed in Figure 6.7. If a positive value is found, the system solves one more

subproblem, then reexamines the future EVC with the constraints imposed by the

new bounds on the probability of interest. If the EVC is still negative after all n of

the subproblems have been investigated, the system recommends action in the world

based on the best decision available.

6.2.3 Reflex Responses in Protos

The single-step EVC/BC analysis is an inexpensive means of approximating the EVC

of probability-bounding algorithms. However, metareasoning analyses may not always

be inexpensive. As we design more sophisticated metalevel analyses, we may wish to

construct a multilevel approach to metalevel analysis, where a preliminary inexpensive

evaluation is performed to screen for a high-likelihood of negative EVC, before we

employ a more costly, more precise EVC analysis. A multilevel EVC approach would

give a system the ability to react to evidence almost immediately with a reflex action,

avoiding the cost of a metareasoning analysis.

I constructed a two-level metareasoning facility that allows Protos to forego com-

putation of the EVC if there is information warranting the system to default to a

reflex action, based on the current mean of belief or on a compiled recommendation

for action, before performing any additional analysis. The reflex capability in Pro-

tos demonstrates how expensive components of a metareasoning problem could be
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avoided in critical situations.

The rationale for a two-level metareasoning analysis for bounded conditioning is

based on the cost of preparing a set of updated instance weights to serve as interval-

convergence information. This cost is incurred by reasoners using bounded condition-

ing, in the absence of a set of compiled instance weights. Protos’ EVC metareasoner

makes use of these updated weights of evidence to reason about future interval be-

tween an upper and lower bound on a probability of interest. As I described in

Chapter 5, a reasoner must first update the a priori instance weights, by condition-

ing the old weights on new observations. The computation of new instance weights

requires a single multiplication for each instance, and a sum and division for normal-

ization of the probability assignments. Although this process is typically rapid, it

is more expensive than are individual incremental EVC/BC analyses that follow the

initialization of the weights. I developed a two-stage metareasoner that allows Protos

to react before committing additional time to the updating of its weights, based on a

preliminary EVC screening analysis. This preliminary analysis reduces the minimum

response time required by the system before acting, and demonstrates how evidence

about a context could be used to usurp costly metalevel deliberation.

Two inexpensive EVC-screening approaches were implemented: (1) a worst-case

EVC analysis, based on the worst-case convergence properties of bounded condi-

tioning for a belief network (as described in Chapter 5); and (2) an average-case

EVC estimate, based on empirically derived sequences of instance weights. In both

cases, Protos is told which probabilistic knowledge base is being used, and applies the

worst-case or average-case convergence EVC analyses. If the preliminary analysis is

positive, Protos expends the overhead in updating the instance weights, and perform-

ing a complete meta-analysis. In the use of the average-case EVC, the actual weights

are recorded and averaged with the convergence seen so far, to be used in future

average-case analyses. The preliminary EVC screening approach is captured by the

schematic in Figure 6.8. The current version of Protos uses the average-case analysis

to choose between taking a reflex action and doing a more involved meta-analysis.

As we shall see in Section 6.4, the EVC-screening approach in Protos reduces the

minimum time required by the system for a response, and demonstrates how more



• Worst-case convergence
• A priori convergence

A priori meta-analysis

Reflex 
Action

+EVC ? Comprehensive meta-analysis

• Computed convergence

Bounded 
Action

Yes

Yes
No

No

+EVC ?

6.3. Time-Dependent Utility in Protos 155

Figure 6.8: Reflex action in Protos.
Protos applies a preliminary average-case EVC analysis at the outset of a case to determine
whether to react immediately with a reflex action or to allocate further resources to prepare
the instance weights for a more accurate EVC computation. The preliminary screening ap-
proach reduces the minimum time required by the system for a response, and demonstrates
how more complex metareasoners might be partitioned into several tiers of analysis.

complex metareasoners might be partitioned into several tiers of analysis, each tier

of meta-analysis requiring more time and yielding more accurate EVC estimates.

6.3 Time-Dependent Utility in Protos

As highlighted in Chapter 4, the cost associated with reasoning is central to the cal-

culation of EVC. We shall now examine the representation of time-dependent utility

of alternate outcomes in Protos, and shall discuss work on the dynamic formulation

and customization of time-dependent utility models.

6.3.1 Representation of Time-Dependent Utility

In Protos, costs of delay are represented as linear and exponential decay functions of

the value of alternative outcomes. A cost function can be specified for any relevant

outcome. The nature of the function and constant parameters are stored in a frame
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structured by outcome. The structure of the file used to represent time-dependent

utility information is displayed in Table 6.1. Individual outcomes considered in a

current decision problem are listed in the first column. In this case, the two actions,

Action 1 and Action 2, and two states of the world, Hypothesis 1 and Hypothesis

2, lead to four possible outcomes, listed in the first column. For each outcome, the

frame contains (1) the utility of that outcome given immediate action (at time tα),

(2) a functional form and parameter describing the change in utility of each outcome

with a delay, and (3) the numeric or symbolic description of the value that the utility

of an outcome will converge to with time. For assessment, the initial time tinit is

defined as the moment a state of the world becomes true, or as an estimation of this

time, based on when salient manifestations have been observed.

Protos allows several functional forms for utility decay and deadline. These include

the linear and exponential forms,

u(Ai, Hj, t) = u(Ai, Hj, tα)e−kat

u(Ai, Hj, t) = u(Ai, Hj, tα)− cbt where u(Ai, Hj, t) ≥ 0

where ka and cb are assessed parameter constants. In the example, the time depen-

dency of the utility of taking action Action 1, given state Hypothesis 1, is described

as decaying from its initial value of 0.25 at tα by a negative exponential function,

with a decay constant of 0.006.

In many cases, the time-dependent utilities of outcomes converge on a value of

zero with time. However, at other times, a decision maker may wish to specify a

lower bound on the utility. Protos allows a user to specify a lower bound on a time-

dependent utility as a numeric quantity. In addition, the utility of an outcome can

be defined to converge to the value of another outcome. For the time-dependent

utility model displayed in Table 6.1, the utility of taking action Action 1, given

that Hypothesis 1 is true, converges to the utility of taking action Action 2, given

Hypothesis 1.
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Outcomes Utα Time Dependence Convergence
Action 2 Hypothesis 2 1.00 Ø – 1.00
Action 1 Hypothesis 2 0.65 Ø – 0.65
Action 1 Hypothesis 1 0.25 Exp 0.006 u(Ai, Hj)
Action 2 Hypothesis 1 0.02 Ø – 0.02

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

Table 6.1: Time-dependent utility information is represented in Protos as a structured
file of information containing (columns from left to right): (1) a list of actions and
outcomes, (2) the utility at tα of alternate outcomes, (3) the functional form and
parameter of the cost of delay; and (4) the value to which the utility of each outcome
will converge. The latter value can be stated in terms of the utility of another outcome.

6.3.2 Assessment and Construction of Utility Models

Time-dependent utility models for alternate decision problems can be directly as-

sessed by the procedures described in Section 4.2.3 and cached for use in real time

by Protos. The use of prototypical utility models and cost functions in machine rea-

soners suffers from the same problem that plagues professionals charged with making

decisions for their clients. In practice, professionals—such as physicians—do not ac-

quire detailed knowledge about the preferences of their clients. Instead, they make a

best guess about the preferences of the people they are serving. Several researchers

have investigated the real-time assessment of a decision maker’s preferences (McNeil

et al., 1982; Barry et al., 1988; Jimison, 1990). In one approach, medical decision an-

alysts encoded several prototypical utility models, and used attributes of the patient’s

personality to choose the most appropriate model for that patient.

To customize the utility models used in Protos to specific situations and to dif-

ferent individuals, I investigated the automated construction and customization of

time-dependent utility models. We can view utility model construction and refine-

ment as a process of diagnosis from evidence. In the general case, we may not be

certain of a patient’s preferences; thus, determining the utility of alternate outcomes
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is a problem of reasoning under uncertainty. I chose to perform utility construction

as a case of deterministic diagnosis. A Protos subprogram named Puma (for Protos

Utility Modeling and Assessment) was designed to construct and customize time-

dependent utility models as a function of patient vital signs including a patient’s age,

heart rate, blood pressure, and partial pressure of oxygen in the blood. Puma al-

lows an expert clinician, or other principal agent for a patient, to specify object-level

and time-dependent components of a preference model with functions that take as

arguments key attributes that characterize a patient’s personality or physiology. In

Protos experiments, an expert emergency-room physician, who played the role of a

principal agent for a patient in a critical setting, specified functions which dictate the

cost of delay as a function of a patient’s vital signs.

6.4 Protos in Action

As indicated in Figure 6.9, the system decides on one of three basic reasoning strate-

gies. Depending on the probability distribution over the outcomes, the time-dependent

utilities, and the metaknowledge about the expected convergence of probabilistic in-

ference, Protos may (1) recommend immediate action after a precursory analysis, (2)

dictate a best action under bounded resources after some partial inference, or (3)

demonstrate the dominance of one of the possible actions after performing inference

long enough to prove the optimality of that action. A recommendation for immediate

action is based on a preliminary average-case EVC analysis. The recommendation of

a best action under bounded resources is the decision with the greatest utility at the

time the EVC becomes zero. Finally, if a computed upper bound on a probability

drops below a decision threshold, or a lower bound rises above that threshold, before

the EVC becomes nonpositive, then a best decision is proved. As we shall see, these

decisions, and the corresponding actions in the world, typically are made well before

inference would be completed.

Let us now examine Protos’ deliberation about inference within the ALARM belief

network, which was introduced in Chapter 4 (Figure 4.4). I shall describe the case

of dominant decisions. In Chapter 7, we shall examine all classes of Protos decision
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Figure 6.9: Protos actions under varying resource constraints.
Depending on the time-dependent utilities and stakes of the decision problem and the
metaknowledge about the expected convergence of probabilistic inference, Protos determines
one of three possible actions: (1) recommend immediate action after a precursory analysis,
(2) prove the dominance of one of the possible actions, or (3) dictate the best action under
bounded resources.

making, as part of the validation of the Protos system on another belief network.

Suppose the utility model, represented by the first four rows of the frame in Ta-

ble 6.1, describes the relevant actions, stakes, and time-dependent utility in the ICU

decision context described in Chapter 4. Let us see how Protos integrates the utility

information into decisions about computation. Figure 6.10 shows Protos’ display of

the convergence of the upper and lower bounds (ub,lb) on a probability of state H1

(e.g., respiratory failure) with time, with the mean of the assumed uniform distribu-

tion determined by these bounds. The figure also shows the time-dependent decision

threshold, p∗(t). The level and time-dependent changes of p∗ are a function of the

utilities and decay of the outcomes specified in the utility frame. Vertical hash marks

on the x axis represent the solution of individual problem instances. There are 108

instances generated by this cutset.

Figure 6.11 shows Protos’ decision about an ideal time for halting inference. Notice

that it is ideal to halt and to act to treat the patient after analyzing only six of the

108 subproblems. As the system notes at the bottom of the graph, each bounded-

conditioning subproblem requires about 10 seconds.1 After dwelling on the problem

1The solution time depends on the implementation and hardware. Recent engineering enhance-
ments approximately doubled the speed of subproblem analysis for the ICU network.
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Figure 6.10: A belief update within the ICU belief network.
Protos displays the convergence of the upper and lower bounds (ub, lb) on a probability of
interest with time, and the mean of the distribution, assuming uniformity. It also displays
the time-dependent decision threshold (p∗). Vertical marks on the x axis represent the
solution of individual problem instances. There are 108 instances generated by this cutset.

for 672 seconds, Protos reports in a short message that it has proved that the best

decision is A1 (e.g., to act to treat respiratory failure). This report refers to the

observation that the upper bound of the probability falls below the decision threshold

before the EVC/BC becomes nonpositive.

Let us examine the EVC, computed iteratively before the solution of each sub-

problem. Figure 6.12 shows the value of the EVC/BC as inference progresses. The

graph of EVC/BC is scaled for each case so we can inspect the structure of small

changes in EVC/BC. Given the information in the utility frame, the current posi-

tions of the upper and lower bounds, and the expected convergence of the bounds

with time, the EVC/BC rises to a maximum before decreasing to zero as the upper

bound of the probability passes beneath the value of p∗. Figure 6.13 superimposes the

object-level EVC/BC on the same graph. This quantity is the value of reasoning in a

world where computation is free. We consider all the utilities to be time independent

for calculating the object-level EVC/BC.
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Figure 6.11: An ideal halting time.
Protos notes that the upper bound of the probability of interest dips below the decision
threshold after it solves six of 108 subproblems.

Protos also displays the metaknowledge it is using to compute the EVC. Figure

6.14 is a histogram that shows the contribution that the solution of each subprob-

lem will have to the convergence of the bounds. Recalling details about bounded

conditioning from Section 5.2, we determine such a contribution by computing the

weight of each subproblem. Weights are computed by updating the prior weights on

instances with evidence and sorting these subproblems by their contribution. The

bounds converge with the solution of each subproblem at a rate indicated by the

height of the histogram at that subproblem.

Protos also exhibits the value of the utility of the outcomes under consideration.

This information for the current case is displayed in Figure 6.15. Notice that, as

dictated by the utility frame in Table 6.1, only outcome A1, H1 (the utility of acting

to treat the patient for respiratory failure) is described by a time-dependent utility.

We can easily make other utilities time dependent by adding a decay function and

parameter to the utility frame.

Finally, Protos shows us a graph, displayed in Figure 6.16, of the initial utilities

of the outcomes at tα, the utilities of the outcomes at the ideal halting point, and the
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Figure 6.12: The EVC/BC of inference with bounded conditioning.
This graph shows the EVC/BC associated with the solution of the “next subproblem.”
Note that, in this case, the EVC rises before beginning a steep descent to zero as decision
dominance is proved.

Figure 6.13: Comparison of the comprehensive EVC/BC with object-level value.
The lighter graph represents the object-level value of inference, the value of computation in
a world where delay incurs no cost.
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Figure 6.14: Knowledge about the convergence of an interval.
This graph displays a histogram that characterizes the contribution of each subproblem to
the convergence of the bounds interval. Protos computes the graph by updating the prior
weights on instances with evidence and sorting the subproblems. The bounds converge per
subproblem analyzed at a rate dictated by the height of this graph over each subproblem
(representing that problem’s weight).
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Figure 6.15: The time-dependent utilities of four outcomes.
In this case, only outcome A1, H1—taking action to treat a time-dependent state—is de-
caying with time. This change in utility is responsible for the time-dependent decision
threshold (p∗).

expected utility of the alternative actions being considered (A1 and A2) as a function

of the probability of a hypothesis (p(H1)). The solid lines are the utilities of action

at the time of halting. Broken lines indicate the initial utilities of the actions as

functions of the probability of a hypothesis.

The system can be instructed to superimpose the current probability distribution

on the graph of the utilities of actions. As pictured in Figure 6.17, with the use

of a bounding algorithm like bounded conditioning, we post the lower and upper

bounds on the probability that will be computed with sufficient time for a complete

analysis. We see also the relationship of the decision threshold p∗ to the current belief.

The approximate probabilistic calculation, in conjunction with information about the

utility of alternative actions, may be viewed as a partial result for decision-theoretic

inference. Protos can complete the analysis and post the final probability computed

with sufficient computation. This probability is displayed in Figure 6.18.

Protos can demonstrate the sensitivity of the optimal time to compute before

acting in the world. Such changes in optimal halting time and action, depending
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Figure 6.16: Time-dependent value of outcomes as a function of probability.
Protos displays the initial utilities of the outcomes and the utilities at the ideal halting
point. The system graphs the expected utilities of two actions (A1 and A2) as a function of
the probability of a state (p(H1)) and shows how the expected utility of taking action (A1)
diminishes with delay. The solid lines are the utilities of action at the time of halting. The
broken lines adjacent to the solid utility lines indicate the utility of acting at tα.
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Figure 6.17: A partial state of information.
Protos displays the probability distribution at the time of halting. Upper and lower bounds
on a final probability, and the mean of an assumed uniform distribution are displayed. The
decision threshold, p∗, also is displayed. We see that the upper bound is below the revised
p∗. The expected utility of the action is the height of the dominant action at the mean of
the current distribution.



0.0

0.5

1.0

U
til

ity

Probability of H1

0.0

0.5

1.0

0.5       

6.4. Protos in Action 167

Figure 6.18: Location of the final result.
Protos also can show us where the final probability (φ) is located (dotted line) after ex-
haustive computation. In this case, the final probability is very close to the current mean
of the bounded-conditioning approximation.
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on the parameter used to describe the time-dependent utility of outcome A1, H1 are

demonstrated in Figure 6.19. Here, we increase the rate at which the utility of action

A1, given hypothesis H1 is true, decays with time. We see that the ideal reasoning

time is decreased. Figure 6.20 shows how decreasing the rate of decay of the utility

of A1, H1 increases the time we should continue to compute before acting.

Let us now examine another update of p(H1), given new observations. Figure

6.21 (a) shows the upper and lower bounds of the new update. In addition, the graph

displays the time-dependent p∗ and ideal halting time, based on the utility model

assumed for the previous example (Figure 6.20). The system recommends action A2

after computing for 112 seconds. Figure 6.21 (b) displays the comprehensive and

object-level EVC/BC.

Now, we shall revise the utility model to see how the halting time and action are

affected. We shall analyze the same update with an updated utility model described

by the frame at the top of Figure 6.22. Notice that the initial utilities of outcomes

A1, H1 and A2, H1, and the decay of the utility of A1, H1, are reduced in the revised

model (indicated by the underscoring). With the new utility model, Protos reasons

for 232 seconds and makes a decision to take action A1. The ideal time to compute

and the ideal action to take after ceasing to reflect about a problem depend greatly on

the details of the utility model. Figure 6.23 displays the states of belief and utility at

the ideal halting times for the utility models described in Figures 6.21 and 6.22.

In the examples presented in this chapter, we examined cases where Protos proved

dominance of a decision by showing that a bound on a probability crosses above or

below a decision threshold before the EVC becomes nonpositive. In Chapter 7, we

shall see examples of action recommended before a decision threshold is reached.

6.5 Extensions of Protos

Several extensions of Protos are feasible. I shall mention salient areas of research

interest. We have focused, in this chapter, on the use of single flexible reasoning

strategy. We can apply the EVC formulae, introduced in Chapter 4, to examine the

best of several algorithms to apply to inference by exploring the EVC for a set of
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Figure 6.19: Increasing the criticality of the decision context.
We represent a context of increased time criticality by increasing the rate of decay of the
utility of A1, H1. (a) shows the earlier time for ideal action and (b) shows the new time for
action indicated by the revised utility model. The ideal time for reasoning has decreased.
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Figure 6.20: Result of decreasing the cost of delay.
In this case, if we decrease the cost of delay, we have a decision threshold that rises more
slowly with time.
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Figure 6.21: Another probability update.
The graph in (a) shows convergence of bounds on the same probability with different evi-
dence, assuming the same utility model that was used in the previous analysis (displayed
in Figure 6.20). The figure highlights how an ideal halting time can be sensitive to the
location, as well as the rate of convergence of the bounds. The EVC is graphed in (b); the
comprehensive EVC/BC (darker) and the object-level EVC/BC (lighter) for this update
are displayed.
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Figure 6.22: A revised utility model.
As indicated by the underscored numbers in the utility frames at the top of the figure, we
update the utilities of outcomes A1, H1 and A2, H1, and further reduce the time-dependent
decrease in the utility of A1, H1. The revised time-dependent probability threshold, p∗(t),
and the later ideal time for halting, are shown in (a). In Figure (b), the updated EVC/BC
(darker line) and object-level EVC/BC (lighter line) are shown.
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Figure 6.23: A closeup of the information states at the time of action.
In (a) and (b), the two different endpoints of inference for the two different utility models
described in Figures 6.21 and 6.22 are shown.
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representative computation times. I am integrating stochastic-simulation strategies

in Protos. We can also extend Protos’ analyses beyond binary actions and states

of the world. Adding actions is straightforward, and requires few changes in the

EVC evaluation. Increasing the number of states of the world leads to a growth of

complexity of the EVC analysis. We have been seeking ways to approximate more

sophisticated EVC analyses, to make feasible the analysis of action given a considera-

tion of larger number of hypotheses. Another realm of feasible refinement for Protos is

the development of more sophisticated lookahead to allow the system to avoid halting

inference when great inferential value lies just around the corner, a few subproblems

away. Finally, in the current version of Protos, problem-specific utility and decision

information is passed to the reasoner. There is great opportunity to marry the tech-

niques demonstrated in the Protos system with a dynamic planning system that can

dynamically build models and identify key decisions effectively, depending on a set of

observations. Of particular promise is the combination of Protos with planners that

identify relevant decisions by identifying tradeoffs (Wellman, 1988).

6.6 Descendants of Protos

Applications of descendants of the Protos system include monitoring systems, au-

tonomous closed-loop systems, and robot decision-making systems. The techniques

elucidated in Protos can allow designers of autonomous control systems and mobile

robots to employ large, expressive probabilistic knowledge bases for decision making

in contexts that might have greatly varying levels of criticality. Such mechanisms

could serve as the basis for the use of large decision models in closed-loop medical

systems. As an example, the pioneering work by Sheppard and colleagues on the use

of closed-loop monitoring and decision making about the infusion of vasoactive agents

in cardiac patients (Sheppard and Sayer, 1977; Sheppard, 1980) might be extended

with more sophisticated computer-based decision making. An autonomous system

employing large, expressive belief networks and normative metareasoning would have

the ability to dynamically custom-tailor its response to a wide range of challenges.
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Such systems might be entrusted one day with the responsibility for delivering com-

plex therapy regimens to patients.

Beyond the dynamic needs of real-time control systems, the principles of bounded

rationality can also apply to the control of “open-loop” decision-support systems. As

large knowledge bases and diverse inference-approximation algorithms are developed

and enhanced, it may become important for a decision-support systems to make

decisions about the length of time to reason before making a recommendation for

action. In this context, the principles described in this dissertation may allow a

system to recommend preliminary action within several minutes, and to review earlier

recommendations as inference progresses.
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Chapter 7

Validation of Protos’ Behavior

What is the value of using the normative-metareasoning techniques developed in this

dissertation? In this chapter, we shall examine the performance of Protos’ meta-

reasoning techniques on several decision problems and belief networks. I shall define

and illustrate the value of metareasoning with the bounded-conditioning algorithm.

We shall see that the value of normative metareasoning, for determining ideal re-

flection and action under time pressure, depends on (1) the time-dependent utilities

associated with alternative outcomes, (2) the difficulty of inference, and (3) the time

needed for metareasoning. The performance of Protos suggests that an efficient metar-

easoner can be a valuable asset to a reasoner because of the metareasoner’s ability

to optimize expensive object-level problem solving, in return for small investments in

metalevel computation.

7.1 Value of Metareasoning and Control

We can view all computer-based reasoners as being directed by a metareasoning policy.

Programs that do not have an explicit metareasoner assume a default metareasoning

strategy. For example, a computer program that solves all problems completely,

177



178 Validation of Protos’ Behavior

regardless of the costs of computation, is directed by a default policy of “compute until

a solution is reached.” We can imagine more sophisticated metareasoning policies.

For instance, we might write a computer program that uses a simple heuristic rule to

check the size of a problem before solving that problem; if the problem is bigger than

some predefined value, the system is directed to take immediate action in the world,

foregoing further analysis. However, if the problem is smaller than the predefined

value, the computer is directed to solve the problem completely before taking action.

7.1.1 Expected Value of Metareasoning

In contrast to the use of a simple reasoning policy, such as a set of predefined control

rules, Protos’ reasoning is shaped dynamically by a set of normative metareasoning

techniques, based on the computation of EVC. The study of the value of meta-

reasoning techniques requires a comparative analysis of two metareasoning policies.

Thus, to gauge the value of Protos metareasoning, we must compare the system’s

behavior with that of a less sophisticated default metareasoning policy.

I define the value of metareasoning, EVM(Mi,Mj, I, ξ), as the difference in the

utility of employing two different metareasoning strategies,Mi andMj, for solving a

specific problem instance I. The EVM is sensitive to the performance of the object-

level reasoning procedures. In evaluating the EVM, we assume that the object-level

machinery is held constant; for probabilistic inference, we fix the number of available

inference strategies and the speed of processing. We use ξ in this setting to refer

to background information about the object-level procedures and performance of a

computer-based reasoner.

I use EVMP(Mi,Mj,Pk, t, ξ) to refer to the more comprehensive measure of the

gain in value associated with the application of a new metareasoning policy for solving

a population of problems Pk over a period of time t. The EVMP is useful for com-

paring the relative effectiveness of two metareasoning policies in different contexts.

Unfortunately, the EVMP is more difficult to compute than is the EVM because it

requires both a probabilistic characterization of the distribution of decision problems

that may challenge a reasoner over time and a means of combining a complex history

of outcomes. As we shall see in Section 7.2, it is straightforward to determine the
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EVM for single decision problems.

7.1.2 Normative Metareasoning Versus Simpler Policies

Let us consider metareasoning strategies that are simpler than the Protos EVC ap-

proach. A feasible metareasoning policy, for computer-based reasoners that manip-

ulate probabilities and utilities, is to cease reflection and to take action whenever a

bound on a probability passes over a probability threshold. Such a decision-threshold

policy would direct a reasoner to take action whenever a lower bound on a probability

of interest rose above a decision threshold, or an upper bound on that probability

became smaller than that threshold. A threshold policy would not require the com-

putation of EVC. The policy would require the facilities of Protos that represent

time-dependent utility, that compute changes in the dynamic decision threshold, and

that monitor the relationships between probability bounds and the decision threshold.

Although a decision-threshold policy is less expensive than is the iterative com-

putation of EVC, the threshold analysis has several disadvantages, when compared

to EVC metareasoning. A system based on a decision-threshold strategy does not

have the ability to halt computation and to take action in cases when reasoning be-

comes worthless before a threshold is reached. Also, such a computer system would

be unable to compare the value of a set of alternative reasoning methods and ac-

tions. Such value comparisons are useful for choosing among different algorithms, for

deciding whether to respond to an observation with an immediate reflex action, and

for considering the benefits and risks of committing a large quantity of resource to a

noninterruptible problem-solving strategy. Nevertheless, we might wish to compare

the value of threshold-based and more sophisticated, EVC-based control.

We shall explore in Section 7.2, the EVM of Protos metareasoning for decision

making in several contexts, based on the use of several belief networks. We shall

investigate the following forms of EVM:

• EVM(MN,MC, I, ξ): The difference between the value of Protos normative-

metareasoning techniques (MN) and the value of solving the entire inference

problem (MC)
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• EVM(Mp∗,MC, I, ξ): The difference between the value of acting with the best

decision when a decision threshold (p∗) is crossed (Mp∗) and the value of solving

the entire inference problem

• EVM(MN,Mp∗, I, ξ): The difference between the value of Protos normative

metareasoning and a decision-threshold analysis

These measures of EVM depend on the performance of object-level reasoning. We

shall explore the EVM for a reasoning system armed with the bounded-conditioning

strategy. The values of the EVM measures would change if we endowed Protos’ object

level with additional inference procedures.

7.1.3 Case Analysis and Summarization

To consider the value of normative metareasoning, we assume as a reference decision

the action dictated by instantaneous complete inference. We use the probabilities,

computed after an exact analysis, as gold-standard probabilities. Expected utilities

are assigned to actions, taken after some period of time, by using the exact probabil-

ities φ to weight the utility of alternative outcomes. We can use the gold-standard

probabilities also to compute a utility of ideal immediate action, by considering the

utility of outcomes dictated by the time-independent utility model.

I developed a case summarizer that can be invoked within the Protos system. The

facility examines individual Protos decisions, and reports several measures of EVM,

in addition to the value of an instantaneous ideal action—the action that would be

determined immediately by an infinitely powerful computer. I have used the Protos

case summarizer to evaluate the value of Protos reasoning about medical decision

problems for several belief networks, including the ALARM network, described in

Chapter 4, and the VentPlan and DxNet networks, which I shall introduce in Sections

7.2.2 and 7.2.3

Although the medical decision problems and patient-specific utility models were

designed with the assistance of an emergency-room physician, the examples are in-

tended solely for illustrating the behavior of Protos. I have assumed greater stakes

and larger time-dependent losses in the value of outcomes than would be expected in
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most medical situations. Such time-dependency allows me to demonstrate the con-

cepts of normative metareasoning under bounded resources with our current belief

networks. A physician typically has more time for information gathering and analysis

than we have assumed in our time-dependent utility models. I discovered that our

largest, stable belief networks for time-pressured medical care are not complex enough

to exercise the full power of flexible inference and normative metareasoning. I await

the development of larger, more expressive belief networks to test these techniques

with more realistic time-dependent models.1 For the cases analyzed, I have assumed

time dependencies that are more appropriate for describing the cost of delay for a

computer-based reasoning system designed for fast-paced autonomous decision mak-

ing about such goals as maintaining homeostasis in a trauma patient or coordinating

a time-pressured manufacturing process.

7.2 Sample Case Analyses

We shall examine the performance of Protos in several different situations. First, we

shall explore normative metareasoning with the use of the ALARM network. Then,

we shall investigate decision problems with the VentPlan and DxNet belief networks.

We shall explore decision problems that were generated by conditioning the belief

network on salient observations that can be explained by two different syndromes.

We shall assume, in the cases, that only one syndrome is present and that no new

information becomes available during the analysis.

7.2.1 Reasoning with the ALARM Network

Let us first investigate the control of inference in the ALARM network. We consider

the case of a binary decision problem involving the time-dependent treatment of a

patient who suddenly demonstrates (1) extremely low blood pressure, (2) tachycardia

(an extremely fast heart rate), and (3) hypoxemia (low levels of oxygen in the blood).

Assume that a physician has ruled out all disorders that might cause these symptoms,

1The evolving QMR-DT belief network for internal medicine diagnosis (Shwe et al., 1990a) holds
promise as a valuable testbed for Protos’ metareasoning techniques.
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except for two competing syndromes: left-ventricular failure (H1) and hypovolemia

(H2). Hypovolemia is a dangerous state of decreased blood volume (due, for example,

to dehydration or bleeding). For a patient with this disorder, the low level of fluids

in the circulatory system causes reduced cardiac efficiency and cardiac output. These

effects, in turn, lead to low blood pressure, and thus to poor oxygenation of the major

organs. As part of a homeostatic reflex, the heart rate increases in an attempt to

raise the blood pressure. Left-ventricular failure (LVF) is a serious condition in which

the main pumping chamber of the heart is weakened; like hypovolemia, it causes low

blood pressure and hypoxia.

Although hypovolemia and LVF share salient symptomology, the treatments for

these pathophysiologic states conflict with each other. The treatment for hypovolemia

is to give fluids or blood to the patient to restore hydration to a normal level. In

contrast, a primary treatment for LVF is to reduce the quantity of liquids in the body,

to decrease the pumping burden on a weakened heart, and to reduce the quantity of

liquids that filter into the lungs because blood is not being pumped effectively by the

heart. Thus, as part of a treatment for LVF, a physician may give a diuretic—a drug

that reduces the quantity of fluids in the body. Erroneously treating a patient who

has LVF with fluid-replacement therapy, or treating a patient who has hypovolemia

with diuretic therapy, can threaten the life of the patient.

Assume that a physician has turned to Protos for assistance with this cardiac

decision problem. Protos has been updating its belief about the competing disorders,

given observations about the patient, by propagating observations through the ALARM

network. We shall now explore feasible patient utility models and examples of belief-

network inference.

Table 7.1 displays a Protos time-dependent utility model. The model describes

the value of the four possible outcomes, and contains information about the time-

dependent nature of the quality of treatment for patients who manifest symptomology

that can be explained by LVF or hypovolemia. In this case, the time-dependency

values are decay constants for a negative exponential function. The decay constants

indicate that, in this context, the time criticality for treating LVF is greater than the

criticality for treating hypovolemia.
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Outcomes Utα Time Dependence Convergence
Treat Hypovolemia Hypovolemia 1.00 Exp 0.0001 u(LVF,Hyp)
Treat LVF Hypovolemia 0.40 Ø – 0.40
Treat LVF LVF 0.20 Exp 0.001 u(Hyp,LVF)
Treat Hypovolemia LVF 0.05 Ø – 0.05

Table 7.1: This patient-specific utility model represents sample information about
the time-dependent nature of the quality of treatment for patient who manifests
symptomology that can be explained by left-ventricular failure (LVF) or hypovolemia
(Hyp). In this model, the cost of delay in treating LVF is described by an exponential
decay constant that is 10 times larger than the constant used to describe the cost of
delay in treating hypovolemia.

Figure 7.1: Time-dependent inference and ideal action.
The graph in (a) shows the convergence of upper and lower bounds on the probability of
LVF with computation for a new update. The graph in (b) displays the EVC/BC for this
evidential update. The graph juxtaposes the EVC/BC for the time-dependent problem
(dark curve) with the time-independent EVC/BC (lighter curve). The EVC/BC diminishes
to 0 as the decision threshold is crossed.
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Let us now examine the ideal control of a belief-update procedure. Figure 7.1(a)

shows the update of belief in LVF versus hypovolemia, given an observation that the

central venous pressure (CVP) is high. Here, Protos was previously informed that the

patient displayed low cardiac output and had no previous history of LVF. Figure 7.1(a)

also displays the mean value between the bounds and the time-dependent decision

threshold. For this update, the system requires 8 seconds to solve each subproblem. It

must solve 108 subproblems to generate an exact probability. A vertical line indicates

Protos’ decision to halt and to recommend action after only 9 seconds of reasoning. At

this time, one subproblem has been solved. In this case, the cessation of computation

has occurred at a decision threshold. Figure 7.1(b) displays the EVC/BC for this

update. Note that the value of the EVC becomes 0 as the decision threshold is

crossed.

Figure 7.2 displays a graphical analysis of the utility of treating for LVF and for

hypovolemia as a function of the probability of LVF. The graph displays the upper and

lower bounds (ub, lb), the mean value between these bounds (mean), and the decision

threshold, p∗, at the time Protos recommended treatment for hypovolemia. The best

action is dictated by the position of the mean. In this analysis, the mean is below

p∗. The graph also displays the final probability (p) that would be computed with

the complete solution of the inference problem. The position of the exact probability

demonstrates that an instantaneous analysis also would have indicated that the ideal

action is to treat for hypovolemia.

The summary generated by Protos’ EVM analyzer is displayed in Figure 7.3. The

summary describes the value of ideal action computed by an infinitely fast computer.

In this situation, immediate action, based on perfect computation, would have been

worth 0.72. Next, the summary compares the value of a complete analysis with the

value of Protos’ recommendation. The complete analysis (solving all 108 subprob-

lems) would have required a delay of 865 seconds. The action, recommended after that

analysis (to treat for hypovolemia), would have been worth 0.66. Protos’ decision—to

treat for hypovolemia after waiting just 9 seconds—is worth 0.72. This is the same

value (at this level of precision) as the instantaneous analysis. The value of Protos’

action is 0.06 greater than the value of a complete analysis.
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Figure 7.2: Utility analysis of decision and time for action recommended by Protos.
This graph displays the utility of treating for LVF [Util(A1)] and for hypovolemia as a
function of the probability of LVF (H1). The graph displays the upper and lower bounds
(ub, lb), the mean value between these bounds (mean), the actual probability (p), and
the decision threshold p∗ at the time Protos recommended treatment. The bounded and
instantaneous perfect analyses both indicate that the ideal action is to treat for hypovolemia.

Figure 7.3: Case analysis.
This is text generated by an evaluation feature of Protos summarizing key aspects of Protos’
decision. The analysis compares the value of a complete analysis with the value of Protos’
recommendation. For this case, Protos’ reasoning is worth 0.06 more than a complete
solution.
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Outcomes Utα Time Dependence Convergence
Treat Hypovolemia Hypovolemia 1.00 Exp 0.0002 u(LVF,Hyp)
Treat LVF Hypovolemia 0.40 Ø – 0.40
Treat LVF LVF 0.20 Exp 0.001 u(Hyp,LVF)
Treat Hypovolemia LVF 0.05 Ø – 0.05

Table 7.2: Another utility model for the cardiac decision problem. Here, the decay
constant that describes the cost of delay in treating hypovolemia has been doubled.

Figure 7.4: Time-dependent inference and ideal action.
(a) Convergence of upper and lower bounds on the probability of left-ventricular failure
with computation. (b) The EVC/BC for this evidential update.
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Figure 7.5: Utility analysis of decision and time for action recommended by Protos.
This graph displays the utility of treating for LVF [Util(A1)] and for hypovolemia [Util(A2)]
as a function of the probability of LVF (H1).

Figure 7.6: Case analysis.
The analysis compares the value of a complete analysis with the value of Protos’ recom-
mendation. Here, Protos also compares the bounded action policy with the value of halting
at the decision threshold.
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Let us now examine another case. Table 7.2 displays a representation of another

utility model for the same decision problem. This utility model indicates that delay

in treating hypovolemia is more costly than a delay in treating a patient described

by the utility model presented in Table 7.1.

Figure 7.4(a) shows a different update of belief in LVF. The graph shows a trace

of Protos’ inference about relationships in the ALARM belief network. Here, Protos

is considering a new observation that the CVP is normal. Protos was previously

informed that the patient displayed low stroke volume and had a previous history

of LVF. Figure 7.4(a) displays the mean value between the bounds and the time-

dependent decision threshold. Here, the vertical line indicates Protos’ decision to halt

in 89 seconds after solving 11 out of 108 total subproblems. Protos recommends that

the patient should be treated for hypovolemia. Figure 7.4(b) displays the EVC/BC

over time. The cessation of computation has occurred before a decision threshold has

been crossed because the EVC/BC diminishes to zero before a bound reached that

threshold. Note that, in this case, the value of the EVC/BC becomes positive again

at 120 seconds. Protos’ lookahead machinery does not detect this brief positive swing

in the value of EVC/BC; the second, smaller maxima occurs beyond the horizon of

the system’s myopic analysis.

Figure 7.5 displays a graphical analysis of the utility of treating for LVF and for

hypovolemia as a function of the probability of LVF. In this case, the delay before ac-

tion has had a significant effect on the value of time-dependent outcomes. The broken

lines adjacent to the solid utility lines indicate the utility of the two actions before

the time-dependent decay of the value of the outcomes. The graph also displays the

upper and lower bounds (ub, lb), the mean value between these bounds (mean), and

the decision threshold p∗ at the time Protos recommended treatment for hypovolemia.

The best action is dictated by the position of the mean. In the analysis, the mean

is below the revised p∗. The graph also displays the final probability (p) that would

be computed with the solution of the entire inference problem. For this example, an

instantaneous analysis would have indicated that it is ideal to treat for LVF.

The summary generated for this case by Protos’ EVM analyzer is displayed in

Figure 7.6. As indicated in the summary, a perfect instant analysis would have been
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Outcomes Utα Time Dependence Convergence
Treat Hypovolemia Hypovolemia 1.00 Exp 0.0002 u(LVF,Hyp)
Treat LVF Hypovolemia 0.40 Ø – 0.40
Treat LVF LVF 0.20 Exp 0.001→ 0.002 u(Hyp,LVF)
Treat Hypovolemia LVF 0.05 Ø – 0.05

Table 7.3: Increasing the time-criticality for LVF. In this model, we double the expo-
nential decay constant that describes the losses with time for the outcome of treating
for LVF in the presence of LVF.

worth 0.23. Protos’ decision, to treat for hypovolemia after waiting for 89 seconds,

is worth 0.21—0.02 less than value of an instantaneous analysis, but 0.03 more than

the 0.18 value of complete analysis (solving all 108 subproblems). In this case, Protos

ceased computation and acted before the decision threshold. Thus, Protos also can

compare the value of its decision with the value of a decision based on a decision-

threshold policy. Protos’ action is worth 0.01 more than the value of a threshold-based

analysis.

Let us now explore the sensitivity of Protos’ behavior to small changes in the

time-dependencies represented in the cardiac utility model. As indicated in Table

7.3, we shall now double the exponential decay constant that describes the loss of

value for the outcome of treating for LVF when LVF is indeed present. Figure 7.7(a)

shows the same convergence of upper and lower bounds on the probability of LVF

as described in Figure 7.4. However, with the use of the revised time-dependent

utility model, Protos recommends that the patient should be treated for LVF. This

recommendation is made when the upper bound crosses the decision threshold after

113 seconds of computation. Figure 7.7(a) shows how the revised stopping time is

explained by a more rapid increase of the probability threshold with delay. The

graph in Figure 7.7(b) displays the EVC/BC for the revised utility model. Note the

difference in the structure of the original and new EVC/BC.

Figure 7.8 displays a graphical utility analysis of the revised state of affairs at the

time of action. Note that the bounds are tighter than in they were at halting time

in the previous analysis because more computation time has been expended. Also,
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Figure 7.7: Time-dependent inference and ideal action for the new utility model.
(a) The same convergence of upper and lower bounds on the probability of LVF as described
in Figure 7.4. Protos now recommends action at a decision threshold. (b) The EVC/BC
for the new utility model.

the decision threshold p∗ is higher than it was at the time of action in the original

analysis.

The case-analysis summary generated by Protos’ EVM analyzer for this case is

displayed in Figure 7.9. As indicated in the summary, a perfect immediate analysis

would have been worth 0.23. Protos’ decision, to treat for LVF, after waiting for 113

seconds, is worth 0.20—that is 0.03 less than an instantaneous complete analysis, but

0.02 more than an actual complete analysis.

7.2.2 Reasoning with the VentPlan Network

We shall now make use of a different belief network to investigate another decision

problem with Protos. We shall use the VentPlan network (Rutledge et al., 1989).

This 31-node belief network is displayed in Figure 7.10. VentPlan was designed for

the representation of the change in the validity of reported observations about a

patient’s physiology over time. The network has a smaller cutset and number of

instances than does ALARM: three cutset nodes yield 24 inference subproblems for
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Figure 7.8: Utility analysis of action.
This graph displays the utility (crossing solid lines) of treating for LVF [Util(A1)] and for
hypovolemia (action A2) as a function of the probability of LVF (H1). The graph also shows
the initial utilities (crossing broken lines), the upper and lower bounds (ub, lb), the mean
value between these bounds (mean), the decision threshold p∗, and the final probability (p).

Figure 7.9: Case analysis.
This computer-generated summary tells us that, in this situation, Protos’ reasoning is worth
0.02 more than a complete analysis.
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Figure 7.10: The VentPlan belief network.
This 31-node network is designed for reasoning about the validity of patient information
over time. Unlabeled nodes represent distinctions about error in the reported information
over time. (See Appendix B for a legend to abbreviations in this belief network.)
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consideration by bounded-conditioning.

We shall consider the case of a binary decision problem involving the time-dependent

treatment of a patient who suddenly shows (1) severe shortness of breath, (2) a pro-

ductive cough, and (3) signs of hypoxemia. We assume that a physician has ruled

out all disorders that might cause these symptoms, except for two competing syn-

dromes: pneumonia (H1) and congestive heart failure or CHF (H2). Table 7.5 displays

a representation of a utility model for this decision problem. In this case, the model

indicates that delay in treating CHF incurs greater losses than does a delay in treating

pneumonia.

Figure 7.11(a) shows an evidential update for the probability of pneumonia versus

CHF. In this case, Protos bounds the probability of pneumonia, given an observation

that the patient has a high fever. Protos was previously informed that the patient

shows a very high respiratory shunt and has a high mean arterial pressure (MAP).

Figure 7.11(a) displays the mean value between the bounds and the time-dependent

decision threshold. The vertical line indicates Protos’ decision to halt after solving

1 subproblem. In this case, Protos has recommended that action be taken before a

decision threshold has been crossed. The graph in (b) displays the EVC/BC (darker

line) for this evidential update. The graph contrasts the EVC/BC for the time-

dependent problem with the time-independent EVC/BC (lighter line). Analyzing the

graph of the EVC/BC can give us insight about why Protos recommended action

before reaching a decision threshold: The EVC/BC becomes nonpositive before the

threshold is reached.

Figure 7.12 displays the utility of treating for CHF [Util(A2)] and for pneumonia

[Util(A1)] as a function of the probability of pneumonia (H1) for the utility model in

Table 7.4. The best action, as indicated by the position of the mean, with respect

to p∗, is to treat for CHF. In this case, the final probability (p) is close to the mean

at the time computation was halted; for this example, an instantaneous analysis also

would have indicated that the ideal action is to treat for CHF.

The summary generated for this case by Protos’ EVM analyzer is displayed in

Figure 7.13. The value of Protos’ bounded decision is nearly the same as the value

of a perfect, instantaneous analysis. The analysis compares the value of a complete
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Outcomes Utα Time Dependence Convergence
Treat CHF CHF 0.35 Exp 0.002 u(Pneu,CHF)
Treat Pneumonia CHF 0.03 Ø – 0.03
Treat Pneumonia Pneumonia 0.75 Exp 0.0001 u(CHF,Pneu)
Treat CHF Pneumonia 0.45 Ø – 0.45

Table 7.4: Patient-specific utility information for a respiratory decision problem. This
model represents sample information about the time-dependent nature of the quality
of treatment for patient who manifests symptomology that can be explained by CHF
or by pneumonia (Pneu).

Figure 7.11: Time-dependent inference and ideal action.
(a) Convergence of upper and lower bounds on the probability of pneumonia with compu-
tation. (b) The EVC/BC for this evidential update. Notice that Protos has recommended
action before a decision threshold has been crossed, because the EVC/BC becomes small
before the threshold is reached. The graph contrasts the EVC/BC for the time-dependent
problem with the time-independent EVC/BC (lighter).
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Figure 7.12: Utility analysis of decision and time for action recommended by Protos.
This graph displays the utility of treating for CHF [Util(A2)] and for pneumonia [Util(A1)]
as a function of the probability of pneumonia (H1) for the utility model under consideration.
The best action, as indicated by the position of the mean, is to treat for CHF.

analysis, and the value of a threshold analysis with the value of Protos’ recommen-

dation. In this case, Protos’ reasoning is worth 0.06 more than a complete analysis,

and 0.04 more than a threshold-based analysis.

Let us now explore the ideal action indicated by the same update with a different

utility model. Table 7.5 displays another time-dependent utility model that represents

the preferences of a patient who manifests symptomology that can be explained by

either CHF or pneumonia.

The graph in Figure 7.14(a) shows the convergence of bounds on the probabil-

ity of pneumonia with computation. A new decision threshold, generated from the

time-dependent utilities in the utility model, is displayed. In this case, Protos halts

computation and recommends action after solving 4 subproblems. At this time, the

lower bound crosses over the decision threshold. Figure 7.14(b) displays the curves

for the time-dependent EVC/BC (darker line) and time-independent (lighter line)

decision problems. The time-dependent EVC/BC becomes 0 as the bound crosses

the threshold probability.

Figure 7.15 displays the utility of treating for CHF [Util(A2)] and for pneumonia
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Figure 7.13: Case analysis.
This summary analysis compares the value of a complete analysis, and the value of a
threshold analysis with the value of Protos’ recommendation. In this case, Protos’ reasoning
is worth 0.04 more than a threshold-based analysis.

Outcomes Utα Time Dependence Convergence
Treat CHF CHF 0.20 Exp 0.015 u(Pneu,CHF)
Treat Pneumonia CHF 0.01 Ø – 0.01
Treat Pneumonia Pneumonia 0.85 Exp 0.0015 u(CHF,Pneu)
Treat CHF Pneumonia 0.40 Ø – 0.40

Table 7.5: Another time-dependent utility model. This model represents new pref-
erences of a patient who manifests symptomology that can be explained by CHF or
pneumonia (Pneu).
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Figure 7.14: Time-dependent inference and ideal action.
The graph in (a) shows convergence of bounds on the probability of pneumonia with com-
putation, and the time-dependent decision threshold. The graph in (b) displays the curves
for the time-dependent EVC/BC (darker line) and time-independent (lighter line) decision
problems.

[Util(A1)] as a function of the probability of pneumonia (H1) for the utility model in

Figure 7.5. The best action, as indicated by the position of the lower bound on the

probability of pneumonia (H1), with respect to p∗, is to treat for pneumonia.

The summary generated for this case by Protos’ EVM analyzer is displayed in

Figure 7.16. As indicated in the summary, a perfect instant analysis would have

been worth 0.31. Protos’ decision, to treat for hypovolemia, made after 25 seconds,

is worth 0.30. The utility of this decision is 0.01 less than the value of the instanta-

neous analysis, but is 0.05 more than the value of complete analysis (solving all 24

subproblems).

Table 7.6 shows another utility model for the same VentPlan decision problem.

The implications of this model are displayed in Figure 7.17(a). The graph shows

that the time-dependent decision threshold remains within the envelope, close to the

mean of the bounds, until the problem is near completion. At this time, the lower

bound on the probability passes through the decision threshold, indicating that the

best action is to treat for pneumonia. Notice that the inference problem is almost

completely solved prior to the decision threshold being crossed. The graph in Figure
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Figure 7.15: Utility analysis of decision and time for action recommended by Protos.
This graph displays the utility of treating for CHF [Util(A2)] and for pneumonia [Util(A1)]
as a function of the probability of pneumonia (H1) for the utility model under consideration.
The broken lines adjacent to the solid utility lines indicate the utility of the two actions
before the time-dependent decay of the utility of the outcomes. The best action is to treat
for pneumonia.

Figure 7.16: Case analysis.
The analysis of Protos’ decision compares the value of a complete analysis, and the value
of a threshold analysis, with the value of Protos’ recommendation. In this case, Protos’
reasoning is worth 0.05 more than a complete analysis.
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Outcomes Utα Time Dependence Convergence
Treat CHF CHF 0.25 Exp 0.0008 u(Pneu,CHF)
Treat Pneumonia CHF 0.03 Ø – 0.03
Treat Pneumonia Pneumonia 0.65 Exp 0.0002 u(CHF,Pneu)
Treat CHF Pneumonia 0.25 Ø – 0.25

Table 7.6: This is a different utility model for treating a patient who manifests symp-
tomology that can be explained by either CHF or pneumonia (Pneu).

7.17(b) displays the curves for the time-independent and time-dependent EVC/BC.

For this utility model, these measures of EVC are similar. This graphical analysis in

Figure 7.18 shows that, for the utility model begin considered, the final belief is near

the decision threshold. As revealed in the analysis summary displayed in Figure 7.19,

the values of action determined by an instantaneous analysis, by complete inference,

and by Protos’ bounded-resource recommendation are all 0.25. In this case, we gain

nothing by using Protos’ metareasoning.

7.2.3 Reasoning with the DxNet Network

We shall now investigate Protos’ decisions under time pressure for a decision problem

that draws on relationships represented in DxNet. DxNet’s belief network is displayed

in Figure 7.20. The network consists of 81 nodes. The network was created to

represent the unreliability of reported information, and thus has sets of nodes for

representing error in observations. The network can be decomposed into a set of 54

subproblems with a cutset of 4 nodes.

We consider assisting a physician in treating a patient who displays symptomology

that can be explained by a pulmonary embolism (H1) or by pneumonia (H2). Table

7.7 displays a utility model for this decision problem. In this case, the model indicates

that delay in treating an embolism incurs a greater loss than does a delay in treating

pneumonia.

Figure 7.21(a) shows an evidential update for the probability of a pulmonary

embolism versus pneumonia. Here, Protos is bounding the probability of an embolism,

given an observation that the patient has a high mean pulmonary arterial pressure
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Figure 7.17: Time-dependent inference and ideal action.
The graph in (a) shows convergence of bounds on the probability of pneumonia with com-
putation, and the time-dependent decision threshold. The graph in (b) displays the curves
for the time independent and time-dependent EVC/BC. For this utility model, the two
measures of EVC are similar.
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Figure 7.18: Utility analysis of decision and time for action recommended by Protos.
This graph displays the utility of treating for CHF [Util(A2)] and for pneumonia [Util(A1)]
as a function of the probability of pneumonia (H1) for the utility model under consideration.
The best action is to treat for pneumonia. In this case, the inference problem is almost
completely solved at the time inference was halted.

Figure 7.19: Case analysis.
Analysis reveals that, for the utility model and evidential update under consideration,
nothing is gained by Protos’ analysis.
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Figure 7.20: The DxNet belief network.
This belief network, created to reason about uncertainty in reported information for ICU
medicine, has 81 nodes. (See Appendix B for a legend to abbreviations in this belief
network.) The smaller nodes represent variables used to model errors in the measurement
of the value of evidence variables.
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Outcomes Utα Time Dependence Convergence
Treat Pneumonia Pneumonia 1.00 Exp 0.008 u(Embol,Pneu)
Treat Embolism Pneumonia 0.35 Ø – 0.35
Treat Embolism Embolism 0.15 Exp 0.02 u(Pneu,Embol)
Treat Pneumonia Embolism 0.02 Ø – 0.02

Table 7.7: A utility model for a pulmonary decision problem. This model represents
sample information about the time-dependent nature of the quality of treatment for
patient who manifests symptomology that can be explained by a pulmonary embolism
(Embol) or pneumonia (Pneu).

(PAP). Protos was previously informed that the patient shows a very high respiratory

shunt and has a normal blood pressure.

Figure 7.21(a) displays the mean value between the bounds and the time-dependent

decision threshold. The vertical line indicates Protos’ decision to halt after solving

6 subproblems. At this point, a decision threshold is reached. The graph in Figure

7.21(b) displays the EVC/BC (darker line) for this evidential update. The graph also

displays the time-independent EVC/BC (lighter line).

Figure 7.22 displays the utility of treating for pulmonary embolism [Util(A1)] and

for pneumonia [Util(A2)] as a function of the probability of embolism (H1) for the

utility model displayed in Table 7.7. The best action, as indicated by the position

of the upper bound on the probability of pulmonary embolism with respect to p∗, is

to treat for pneumonia. The analysis summary, in Figure 7.23 indicates that Protos’

threshold analysis is worth 0.51 more than a complete analysis, and only 0.08 less

than instantaneous complete computation.

Let us consider another utility model for the embolism–pneumonia decision prob-

lem displayed in Table 7.8. The differences between the time-dependent utilities in

this model and those in the model assumed in the previous analysis (displayed in Table

7.7) are highlighted with arrows. The graph in Figure 7.24(a) shows the same conver-

gence of computed bounds on the probability of pulmonary embolism, and a revised

time-dependent utility threshold, implied by the new model. The graph in Figure

7.24(b) displays the time-dependent (darker curve) and time-independent EVC/BC
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Figure 7.21: Time-dependent inference and ideal action.
(a) Convergence of upper and lower bounds on the probability of pulmonary embolism with
computation. (b) The EVC/BC for this evidential update.

Outcomes Utα Time Dependence Convergence
Treat Pneumonia Pneumonia 1.00 Exp 0.008→ 0.009 u(Embol,Pneu)
Treat Embolism Pneumonia 0.35→ 0.55 Ø – 0.35
Treat Embolism Embolism 0.15→ 0.25 Exp 0.02 u(Pneu,Embol)
Treat Pneumonia Embolism 0.02 Ø – 0.02

Table 7.8: This model represents a different set of preferences for making a decision
about a patient who manifests symptomology that can be explained by pulmonary
emboli or pneumonia (Pneu).
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Figure 7.22: Utility analysis of decision and time for action recommended by Protos.
This graph displays the utility of treating for pulmonary embolism [Util(A1)] and for pneu-
monia [Util(A2)] as a function of the probability of embolism (H1). The best action, as
indicated by the position of the upper bound on the probability of pulmonary embolism
with respect to p∗, is to treat for pneumonia.

Figure 7.23: Case analysis.
The analysis summary indicates that Protos’ threshold analysis is worth 0.51 more than a
complete analysis, and only 0.08 less than instantaneous perfect computation.
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Figure 7.24: Revised time-dependent inference and ideal action.
The graph in (a) shows convergence of computed bounds on the probability of pulmonary
embolism, and the time-dependent utility threshold. The graph in (b) displays the time-
dependent (dark curve) and time-independent (lighter curve) EVC/BC for this evidential
update. In this situation, Protos recommends action before a decision threshold is crossed.
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Figure 7.25: Utility analysis of decision and time for action recommended by Protos.
This graph displays the utility of treating for pulmonary embolism [Util(A1)] and for pneu-
monia [Util(A2)] as a function of the probability of embolism (H1). The position of the mean
of the bounds interval, in relation to p∗, indicates that it is best to treat for pneumonia.

(lighter curve) for this evidential update. In this situation, Protos recommends that

action should be taken before a decision threshold is crossed.

Figure 7.25 displays the utility of treating for pulmonary embolism [Util(A1)] and

for pneumonia [Util(A2)] as a function of the probability of embolism (H1), for the

utility model in Table 7.8. The position of the mean of the bounds interval, in relation

to p∗, indicates that the best action is to treat for pneumonia. The difference between

the solid and broken utility lines indicate the time-dependent nature of the utility of

the outcomes.

As indicated by the summary analysis in Figure 7.26, Protos’ threshold analysis

is worth 0.05 more than a complete analysis, and 0.04 more than the value of a

threshold analysis. The dynamics of the decision threshold and the convergence on

belief lead to different recommendations depending on the metareasoning strategy.

Notice that an analysis based on the policy of waiting for a decision threshold to be

reached would indicate that the ideal action is to treat for a pulmonary embolism. A

policy of halting when the EVC becomes nonpositive indicates that the ideal action
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Figure 7.26: Case analysis.
The analysis summary indicates that Protos’ analysis is worth 0.36 less than an immediate
complete analysis. However, Protos’ analysis is worth 0.05 more than a complete analysis,
and is worth 0.04 more than the value of a threshold analysis.

is to treat for pneumonia. This result is in agreement with the recommendation of

the immediate perfect analysis.

In a final example, we shall demonstrate again the sensitivity of ideal belief and

action to subtleties in the structure of the utility model. Let us modify the utility

model presented in Table 7.8 by increasing slightly the constant that specifies the

cost of delay in treating for pulmonary embolism when this disease is present. The

sequence of graphs in Figure 7.27(a) shows how changing the decay constant changes

the bounded analysis, described in the previous example, to a threshold analysis.

The graphs in 7.27(b) show the EVC/BC for the earlier and for the revised utility

models. Figure 7.29 displays a closeup of the two probability refinement curves. The

dynamics of the decision threshold and the convergence of belief dictate different

Protos reasoning policies.

Figure 7.28 displays the change in the ideal halting point when the utility model

presented in Table 7.8 is revised with information in the model displayed in the table

at the top of Figure 7.27. The graph in 7.28(a) shows the initial bounded action, which

is based on the location of the mean. In Figure 7.28(b), we see that a threshold has
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Figure 7.27: Sensitivity of reflection time to utility.
We demonstrate the sensitivity of ideal reflection and action to the details of the utility
model and trajectory of inference. In this case, we change the utility model presented in
Table 7.8 slightly, by increasing the decay constant that dictates the value of treating for a
pulmonary embolism in the situation where an embolism is present. The graphs in (a) show
how changing the decay constant changes Protos’ previous bounded analysis (background)
to a threshold analysis (foreground). The graphs in (b) show the EVC/BC for the earlier,
and revised utility models.
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Figure 7.28: Case analysis.
The analysis summary indicates that Protos’ threshold analysis is worth 0.16 more than
a complete analysis. Protos’ recommended action and the action indicated by the ideal
instantaneous analysis are in agreement: The best action is to treat for pneumonia. Note
that, if the system were committed to computing a point probability, the optimal choice
would be to treat for a pulmonary embolism.

Figure 7.29: A closeup of graphs displaying sensitivity of reflection time to utility.
By increasing the decay constant that dictates the time-dependent utility of treating a
patient for a pulmonary embolism in the situation where an embolism is present, we change
Protos’ reasoning from (a) a bounded analysis to (b) a threshold analysis.
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Figure 7.30: Comparative utility analyses of ideal reflection.
This graph displays the change in the ideal halting point with revising the utility model.
The graph in (a) shows the initial bounded action, based on the mean. In (b), we see that
a threshold has been reached.
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been reached.

The analysis summary indicates that Protos’ threshold analysis is worth 0.16 more

than a complete analysis. The Protos analysis and the ideal analysis are in agreement:

It is best to treat for pneumonia. Note that, by the time exact inference would be

completed, the optimal choice would be to treat for a pulmonary embolism (H2).

Given the sensitivity of the utilities of alternate outcomes to delay, the best action to

take can depend on the time that action occurs.

The phenomenon of an optimal decision changing with delay has been identified

previously in the context of medical decision analysis (McNutt and Pauker, 1987). In

this work, investigators demonstrated how the optimal medical therapy indicated by

a decision analysis could change radically, given the delay required to perform that

analysis. The study emphasized how an ideal decision could be sensitive to time-

dependent changes in the values of important probabilities in a decision model (e.g.,

the probability of a rebleed occuring at different times after an initial hemmorhage).

The values of these probabilities do not change because of computational activity, as in

Protos’ application of bounded conditioning; rather, the probabilities change because

of causal processes. Modeling such time-dependent probabilities in belief networks

can introduce greater richness to the dynamics of Protos’ beliefs and actions under

bounded resources.

7.3 Summary

In this chapter, I defined the value of metareasoning (EVM) and demonstrated the

behavior of Protos in time-dependent decision contexts. I presented illustrative ex-

amples of time-pressured medical decision making with several belief networks. To

compute the value of Protos’ recommended actions, I made use of reference utilities

computed from gold-standard probabilities. Point probabilities, obtained by solving

inference problems completely, served as the gold-standard beliefs. For the cases inves-

tigated, Protos’ case summarizer computed the value of Protos’ actions in relation to

a complete analysis with bounded conditioning, and in relation to a decision-threshold

policy. For the decision-threshold policy, we determined the expected utilities of the
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best actions to take when an upper or lower bound on a probability reached a de-

cision threshold. The EVM analyses demonstrated that the Protos metareasoning

techniques can provide valuable control of inference for approximation strategies, and

showed that the behavior of Protos is sensitive to subtleties in the evidential updat-

ing and time-dependent utility model associated with a case. Protos’ procedures for

monitoring the value of continuing to deliberate versus that of taking more timely

action appear to be especially useful when the expected utility of the best decision

diminishes significantly with delay.
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Chapter 8

Cognitive Resources as

Constraints in Normative

Reasoning

A criticism of the simple probabilistic diagnostic systems, developed by medical-

informatics investigators in the 1960s, is that clinicians find their reasoning strate-

gies unnatural and their recommendations difficult to understand (Szolovits, 1982;

Politser, 1984). A fundamental source of difficulty in the comprehension and explana-

tion of decision-theoretic inference is the inescapable complexity of many computer-

based normative analyses. I have viewed problems with the understandability of

normative reasoning as arising from constraints on the cognitive resources of peo-

ple. As a complement to my investigation of the value of normative reasoning under

computational resource constraints, I have studied techniques for flexibly trading off

the opacity of detailed analyses for simpler and clearer, but less precise, computa-

tion. As displayed in Figure 8.1, this work can be viewed as being analogous to

the investigation of flexible normative reasoning under time constraints. Here, we
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Figure 8.1: Normative reasoning under cognitive-resource constraints.
We consider the effect of cognitive-resource limitations on the ability of a person to make
optimal use of a normative analysis. By developing flexible methods that trade off the
optimality of a normative analysis with the simplicity and, thus, the understandability of
that analysis, we can produce computer-based reasoning strategies that have greater value
to people.

seek to increase the value of normative analyses by considering constraints on cog-

nitive resources that may limit the ability of people to understand—or accept—the

conclusions of normative reasoning.

In this chapter, I shall describe research on the imposition of bounds on the

complexity of normative reasoning with a goal of making reasoning more natural

and easy to explain. I shall describe a facility that allows a user to abstract sets

of distinctions into smaller numbers of propositions at higher levels of abstraction.

The abstraction facility has been integrated into Pathfinder, a reasoning system that

aids pathologists in making surgical-pathology diagnoses. The approach enables a

user to impose human-oriented grouping strategies on complex value-of-information

analyses. A user can modulate the detail and perspective of an analysis to reflect

different cognitive styles. This capability can increase the naturalness of normative

inference and explanation, without incurring significant losses in the optimality of

recommendations.
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8.1 Managing the Complexity of Normativity

The clarity of a computer-based reasoning system can affect the value of a system to

a user. Surveys of the preferences of clinicians have identified clarity of reasoning as

an important factor in the acceptance of a reasoning system (Teach and Shortliffe,

1981; Buchanan, 1982; Buchanan and Shortliffe, 1984). The importance of reasoning

transparency in expert systems has made explanation an central concern of many AI

investigators (Shortliffe, 1982). The inability of the probabilistic reasoning systems

to handle inference and decision problems in a natural manner has been attributed

to the inadequate expressiveness and inflexibility of the systems (Gorry, 1973; Davis,

1982).

Most investigators have attempted to explain the recommendations of normative

reasoning by developing facilities for summarizing salient features of an analysis.

For example, Langlotz (Langlotz et al., 1986) and Klein (Klein, 1987) have built

systems that construct qualitative summaries of dominant tradeoffs and key results

of sensitivity analyses. I have studied the simplification of normative analyses through

the abstraction of the diagnostic entities considered by a system. In particular, I have

worked to develop tools that can allow a normative system to control dynamically

the complexity of a normative analysis by abstracting a set of detailed distinctions

into groups of entities. These groups can be viewed as distinctions at a higher lever

of abstraction. For example, we can group all non-malignant diseases, considered by

a medical expert system, into a category named benign diseases and can manipulate

this group as a single distinction in a less-detailed, approximate normative analysis.

Increasing the comprehensibility (and thus, the value) of normative analyses through

simplification was suggested initially by observing the diagnostic behavior of several

pathologists involved with the Pathfinder project. Our work has been further sup-

ported by findings of cognitive psychologists. Psychology experiments have demon-

strated repeatably that people have severe limitations in their ability to consider

more than a handful of concepts in the short term (Bruner et al., 1956). One study

demonstrated that people cannot effectively comprehend more than 7 ± 2 concepts

in the short term (Miller, 1956). Another study found that humans cannot retain and
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reason about more than two concepts in an environment with distractions (Waugh

and Norman, 1965).

Other cognitive psychology studies have demonstrated that people tend to use

groups and hierarchies of groups to reduce the number of entities under consideration

(Simon, 1973b). Psychologists have speculated that hierarchies of abstraction are

used often by people to facilitate easy indexing through relationships among classes

at different levels of abstraction (Mesarovic et al., 1970). Investigators have identified

the use of hierarchies of groups of distinctions in a variety of domains. Of particular

relevance to our work, psychologists studying medical decision making have found that

physicians in specialty areas of medicine frequently make use of abstraction strategies

for managing the complexity of clinical problem solving (Elstein et al., 1971; Elstein

et al., 1978).

In AI, investigators have studied the use of grouping in the control of reasoning

in rule-based systems (Clancey, 1985). There has also been independent discussion of

the usefulness of grouping in probabilistic reasoning systems (Ben-Bassat and Teeni,

1984). My work on the abstraction of normative analyses has focused on the introduc-

tion of flexibility to the value-of-information machinery in the Pathfinder reasoning

system. I shall first describe the calculation of the value of computation for detailed

and abstract models. Then, I shall introduce the Pathfinder project and domain, and

describe an abstraction facility developed for the Pathfinder system.

8.2 Value of Information

Let us consider how we can might compute the value of information for selecting

observations or tests, and for deciding when it is best to cease evidence gathering, and

to take an action in the world. We use u(Ai, Hj) to represent the utility of a decision

maker who takes an action (or set of actions) Ai when state Hj is true. Recalling

Equation 4.1 introduced in Chapter 4, given a probability distribution p(H|Ek, ξ)
over a set of mutually exclusive and exhaustive hypotheses, conditioned on evidence
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Ek, and on background state of information ξ, the expected utility of an action Ai is

eu(Ai, p(H|Ek, ξ)) =
n∑
j=1

p(Hj|Ek, ξ)u(Ai, Hj)

The ideal decision, A∗, is the action with the greatest expected utility, given the

probability distribution and the utility model,

A∗ = arg max
Ai

n∑
j=1

p(Hj|Ek, ξ)u(Ai, Hj) (8.1)

Let us assume that an agent has already made a set of observations, E. The agent

can perform additional tests, Ek, each associated with a set of mutually exclusive and

exhaustive values or outcomes (e.g., true, false). We shall use El
k to represent a test

result or sensor value, where l indexes alternate outcomes of the test or observation.

We denote the values of Ek, by E1
k , . . . , Em

k , where m is the number of mutually

exclusive values.

We can compute the expected value of information (EVI) of performing a test

or making an observation by conditioning the probability of different states of the

world on different outcomes of the test, and determining the expected value of the

best actions associated with the revised probability distributions p(H|El
k,E, ξ). We

weight the expected utility, associated with each test outcome, by the probability

of that outcome, p(El
k|E, ξ). Then, we consider the difference between the expected

utility of actions, dictated by the current state of information, and the expected utility

of acting after performing a test. Finally, we see if the informational value of a test

exceeds the cost of the test, C(Ek). For expected value decision makers, the value of

information is

EVI(Ek) =
m∑
l=1

p(El
k|E, ξ)

max
Ai

n∑
j=1

p(Hj|El
k,E, ξ)u(Ai, Hj)


−max

Ai

n∑
j=1

p(Hj|E, ξ)u(Ai, Hj)

−C(Ek) (8.2)

We can generalize Equation 8.2 to consider the time associated with gathering in-

formation in critical situations by explicitly considering the time-dependent nature



220 Cognitive Resources as Constraints in Normative Reasoning

of utility. We substitute time-dependent utility u(Ai, Hj, T (Ek)) for time-dependent

utility, u(Ai, Hj), where T (Ek) is the time required to perform test Ek

Note that we formulated the value-of-information in terms of evaluating the value

of a single piece of evidence. More generally, we should consider the value of all

subsets of future observation and consider the value of alternate sequences of tests,

and about the value of stopping versus continuing to gather evidence. Unfortunately,

such a general analysis is intractable. Thus, myopic analyses of the next best test

to perform are employed frequently in practice. Myopic calculations are based on

the assumption that an action will be taken after making one additional observation.

This assumption is often violated by decisions to perform additional myopic analyses.

Myopic analyses of the value of information can lead to erroneous decisions to halt

evidence gathering: Situations can arise where a myopic analysis cannot identify a

single test with positive value of information, yet where a combination of observations

may have positive value. Although we have a poor understanding of the problems

associated with myopic analyses in practice, there is evidence that myopic analyses can

offer a good approximation in some domains. Gorry and Barnett explored the value

of considering larger sequences of tests for a program built to assist physicians with

diagnosing congenital heart disease (Gorry and Barnett, 1968). They demonstrated

that the myopic analysis does not significantly affect the diagnostic accuracy of the

program.

8.3 Varying the Level of Abstraction

Given constraints on cognition or computation time, a detailed model may be more

difficult to understand or to solve, and, thus, less valuable than a smaller, more

abstract model. We shall focus on the simplification of value-of-information analyses

through abstraction. We can modulate the level of detail of a value-of-information

analysis by substituting atomic actions Ai or states of the worldHj with more abstract

distinctions.

A common form of abstraction is the clustering of states of the world into sets
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of states that share common properties. Some sets may form natural, mutually ex-

clusive groups, such as infectious and inflammatory diseases in medicine. Given a

set of mutually exclusive states, we can reason about groups in terms of the truth of

disjunctions of their elements. For example, in medical diagnosis, we might abstract

six mutually exclusive diseases H1, . . . , H6 into two disease groups, G1 and G2, and

reason about belief in the disjunctions H1 ∨ H3 ∨ H5 and H2 ∨ H4 ∨ H6 instead of

all six diseases. The probability assigned to groups of mutually exclusive states is

the sum of the probabilities of the members of each group. We can compute the

value of information for discriminating among a set of such groups by substituting

distinctions Hj with groups Gj in Equation 8.2. We need to consider a group util-

ity model with preference information, u(Ai, Gj), and probability distributions over

groups, p(Gj|El
k,E, ξ) and p(Gj|E, ξ), where

p(Gj|El
k,E, ξ) =

∑
x∈Gj

p(Hx|El
k,E, ξ)

We can build hierarchies of abstraction by viewing groups as elements in more ab-

stract sets. For example, the infectious and inflammatory groups might be elements

of the set benign, and we may wish to select tests that can distinguish benign diseases

from malignant diseases. The recommendations generated by computing the value of

information at higher levels of abstraction can be more understandable and explain-

able. We can modulate the complexity of value-of-information analyses in automated

reasoning systems by developing utility models for sets of distinctions at different

levels of detail. Let us explore the use of alternative utility models and levels of

abstraction for value-of-information reasoning in the Pathfinder diagnostic system.

8.4 The Pathfinder Project

The Pathfinder project was initiated to solve problems that general pathologists have

making hematopathology diagnoses. Pathfinder investigators have focused on the

development of representations that allow for the efficient acquisition of probabilistic

knowledge from experts (Heckerman et al., 1985; Heckerman et al., 1989b; Heckerman
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et al., 1990; Heckerman, 1990b). However, we also explored the control of value-of-

information analyses through abstraction.

A goal of the Pathfinder project was the construction of a computer-based system

to guide pathologists in the interpretation of histologic features that appear in sec-

tions of lymph-node tissue. The microscopic interpretation of lymph-node biopsies is

a difficult task for surgical pathologists (Kim et al., 1982; Velez-Garcia et al., 1983).

The 30 malignant diseases of the lymph nodes have to be distinguished from approx-

imately 30 benign diseases, many of which closely resemble malignant lymphomas.

The accurate diagnosis of diseases that present as complex visual patterns in lymph-

node tissue is crucial for the determination of prognosis and therapy; most malignant

lymphomas have a distinctive natural history, response to therapy, and survival rates

(Rosenberg, 1985).

The computational architecture of the Pathfinder system is based on the hypothetico-

deductive approach to diagnosis (also called the method of sequential diagnosis in the

medical-informatics literature (Gorry and Barnett, 1968; Gorry, 1973)). A flowchart

representation of this method is shown in Figure 8.2. Hypothetico-deductive systems

allow a user to input a small set of salient manifestations. The systems assign belief

to competing hypotheses, and then recommend the best next observations to make

or tests to perform. New information that becomes available is considered in generat-

ing a revised belief assignment. The belief-assignment—information-gathering cycle

continues until a decision is made to halt additional information gathering. In Path-

finder, belief is assigned by performing probabilistic inference on a belief network that

represents dependencies among histologic features and diseases. The system employs

value-of-information analyses to select the next best questions to ask, and to decide

when a diagnostic decision should be made.

The current version of Pathfinder considers approximately 60 diseases of lymph

nodes, constructing differential diagnoses through the consideration of evidence about

the status of up to 120 microscopic features presenting in lymph-node tissue. A pathol-

ogist enters into the Pathfinder system information about the status of one or more

features seen on a tissue biopsy. The histologic features are each structured into a set
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Figure 8.2: Hypothetico-deductive reasoning.
Pathfinder and other hypothetico-deductive systems assign belief to competing hypothe-
ses, based on a small set of initial observations. Then, they recommend the best next
observations to make. The systems continue to cycle between belief assignment and test
recommendation until a decision is made to make a diagnostic decision.
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of mutually exclusive and exhaustive values. For example, the feature PSEUDOFOL-

LICULARITY can take on any one of the values Absent, Slight, Moderate, or Prominent.

After the initial features are entered, a probabilistic reasoner assigns probability to

alternative diseases considered by the system. At the user’s request, the system then

applies a value-of-information analysis to generate new test recommendations. The

process continues until continuing to gather evidence is no longer valuable.

8.4.1 A Base-Level Utility Model for Diagnosis

Diagnostic reasoning systems, such as Pathfinder, are built to assist people with

inference about the state of a system or patient, rather than to consider explictly al-

ternative therapies. For considering abstraction in diagnosis, we shall use u(Hi, Hj) to

refer to the utility of taking actions appropriate for treating disease Hi when disease

Hj is present. The u(Hi, Hj) in the utility model of a diagnostic system should reflect

a patient’s preferences. Pathologists typically do not meet with patients and, thus,

must estimate the preferences of their patients. For the Pathfinder utility model,

we asked an expert pathologist to imagine that he was the patient, and to provide

the u(Hi, Hj) (Heckerman, 1990a). We employed a measure of utility developed by

Howard (Howard, 1980), described in Chapter 4. We refer to this base-level model

of patient preferences as Pathfinder’s healthcare utility model. Pathfinder uses these

measures of utility in a myopic value-of-information analysis to order its recommen-

dations for gathering additional information about the microscopic appearance of a

tissue section.

8.4.2 A Finer-Grained Utility Model for Discrimination

Some pathologists work to increase our understanding of the clinical significance of

subtle disease distinctions. They are interested in identifying as many subtypes of

disease as possible, in the hope that medical researchers will develop more specific

therapies. Thus, they are interested in discriminating diseases, even if the diseases

are believed currently to have the same therapy and prognostic course. For this case,

a utility model for directing the collection of discriminatory evidence in a value-of-

information analysis should treat all distinctions as being equally important. Such a
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fine-grained utility model directs evidence gathering so as to distinguish among all dis-

ease entities. In a fine-grained model discrimination model, we consider u(Hi, Hi) = 1

and u(Hi, Hj) = 0 for Hi 6= Hj. This fine-grained utility model is useful for clinical

trials and for training.

Pathfinder makes a fine-grained discrimination model available to users. The

system employs an efficient information-theoretic approximation to the computation

of value of information for the fine-grained model that makes use of a measure of

information called entropy (Heckerman et al., 1985; Horvitz et al., 1989b; Heckerman

et al., 1990). Given assumptions of equal cost of tests, and equal cost of making

an error, Ben-Bassat has shown that tests selected by a general value-of-information

computation are nearly identical to those generated by entropy calculations (Ben-

Bassat, 1978). Other researchers have used this approximation in medical expert

systems (Gorry, 1973).

8.4.3 General Abstraction of Diagnostic Hypotheses

In developing Pathfinder, we found that pathologists often work at levels of abstrac-

tion that include, as specific cases, the most detailed level of analysis, provided by

the fine-grained discrimination model, and the healthcare model (Heckerman et al.,

1985; Horvitz et al., 1986b). Pathologists reason about groups of related diseases for

managing the complexity of diagnostic inference and for guiding the acquisition of

information.

As demonstrated in Figure 8.3, we found that pathologists can generate abstrac-

tions dynamically by grouping similar diseases. Measures of similarity range from

shared morphologic features to shared membership in broad classes of disease, such

as infectious and inflammatory. Beyond the creation of groups based on similarity, we

found that pathologists my simplify the discrimination task by employing informa-

tional grouping strategies. For example, at a particular point in a diagnostic session,

a pathologist may wish to gather information that discriminates between the disease

with the leading probability, and a group containing all other diseases. Alternatively,

he may wish to distinguish the top two malignant diseases from all others.

We found that pathologists tend also to make use of hierarchies of abstraction by
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Figure 8.3: Creation of useful distinctions with grouping.
We have assessed from users useful groups of diseases that can simplify value-of-information
reasoning and explanation. Groups can be defined by etiological or morphological similarity,
or can be based on more abstract notions, such as distinguishing the disease with the highest
probability from other hypotheses.
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Figure 8.4: Representing hierarchies of abstraction.
Hierarchies of groups of disease hypotheses can capture knowledge about the order of analy-
sis preferred by a decision maker. We can analyze a relatively constant number of hypotheses
throughout a diagnostic case.

nesting groups, as portrayed in Figure 8.4 Pathologists’ evidence-gathering strategies

often could be described by the traversal of hierarchies. Hierarchies of disease groups

allow pathologists to keep small the number of entities being considered at any time,

while guiding diagnosis to increasingly detailed levels. One such disease hierarchy is

shown in Figure 8.5. When using this hierarchy, a pathologist first considers features

that discriminate between only benign and malignant diseases. If the differential

diagnosis is narrowed to only malignant diseases, the pathologist then discriminates

between primary and metastatic diseases. If metastatic diseases are ruled out, the

pathologist considers features that discriminate between nonHodgkin’s and Hodgkin’s

lymphomas. Finally, when all diseases under consideration are in the same group, a

pathologist discriminates among these diseases individually.

We found that pathologists can use many different abstraction hierarchies, each

representing alternative perspectives on any given diagnostic problem; that is, there

are multiple ways to manage the complexity of diagnostic reasoning through abstrac-

tion (Horvitz, 1987a; Horvitz et al., 1989b). Figure 8.6 shows a strategy employed
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Figure 8.5: Classifying diseases into an etiological hierarchy.
This heuristic problem-solving hierarchy portrays how a pathologist may categorize diseases
into a sequence of abstraction classes to manage the complexity of diagnostic inference.
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Figure 8.6: A different perspective on diagnosis.
This abstraction hierarchy represents the formulation of the diagnostic problem from the
perspective of the morphological pattern seen in a lymph-node section (pop is an abbreviation
for population).

by a hematopathology resident who was singled out by our domain expert as hav-

ing a special gift for the diagnosis of lymph-node pathology. This grouping strategy

stresses the use of high-level morphological patterns. Figure 8.7 shows a classification

strategy based on the origin of the dominating population of proliferating cells. The

chief expert on the Pathfinder project used this strategy.

8.5 An Abstraction Facility for Pathfinder

As highlighted in Figure 8.8, we worked to introduce flexibility into Pathfinder by

developing tools that enable the system to discriminate among hypotheses created by

alternative groupings of diseases. The use of abstraction hierarchies by pathologists

participating in Pathfinder research can be viewed as alternative coarsenings of the

fine-grained utility model. Rather than apply the value-of-information calculations
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Figure 8.7: Abstraction based on predominating cell line.
This abstraction hierarchy represents the formulation of the diagnostic problem from the
perspective of the origin of the predominant proliferating cell line.
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Figure 8.8: Addition of heuristic abstraction to Pathfinder’s reasoning.
Instead of forcing reasoning at the most detailed model, the abstraction facility allows for
the arbitrary grouping of distinctions in the value-of-information calculation.
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to single diagnostic entities, we apply the calculations to groups, considering the

probability of each group, and the utility of misdiagnoses among groups of diseases.

We can construct different forms of group utility model. We can employ a group-

discrimination model, analogous to the fine-grained discrmination model. For this

model, we consider u(Gi, Gi) = 1 and u(Gi, Gj) = 0 for Gi 6= Gj. Creating this

utility model does not require any additional assessment. For a grouped analysis

that is patient-oriented, we may wish to assess ahead of time sets of utilities for

several different abstraction hierarchies. However, we may wish to allow a physician,

during a case analysis, to dynamically define groups of hypotheses that reflect his

current perspective on the problem. For these situations, it typically is not feasible

to assess the required utilities ahead of time. We can approximate utilities for group

analyses dynamically from the base-level utilities u(Hi, Hj) for single diseases. For

example, we can consider the group utility u(G1, G2) to be the average of utilities

u(Hi, Hj), where Hi ∈ G1 and Hj ∈ G2. Alternatively, we can take the utility to be

the minimum of base-level utilities u(Hi, Hj), such that Hi and Hj are elements of

G1 and G2, respectively.

I developed a general abstraction facility and worked with colleagues on the Path-

finder project to integrate that facility into the Pathfinder expert system (Horvitz

et al., 1989b). The facility allows system developers or users to specify a library of

intuitive classes of diseases and to nest these abstractions within arbitrary strategic

scripts. Figure 8.9 displays a single-level abstraction in Pathfinder. In this case, an

ungrouped Pathfinder differential diagnosis is divided into groups of benign diseases,

lymphomas, and metastatic diseases. The system lists the diseases of each group by

likelihood and displays, for each group, the probability that the true disease is in

contained that abstractions.

Pathfinder allows users to examine a diagnostic problem simultaneously from dif-

ferent perspectives. Multiple windows—each representing a different perspective on

the same problem—can be invoked. The windows displays the differential diagnosis

and highlight the current level of abstraction. By clicking on one of the windows, a

user activates the perspective. The evidence-gathering strategies, based on alterna-

tive group utility models introduces human-oriented flexibility to the generation and
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Figure 8.9: A Pathfinder abstraction.
This schematic displays a portion of a Pathfinder differential diagnosis, listing all diseases
under consideration by likelihood. By invoking a simple etiological abstraction, we can di-
vide the differential diagnosis into major disease classes, and assign the classes probabilities.
A value-of-information analysis can consider these classes as single distinctions.
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explanation of Pathfinder recommendations.

Figure 8.10 contains a Pathfinder screen demonstrating the abstraction capability.

Here, the diagnostic problem is being viewed from the etiological, pattern, and leading

disease versus other diseases perspectives. In the latter case, the grouping strategy

is based on the distribution of belief, rather than on properties of diseases. The

probabilities of major groups are listed in each window. In the pattern window, the

differential-diagnosis title bar tells us that there are 7 Hodgkin’s and 2 nonHodgkin’s

lymphomas under consideration. The probability that the final disease will be a

Hodgkin’s lymphoma is 0.999. The probability that it will not is 0.001. In the leading

versus other window, shown in the foreground, the leading disease, Hodgkin’s disease,

nodular-sclerosing (HDNS), is currently assigned a probability of 0.473. The other 8

diseases under consideration other have a probability of 0.527. Invoking the value-

of-information analysis while this window is active, will find those tests and features

that will rule out contenders for the leading disease. The system allows a user to

compare easily questions generated by information-gathering recommendations from

the perspective of an of the abstraction strategies. When new information becomes

available, all windows are updated.

8.6 Simplifying Justification with Abstraction

We have combined the abstraction techniques with graphical justification to explain

the discriminatory value of Pathfinder test recommendations. Pathfinder graphs the

influence that reporting each value of a feature will have on the likelihood of two

diseases or two groups of diseases. For two groups of diseases G1 and G2, the system

generates a set of likelihood ratios for each possible value i of the observed test or

feature, E:
p(Ei|G1)

p(Ei|G2)

where p(Ei|Gj), j = 1, 2, is the probability that evidence E of value i is observed

given that the true disease hypothesis is in group Gi. We display the logarithm

of each likelihood ratio. The logarithm of the likelihood ratio is called the weight

of evidence (Good, 1950). Several other investigators have experimented with the
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Figure 8.10: A Pathfinder screen.
This bitmap of a Pathfinder screen demonstrates the functioning of Protos/PF. Alterna-
tive abstraction hierarchies for managing the complexity of diagnostic inference are made
available. A pathologist invokes the system to generate a recommendation tailored to a
particular perspective by pointing with the mouse cursor at one of the windows. The cur-
rently active process, in the foreground, displays the problem from a leading disease versus
others perspective.
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Figure 8.11: Pairwise justification.
This screen displays a sample explanation from Pathfinder, showing the use of weights
of evidence to reason about the update that will be provided by different answers to the
recommended feature, MEDULLARY SINUSES. In this case, we examine the problem from
the perspective of leading disease versus other diseases.

Figure 8.12: Value of information from another perspective.
By invoking a simple abstraction that distinguishes between benign diseases versus other
groups of diseases (in this case, lymphomas and metastatic diseases), we can review the
effect that different answers to the recommended feature, MEDULLARY SINUSES will have
on the likelihood of these groups.
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display of weights of evidence to explain the effect that a finding will have on belief

in two diseases (Spiegelhalter and Knill-Jones, 1984; Reggia and Perricone, 1985).

The Pathfinder work with abstraction is the first use of this approach to inspect the

discriminatory power of evidence from multiple perspectives.

Figure 8.11 displays a sample Pathfinder justification of an observation, MEDULLARY

SINUSES, that has been recommended by a value-of-information analysis on the diag-

nostic problem displayed in Figure 8.9. Figure 8.11 examines the problem from the

perspective of leading disease versus all other diseases. Figure 8.12 shows how we can

examine the effects of the same piece of evidence on a different pairwise abstraction.

By invoking the abstraction that examines, benign diseases versus other groups of

diseases, we can review the effect that alternative answers to a recommended obser-

vation will have on the likelihood of these groups. Figure 8.12 shows us that observing

MEDULLARY SINUSES=Patent, is evidence against the leading disease, Florid Reac-

tive Follicular Hyperplasia (FRFH). FRFH is a benign disease that typically resolves

without therapeutic intervention. Figure 8.11 shows us that, from the perspective

of a set of disease groups, the same observation (MEDULLARY SINUSES = Patent) is

evidence for the benign group–the group containing FRFH.

8.7 Future Research on Abstraction

A promising extension of my work on increasing the clarity of reasoning through

abstraction of distinctions in normative reasoning systems is the development of a

normative metareasoner to control abstraction. In general, we wish to consider differ-

ent levels of detail in reasoning about actions, states of the world, and observations.

A normative control reasoner would seek to optimize the value of normative reason-

ing by trading off the informational costs associated with the use of an abstraction

strategy with the benefits of simplicity and understandability of reasoning. Such

metareasoning could make use of knowledge gathered by assessing a user’s prefer-

ences about cognitive style, and using these preferences to make decisions about

abstraction during the course of a diagnostic or an educational session. A discussion

of the control of abstraction for the explanation of automated reasoning is found in
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(Horvitz, 1987a). Related study of the utility-based control of explanation is also

described in (Mclaughlin, 1987).

There is much room for doing more detailed assessment of preference about the

detail, perspective, and progression of a normative analysis. During my exploration

of pathologist’s preferences about abstraction, I found different cognitive styles with

regard to such factors as the cost of making a transition from one perspective, or

level of abstraction, to another, and the cost of making a transition from one class of

information to another (e.g., being asked by the system to move between the evalu-

ation of microscopic features at low- and high-power objectives). Another promising

area of research is the refinement of the notion of a decision-theoretic perspective,

not only to capture preferences about problem abstraction, but also to account for

different dimensions of patient utility. For example, a physician may wish to compare

the differences between diagnostic recommendations, given the monetary constraints

on the tests that are currently available at an institution, with recommendations that

would be ideal for a less constrained analysis.

8.8 Summary

The complexity of decision-theoretic inference and the inflexibility of normative di-

agnostic systems has bolstered the stereotype of such systems as being necessarily

rigid and unnatural. Perceptions about the opacity of normative reasoning stem in

part from an inability to address human cognitive-resource constraints. I described

abstraction techniques that allow us to represent and use heuristic, human-oriented

abstractions within a decision-theoretic system. This new capability increases the

naturalness of normative inference and explanation. We have found the graceful

integration of such flexibility to be useful in adapting computer-based inference to

clinicians. Considering the constraints imposed on detailed decision-theoretic infer-

ence by human cognition can motivate us to enrich the cognitive style of normative

reasoning systems by generating flexible and human-oriented approximation strate-

gies. Such strategies can help to make automated decision-theoretic reasoning more

compatible with people.



Chapter 9

Summary of Contributions and

Future Research

In this dissertation, we explored flexible computation strategies and developed and

examined decision-theoretic techniques for directing problem solving. We described

how the methods could be used to optimize the value of computation under varying

resource constraints. The decision-theoretic control techniques take into consider-

ation information about the expected costs and benefits of continuing to refine a

partial result versus those of taking action in the world. We used the techniques to

develop a normative model of rational action for computer-based decision making un-

der bounded resources. This model of rationality is founded on extending traditional

decision-theoretic inference with efficient deliberative metalevel analyses that select

the best solution procedure and ideal time to perform inference with that procedure.

Such normative metareasoning has been reduced to practice in the Protos system.

We shall review, in this chapter, the contributions my research makes to DA, AI,

theoretical computer science, and medical informatics.

239
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9.1 Contributions to Decision Analysis

From the perspective of DA, my research on normative metareasoning introduces a

formal level of reflection to decision analyses. Traditionally, decision analysts have

made heuristic decisions about the level of detail to represent in models and the

precision with which to draw conclusions from them. This dissertation discusses pro-

cedures for making decisions about the nature and extent of a decision analysis. These

normative-metareasoning techniques can enable a human or computer-based reasoner

to use incomplete or uncertain characterizations of the value of continuing compute

to select an analysis with the highest expected utility. Our formal handling of re-

source issues does not replace heuristic reasoning with axiomatic principles; many

decisions about the detail and nature of the metalevel and object-level decision mod-

els are derived through human intuition. However, normative metareasoning extends

the frontier of formal normative analyses to include a consideration of resource con-

straints.

Beyond the use of reflective decision analyses to select ideal inference policies under

time constraints, we also examined normative reasoning under cognitive constraints.

This research highlights the significance of simplifying normative inference for the

purpose of making decision-theoretic reasoning easier to explain and understand.

The research shares with the work on time-constrained reasoning a consideration of

the tradeoff between the completeness of an analysis and the value of that analysis.

In the case of cognitive-resource considerations, I found that increasing the level of

abstraction and, thus, reducing the precision of a decision analysis, could increase the

value of the analysis to a user because of gains in the explainability of the simpler

analyses.

Finally, I have worked in my dissertation research to bring difficult problems of au-

tonomous decision making posed by AI investigators to the attention of the DA com-

munity. To date, challenging automated reasoning problems have remained largely

within AI. Nevertheless, the problems of normative reasoning under resource con-

straints pose rich offline and real-time computational decision problems that promise

to interest many decision-science investigators.
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9.2 Contributions to Artificial Intelligence

The design of intelligent artifacts that can perform well in complex environments,

given constraints in computational and memory resources, has been a central chal-

lenge in AI research (Simon, 1969). My dissertation research addresses the formal

foundations of rational action by autonomous decision-making agents under bounded

resources. I introduced the notion of bounded optimality as distinct from the more

general notion of bounded rationality in AI. In pursuing bounded optimality, we seek

to develop principles of rational action based on offline or run-time considerations

of the costs and benefits of alternative computational strategies for object-level and

metalevel reasoning, and on the utilities and probabilities of outcomes. Rather than

reject normative methods as inappropriately complex, I have sought to use decision-

theoretic principles to select the degree of detail in object-level decision-theoretic

analyses. I have shown how such optimization can increase the value of problem-

solving systems in dynamic environments.

I discussed the use of tractable decision-theoretic tools as a promising means of

addressing the complexity of base-level decision-theoretic inference, and of custom-

tailoring the completeness of problem solving dynamically, in response to changes

in the cost of computation. I posed normative-metareasoning—the use of decision

analysis to make offline and real-time decisions about the configuration and reasoning

policies for reasoning systems—as the key to developing systems that are rational

under limited computational abilities and resources. In particular, reflective decision

analysis—the use of normative metareasoning to control probabilistic inference in

a decision context—promises to be useful in addressing a variety of AI challenges,

including problems with planning and search.

Beyond the introduction of normative metareasoning and reflective decision anal-

ysis, my research makes contributions to AI research in the following areas:

• Flexible computation. I described how the properties of flexibility—monotonicity

in the refinement of one or more attributes of a partial result with computa-

tion and convergence of the attributes of a partial result on a final result—can

be valuable in the economic optimization of the value of computation under
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uncertain and varying resource constraints. The pursuit of flexible problem-

solving procedures promises to yield robust strategies under varying resource

constraints for a wide variety of problem-solving tasks.

• Protos reflective decision system. The decision-theoretic Protos architecture is

an example of a useful configuration for intelligent reasoning systems. High-

lights of the Protos architecture include object-level computation strategies

and a decision-theoretic metalevel reasoner that applies several forms of meta-

reasoning to analyze the value of computation. The metalevel analyses allow

the system to respond to a time-dependent challenge with a reflex or a more

deliberative inference policy.

• Formal perspective on control. AI investigators have traditionally relied on

heuristic procedures for choosing among different reasoning strategies (Erman

et al., 1980; Hayes-Roth, 1985; Clancey, 1985; Cohen et al., 1989; Durfee and

Lesser, 1987). In addition to giving us a framework for the design and opti-

mization of computational behavior, normative metareasoning provides a formal

foundation for the control of reasoning in AI applications. The principles of nor-

mative metareasoning have promise for guiding reasoning in applications where

heuristic control has been used.

• Decision-theoretic approach to real-time reasoning. My research contributes

a principled perspective on reasoning under real-time constraints—an area of

growing interest in the AI community. The general trend of research in real-time

reasoning is to build systems that react quickly with a set of logical reflex, or

situation–action rules (Rosenschein and Kaelbling, 1986; Agre and Chapman,

1987; Brooks, 1987; Kaelbling, 1987). As viewed from the normative meta-

reasoning perspective, the techniques for generating such rules typically have

been suboptimal as investigators have relied on ad hoc models. As normative

reasoning has been viewed as a source—rather than a solution to—problems

of intractability, decision-theoretic methods generally have been dismissed as

a solution to real-time reasoning (Laffey et al., 1988). There is promise in

using normative meta-analyses for designing inexpensive real-time strategies.
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Decision-theory–based reasoning systems, resulting from such analyses, might

employ explicit real-time analyses, or use only rules and policies generated in

detailed offline analyses.

9.3 Contributions to Computer Science

From the perspective of theoretical computer science, my research introduces decision-

theoretic foundations for optimizing approximate calculations in different contexts.

Rational decisions about computation, such as the selection of a new strategy or the

decision to cease computing, can be sensitive to details of that strategy’s refinement

trajectories, to the object-level utility function, and to the uncertainties in the func-

tions describing the cost and availability of reasoning resources. A wide range of

computer-science research efforts on fundamental computational problems may ben-

efit by pursuing the development of reflective strategies that are sensitive to varying

resource and utility conditions.

The framework and examples presented in this dissertation highlight the oppor-

tunity for developing and characterizing alternative approximation processes that

can refine multiple attributes of partial results with computation. Formal research

could augment complexity-class results with proofs of worst-case rates of incremental

refinement, theorems about ideal problem-solving policies, and analyses of fundamen-

tal tradeoffs in how algorithms refine different attributes of results. Multiattribute

analysis, flexible computation, and decision-theoretic control promise to be especially

useful in constructing and characterizing ideal approximate solutions for intractable

problems in the NP-complete1 complexity class.

9.4 Contributions to Medical Informatics

The evolving discipline of medical informatics has strong ties to DA and AI. Med-

ical information scientists have diligently applied and refined techniques developed

1NP-complete refers to the fact that a theoretical construct, called a nondeterministic computa-
tional automata, requires an amount of time to solve a problem that grows polynomially with the
size of that problem. Problems in this class include the task of finding an optimal solution to the
traveling-salesman problem (TSP), and many other problems (Garey and Johnson, 1979).
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in each discipline. Indeed, many medical-informatics investigators have continued

to straddle the AI–DA border. Researchers interested in building computer-based

reasoning systems that can improve medical decision making have been attracted to

the expressiveness and tractability of heuristic reasoning techniques. Nevertheless,

many of the same investigators are attracted to the mathematical elegance and prin-

cipled foundations of probability and decision theory. For many of the researchers,

decision theory has served as a gold-standard for medical decision making. However,

experience with the inflexibility and complexity of traditional approaches to decision-

theoretic reasoning and representation have given investigators reason to associate

the normative approach with intractable computation and opaque reasoning.

Normative metareasoning and flexible computation can help bridge the concep-

tual gap between normative, approximate, and heuristic reasoning—and can extend

the applicability of principled, normative systems. Flexible reasoning methods, cou-

pled with decision-theoretic control, provides a principled foundation for building

reasoning systems that can custom-tailor the detail and level of normative analyses

to specific medical challenges and users. My work on normative metareasoning was

partly motivated by the high stakes, uncertainty, and time criticality of medical deci-

sion making. Extensions of techniques developed in this dissertation may be valuable

for building physician advisory tools, and for developing real-time decision making

and control mechanisms for monitoring and therapy equipment. In particular, nor-

mative metareasoning techniques promise to play a crucial role in the development of

effective reasoning systems that can draw conclusions from very large belief networks.

For example, there is great opportunity for the use of flexible reasoning and norma-

tive metareasoning in the ongoing QMR-DT project (Shwe et al., 1990a; Shwe et al.,

1990b). The evolving QMR-DT belief network represents diseases and manifestations

spanning the broad domain of internal medicine.

9.5 Research Challenges and Opportunities

Many interesting problems of computation and action under bounded resources re-

main largely unsolved. I shall describe several promising challenges and opportunities
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for extending the research presented in this dissertation.

9.5.1 Consideration of New Information

The current implementation of Protos assumes that a set of observations about the

state of the world becomes available at intervals of time that make consideration of in-

formation acquisition irrelevant during deliberation. This assumption may be invalid.

In the general case, an agent should integrate a consideration of decisions about the

opportunity to exchange some valuable commodity for additional information with

metareasoning about the value of computation. For example, delay for computation

can be synergistic with the availability of new information. Also, new information

that might become available during deliberation can indicate a change in one or more

time-dependent utility functions, or, more generally, in the decision model. Thus,

value-of-information considerations should be considered with value of computation

in more general models. In general we should consider the value of information and

the value of computation, conditioned on gathering new information. We can assume

separate deliberation processes for gathering information and for thinking about the

information. On the other hand, we can reason about whether it is more useful to

reason about the gathering of new information versus computing with the information

already observed.

9.5.2 Automatic Construction of Decision Models

Protos currently assumes that the distinctions in its decision model will remain un-

changed during deliberation about action. We reviewed the difficulties with the au-

tomated framing or formulation of decision problems in Chapter 4. Although we

have few computer-based tools for problem formulation, the development of methods

for the real-time construction of decision models promises to be a crucial component

of autonomous computer-based reasoners that take action under limited and uncer-

tain resources. Research to date on problem formulation (Holtzman, 1989; Breese,

1990; Wellman, 1988; Heckerman and Horvitz, 1990) presents opportunities for ex-

tension to systems that can formulate dynamically decision problems for solution in

bounded-resource reasoners. A challenging area of research is the use of normative
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metareasoning principles to reason about the costs and benefits of constructing and

continuing to refine a decision model, given goals and observations.

9.5.3 More Sophisticated EVC Analyses

In the Protos implementation, we abstract relevant states of the world into a set of

decision problems that depend on refining one or a small number of probabilities.

Increasing the number of uncertain states of the world leads to a growth of com-

plexity of the EVC analysis. We discussed how we can use the inexpensive EVC to

iteratively examine a large set of decision problems, and for reformulating a complex

set of decisions into a cascade of simpler analyses. Nevertheless, there is promise for

developing more sophisticated approximations for EVC, to make feasible the analysis

of ideal action given a larger number of uncertain hypotheses about the world.

9.5.4 Compilation of Reasoning and Metareasoning

There is opportunity for developing reasoners that make use of prestored or compiled

actions, instead of computing action—or meta-action—in real time. Several differ-

ent classes of compiled knowledge for reasoning and metareasoning are discussed in

(Horvitz, 1989a). We can precompute and store complete answers or actions in the

form of situation–action pairs that describe ideal actions to take, given a set of obser-

vations. Beyond storing final actions, we can presolve and store incomplete solutions

that can be extended to a specific solution at run time. For example, rather than

perform real-time probabilistic inference, we can compute a set of probabilities of-

fline and store them for use in real-time decision making. We might also store a set

of instance weights for use in bounded conditioning (as discussed in Section 5.4.1).

We refer to such knowledge as platform knowledge, as it involves giving a reason-

ing system a headstart through reducing the overhead in real-time at the expense of

memory. Finally, we can identify and store compiled resource rules that provide a

means of buying time for computation. An example of a resource rule in medicine is

the reflex maneuver of continuing to replace fluids in a trauma patient to maintain

blood pressure while the source of a hemmorhage is being investigated.

Preliminary research on the development of decision-theoretic rules for designing
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optimal sets of compiled situation–action rules in an offline setting has been reported

by Heckerman and colleagues (Heckerman et al., 1989a). In that work, the value of

using completely deliberative reasoners is compared to the use of completely compiled

models. In another study, Herskovits and Cooper show how to decrease the average

response time to probabilistic queries by building a tree of cached probabilities from

a belief network ahead of time (Herskovits and Cooper, 1989). These investigators

demonstrate how to select cases for caching by performing simulation in the network

weighted by utility. The optimization of the construction and use of such trees, given

limitations in memory and time, are open areas of research.

9.5.5 Integration of Compiled and Deliberative Actions

Developing techniques and general architectures for utilizing a spectrum of default

and precomputed results promises to be valuable. In several places in this dissertation,

I touched on interrelationships between the dynamic computation of results, on the

one hand, and the use of compiled responses, on the other. I described the use of a

default metareasoning policy for performing a preliminary EVC evaluation in Protos

to allow the system to take a reflex action based on the mean of the current belief,

rather than be forced to perform a complete meta-analyisis. The construction of

a deliberative normative metareasoner can make clear the expected savings in the

utility of storing a compiled result versus performing inference. Thus, a normative

metareasoning architecture can serve as a basis for selecting a set of compiled actions

to be used in conjunction with the deliberative reasoner.

Just as we can develop compiled–deliberative object-level reasoners, we can do the

same with normative metareasoners. We can also combine such integrated metar-

easoners with integrated object-level reasoners. Such a combined approach could

generate a variety of appropriate reflex and deliberative actions. Finally, beyond

design-time compilation, there is opportunity for developing techniques to use idle

time effectively; offline normative meta-analyses might show that, for many con-

texts, ideal agents should be anxiety-ridden reasoners that worry about and plan for

expected problems, much as people do.
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9.5.6 Utility-Directed Program Synthesis

By focusing decision-theoretic metareasoning procedures on the microstructure of

computational activity, we may generate patterns of computation and control pos-

sible may enable a reasoner to generate refinement trajectories that provide more

valuable computation than manu of our current algorithms. Costs and benefits un-

der uncertainty. For example, a decision-theoretic paradigm for controlling divide

and conquer methods typically allocate resource for (1) decomposing a problem in-

stance into a set of subproblems, (2) solving the subproblems, and (3) recombining

the subproblem solutions into a final answer. The more subproblems we produce, the

smaller and more tractable each subproblem becomes; however, as we decrease the

size of the subproblems, we increase the number of subproblems. We also increase the

costs of decomposition and assembly of the subproblem. The ideal decomposition of a

problem depends on the tradeoffs between the complexity of decomposition and sub-

problem solution. Structural control techniques might be employed to optimize the

value of a divide-and-conquer algorithm, under the general condition of uncertainty

in the costs of decomposition and subproblem solution.

Such research may also elucidate the control strategies implicit in familiar policies

and stimulate the creation of more general, decision-theoretic strategies that could

implement the familiar policies as special cases. The study of fine-grained approaches

to decision-theoretic inference can also elucidate methods for reasoning about utility

in influence diagrams directly so that attention can be focused on the most relevant

parts of a problem, as opposed to inferring the probabilities of alternative outcomes

with algorithms for probabilistic-inference.

9.5.7 Preference Models for Histories of Action

In Chapter 7, we examined the behavior of Protos for test cases involving the use

of different belief networks and time-dependent utility models for making one-shot

decisions. We would like to evaluate the value of normative-metareasoning systems,

such as Protos, for addressing a large number of challenges over time in some envi-

ronment. The EVMP—the value of a reasoning policy for addressing a population of
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challenges—is a measure that captures the value of an agent over time. Computing

the EVMP requires models for representing a complex lottery of large sets of actions

and outcomes over time. Unfortunately, to date, decision-science investigators have

provided few tools for evaluating complex histories of actions taken in response to

challenges. There is a need for developing functions for combining the outcomes,

generated by an agent’s responses to challenges over time, into a measure of prefer-

ence. Such preference models for histories of actions would allow us to compare the

relative value of immersing different reasoning systems in a partially characterized

environment. One approach to grappling with multiple actions and outcomes is to

assume independence among distinct challenge-action pairs. I have previously posed

the independent-challenge model as an approximation model for this task (Horvitz,

1987c). Unfortunately, the independence assumptions of this model are often invalid.

9.5.8 Analyses of Heuristic and Descriptive Strategies

In the work on Protos, I applied principled metareasoning to control well-characterized

approximation strategies at the object-level. We can apply similar techniques to de-

termine the expected value of heuristics. Extending normative metareasoning to

consider the performance of heuristics, in addition to better-characterized norma-

tive approximations, would require us to consider uncertainty in the performance of

heuristic strategies. We can gather information about the uncertain performance of

heuristic procedures with statistical analyses of problem-solving behavior for differ-

ent problem instances. Preliminary characterizations of heuristic behavior could be

refined with ongoing data collection. A normative-metareasoning perspective could

provide a synthesis of normative and heuristic procedures, even when we are limited

to poor characterizations of heuristics.

Also, there is opportunity to develop decision-theoretic analyses to demonstrate

the relationship between heuristic and rigorous bounded-resource analyses of optimal

belief and action. For example, normative metareasoning may offer a new perspective

on descriptive models that characterize human decision making. Investigators have

shown that people exhibit stereotypical deviations from the axioms of utility the-

ory, referred to as biases of judgment and decision making (Tversky and Kahneman,
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1974; Kahneman et al., 1982). Normative meta-analyses may help us to character-

ize the suboptimality of nonnormative behaviors exhibited by people. We may find

that, in some cases, heuristics are approximate solutions to normative-metareasoning

problems of action under bounded resources.

Normative metareasoning may have relevance to the study of neural network mod-

els of problem solving, and, more speculatively, to natural reasoning systems. Exper-

iments that demonstrate the value of metareasoning and control in computer-based

models suggest that such facilities may play a role in natural reasoning systems. It is

feasible that approximations of normative metareasoning may well play an important

role in the cognitive systems of living creatures developed through long-term opti-

mization under the pressures of competition. Given competition for limited resources

and cognitive systems bounded resources The pressures of natural selection could

have Metareasoning and control facilities in natural cognitive systems could have

been selected under the pressures of evolution. The reflective component of delibera-

tive reasoning in people as something that raises the expected value as a feature that

natural selection. The perspective gained might suggest useful directions in examing

the architecture of natural cognitive systems. may have discovered the value of allo-

cating a portition of cognitive resources to an explicit metalevel of analysis. use of

uncertain information about problem solving given constraints on the architecture of

a reasoning system, and on the costs of memory and inference.

9.5.9 Ideal Partition of Resources for Metareasoning

In this dissertation, we focused on the development and use of tractable metareasoning

policies to control object-level reasoning. We did not dwell on the control of meta-

reasoning with metametareasoning techniques. However, as we mentioned in Chapter

2, we may not always be able to simplify the metareasoning problem to a single in-

expensive analysis of the value of computation. In some situations, we may have

flexible—or a set of alternate—metareasoning approaches. In some situations, the

most valuable metareasoning strategies may use a large fraction of the total resources

consumed by problem solving. In other cases, the most valuable strategy may use

very little of the total resources. Thus, we may wish to reason about the ideal control
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of metareasoning. An important component of metametareasoning is defined by the

metareasoning-partition problem—ideally apportioning costly reasoning resources to

metalevel inference versus applying resource to executing a solution to a problem.

Insights about the ideal partition of resources for metareasoning in several prototyp-

ical resource contexts have been explored recently in (Horvitz and Breese, 1990) and

(Breese and Horvitz, 1990).

9.5.10 Addressing Problems of Analytic Regress

I discussed, in Section 2.6, how working to enhance the value of object-level com-

putation, by introducing one or more levels of metareasoning and control, does not

necessitate intractable metareasoning or infinite analytic regress. Concerns with an-

alytic regress that arise in discussions on the value of adding a single metalevel result

often from an assumption that any metareasoning implies a need for the recursive

application of meta-analysis. Such concerns can be provoked by an assumption that

a metareasoner must represent a great portion of the base problem that it is intended

to control and, thus, must be as complex as a base-level problem solver. Therefore,

investigators may argue, a metalevel reasoner will require the same kind of control as

that needed by the base-level reasoner.

We may, indeed, be able to construct metaproblems with a complexity that rivals

or exceeds that of the base problem. However, we can frequently build much simpler

control problems that greatly enhance the comprehensive value of reasoners. Such

meta-analyses address particular aspects of object-level problem solving, and make

use of specific classes of metaknowledge; they do not capture the full complexity of

the representation or inference procedures at the base level.

Another assumption that can provoke concern about infinite regress is that control

decisions can be sensitive to small changes in the accuracy of a metareasoning analysis.

If this were so, optimizing the value of control decisions might invoke a large, or an

infinite, number of metalevels. I believe that such sensitivity is the exception, rather

than the rule. Within the models that I constructed, control decisions appear to be

insensitive to small changes in the accuracy of the analysis. When this is not the case,

we can seek to characterize a relevant spectrum of metametareasoning implications
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during the design phase.

Questions about infinite regress grow in significance if we seek to verify the ab-

solute optimality of a decision procedure, especially if metalevels can be of arbitrary

complexity. There can be cases where the composition of an agent and the agent’s

environment dictates as optimal the application and management of a large, or (in

theory) infinite, tower of meta-analyses (Horvitz, 1988). In previous discussions of

techniques for handling the problems with analytic regress, Kripke presented a prob-

lem with infinite regress that arises in defining truth (Kripke, 1975). He applied

a mathematical tool known as a transfinite hierarchy to grapple with the problem.

More recently, Lipman performed an analysis of an infinite-regress problem by ap-

plying similar techniques within a game-theoretic framework (Lipman, 1989). He

demonstrated that, within his model, there is an equivalence between a base decision

problem and an infinitely recursive analysis.

From the normative-metareasoning perspective, optimization problems that imply

large hierarchies of metareasoners provide problems for convergence and stability

analyses. Nonetheless, analyses may suggest finite architectures and policies, even for

an ideal bounded-optimal agent that relies on theoretically unwieldy, recursive meta-

analyses. The EVC of a reasoning system, based on a theoretical prescription for an

infinite hierarchy of metareasoning analyses, might converge tractably, similar to the

way the sum of an infinite series may closely approach a real number with a small

number of terms. Also, stability analyses, developed by control theorists, may be

useful in determining optimal configurations of large numbers of interrelated meta-

analyses, especially for cases where some control decisions are sensitive to minute

perturbations of the accuracy of the analysis at a large number of metalevels. Great

sensitivity of control reasoning to the completeness of metareasoning analyses can

focus attention on a search for less sensitive, more stable levels of approximate meta-

analyses.



Appendix A

Decision Theory and Decision

Analysis

This appendix provides background on probability, decision theory, and decision anal-

ysis. After reviewing the key notion of probability as personal belief, the axioms of

probability, and the axioms of utility, I shall present the belief network and influence

diagram representations. Then, I shall describe research on algorithms for performing

inference with these representations.

A.1 Probability and Decision Theory

Systems that reason about problems in the real world typically can consider only a

small fraction of potentially relevant distinctions. Thus, most representations used in

automated reasoning systems are dramatic simplifications of the objects and relations

in the universe that may have relevance to a decision problem. Incompleteness in the

representation of distinctions in the world, and in the state of information about

distinctions that are represented, leads to uncertainties about different outcomes and

about the consequences of actions. Thus, computer-based reasoning systems—as well
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as people–must contend generally with uncertainty.

The development of modern probability theory as a set of axioms and as a formal

calculus for representing and reasoning about partial truth, or belief, has its roots

in the writings of Pascal, Fermat, and Bernoulli in the sixteenth and seventeenth

centuries. However, detailed discussions of uncertain reasoning appear much earlier

in history. Informal attempts by people to grapple with the ubiquity of uncertainty

have appeared throughout history. For example, discussion about uncertainty and

its relationship to games of chance appear many hundreds of years ago in Egyptian,

Greek, and Indian literature (Hacking, 1975). Games of chance were employed in

some cultures as a means of discovering the will of the gods; games of chance, such

as observing the way a cuboidal bone would land when tossed in the air, were viewed

as providing gods a means to communicate with mortals (David, 1962).

Probability theory serves as a language for making statements about uncertainty;

the theory makes explicit the notion of partial truth and incomplete information.

Utility theory is a set of axioms, some of which are based on probability, that pro-

vides a language for reasoning about the value of alternate actions under uncertainty.

Analyses by Pascal and others identified the notion of expected value several cen-

turies ago. However, von Neumann and Morgenstern formalized utility theory only

four decades ago (von Neumann and Morgenstern, 1947). Probability theory and

decision theory provide principles for rational beliefs and actions under uncertainty.

The theoretical concepts do not, in themselves, provide information about how to

best apply these principles to real problems in an efficient manner. Investigators in

the discipline of em decision analysis have explored the real-world application of de-

cision theory, often making use of heuristics about the process of decision modeling,

information acquisition, and action in the world.

A.1.1 Probability as Personal Belief

The most widespread interpretation of probability is that of a measurable frequency

of events determined from repeated experiments. From this perspective, we define the

probability that a coin will land on one of its sides, given a random flip, as the portion

of times the coin lands on that side, given some large number of coin flips. This view
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has been called the frequentist interpretation. A different perspective on probabilities,

known as the subjectivist interpretation, is that probabilities are a measure of a per-

son’s degree of belief in the event, given the information available. According to this

conception, probabilities refer to a state of knowledge held by an individual rather

than to properties of a sequence of events. A probability of 1 corresponds to belief

in the absolute truth of a proposition, a probability of zero to belief in the proposi-

tion’s negation, and intervening values to partial belief. Subjectivists are also called

Bayesians, referring to the work of Thomas Bayes, a theologian and scientist from the

mid-eighteenth century, who provided one of the earliest discussions of probability as

a personal measure of belief (Bayes, 1958).

Subjective probabilities abide by the same set of axioms as do classical probabili-

ties or frequencies. The subjectivist approach is a generalization of the more popular

notion of a probability as a long-run frequency of a “repeatable” event. In addition to

assigning probabilities to the outcomes of repeatable events, a subjectivist is willing

to assign belief to unique events that are not members necessarily of any obvious

repeatable sequence of events. The assignment of a subjective probability is based

on all information available to an individual. Such background information includes

those items that are known to be true or deducible in a logical sense, as well as

empirical frequency information.

As an explicit statement that a probability is a personal belief that can include

a consideration of information that may not be expressed explicitly, Bayesians fre-

quently include a reference to a state of background information, ξ, on the which

the probability is based or conditioned. This symbol is included in the conditioning

clause of probabilities, p(Q|ξ), and is concatenated with new explicit observations or

evidence E, p(Q|E, ξ).

A.1.2 Axioms of Probability Theory

The axioms of probability define probability and provide a set of rules for the con-

sistent combination of the probabilities of related events. There have been several

equivalent axiomitizations of probability. We shall use the following formulation,

where Q and R are different events:
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0 ≤ p(Q|ξ) ≤ 1 (A.1)

p(Q or ¬Q|ξ) = 1 (A.2)

p(Q|ξ) + p(¬Q|ξ) = 1 (A.3)

p(Q,R|ξ) = p(Q|R, ξ)p(R|ξ) (A.4)

Equation A.1 defines the measure of probability as extending between 0 and 1.

Equation A.2 defines the probability of the disjunction of an event and its negation as

true. Equation A.3 tells us that the sum of the probability of an event and its negation

is 1. This axiom is referred to as the sum rule. A list of propositions, separated by

commas, is used typically to denote logical conjunction. Equation A.4 tells us that

the probability of the conjunction of two events is equal to the probability of one

event, given the truth of the second event, multiplied by the probability of the second

event. This axiom is called the product rule.

Sets of belief assignments that are consistent with the axioms of probability theory

are said to be coherent. In this sense, the axioms provide consistency criteria for

uncertain beliefs. There are persuasive arguments for combining beliefs in a manner

that is consistent with probability theory. Decision analysts have presented examples

of scenarios that suggest that a rational person would wish to avoid making decisions

based on incoherent beliefs (Lehman, 1955; Shimony, 1955; de Finetti, 1970).

In another vein of research, investigators have provided sets of desirable properties

of measures of belief that they consider more intuitive than the axioms of probability

(Cox, 1946; Tribus, 1969; Lindley, 1982). In 1946, Cox provided a proof that a set

of such properties are logically equivalent to the axioms of probability. A recent

reformulation of Cox’s properties is as follows (Horvitz et al., 1986a):

1. Clarity: Events should be well defined.
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2. Scalar continuity: A single real number is both necessary and sufficient for

representing a degree of belief in an event.

3. Completeness: A person can assign a measure of belief to any well-defined event.

4. Context dependency: The degree of belief assigned to an event can depend on

the belief assigned to other events.

5. Hypothetical conditioning : There exists some function f that allows the belief b

in a conjunction of events, b(x, y), to be calculated from the belief in one event

and the belief in the other event, given that the first event is true. That is,

b(x, y) = f(b(x|y), b(y))

6. Complementarity : The belief in the negation of an event is a monotonically

decreasing function of the belief in the event; thus, the belief in an event’s

negation can be computed from the degree of belief in the event.

7. Consistency : There will be equal belief in events that are logically equivalent.

Cox demonstrated that, taken together, these properties logically imply that the

measure of belief must satisfy the axioms of probability theory. According to Cox’s

analysis, if one accepts these intuitive properties as desirable, one must accept prob-

abilities as a desirable measure of belief. The proof of the necessary relationship

between the intuitive properties and the axioms of probability theory is based on an

analysis of solutions to the functional forms implied by the intuitive properties.

A.1.3 Performing Inference Under Uncertainty

Probability theory allows us to reason about the degree of belief in events, given

belief in related events. Bayes’ rule is a useful relationship that allows us to calculate

the belief in different hypotheses H about the world, p(H|E, ξ), given observable

evidence E, from knowledge about the probability of observing the evidence when

each hypothesis is true, p(E|H, ξ). The rule provides a method for transforming a
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prior probability [p(H|ξ)] into a posterior probability [p(H|E, ξ)] as follows:

p(H|E, ξ) =
p(E|H, ξ) p(H|ξ)

p(E|ξ) (A.5)

Bayes’ rule can be derived in a straightforward manner from the sum and product

rules of probability. The rule provides probabilistic inference with a bidirectionality

that can be useful when probabilities are available in one direction but are required

in the reverse direction. For example, in medicine, an expert physician may feel

comfortable in assessing knowledge in terms of the likelihood of seeing alternate test

results when different diseases are present, and wish to use this knowledge to compute

the probability of a disease given one or more test results.

A.1.4 Axioms of Utility Theory

Decision theory is defined by the axioms of probability and utility. The axioms of

utility, introduced by von Neumann and Morgenstern, are a set of principles for

defining utility and for maintaining consistency among preferences (von Neumann

and Morgenstern, 1947; Savage, 1972; de Finetti, 1970; Fishburn, 1981). An action

or decision is an irrevocable allocation of resources. Preferences describe a person’s

valuation and ordering of alternate outcomes.

In the general, we must make decisions under uncertainty. A well-known rule for

making decisions about action given alternative uncertain outcomes is the principle

of maximum expected utility (MEU). The MEU principle dictates that we should take

actions that maximize the value computed by summing together the value attributed

to each possible outcome multiplied by the probability of that outcome. According

to Hacking, Pascal was the first to specify the principal of maximum expected utility

over 3 centuries ago in deliberating about the costs and benefits of practicing Chris-

tianity, given uncertainty about the existence of heaven and hell (Hacking, 1975). von

Neumann and Morgenstern were the first to formalize MEU.

The axioms of utility provide justification of the principle of maximum expected

utility (MEU). The axiom of orderability asserts that all outcomes are comparable,

even if they are described by many attributes. Thus, for any two possible outcomes

a and b, a person either prefers a to b (a Â b), prefers b to a (b Â a), or is indifferent
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between the two outcomes (a ∼ b). The transitivity axiom asserts that these orderings

can be assigned consistently; that is, if a Â b and b Â c, then a Â c. These axioms,

together with two auxiliary axioms, ensure a weak preference ordering on all outcomes.

This implies the existence of a scalar value function which maps from all outcomes

into a scalar value such that a person will always prefer outcomes assigned a greater

value.

The other axioms of utility theory describe a person’s preferences under uncer-

tainty. They make use of the concept of a lottery—a set of uncertain outcomes

associated with an action. Each outcome in a lottery has some probability of occur-

rence. The monotonicity axiom states that, when comparing two lotteries, each with

the same two outcomes but with different probabilities on the outcomes, a decision

maker should prefer the lottery that has the higher probability of the preferred out-

come. The decomposability axiom asserts that we can combine a set of lotteries into

simpler lotteries and that a decision maker should be indifferent between lotteries that

have the same set of eventual outcomes and probabilities—even if they are reached

in a different manner. As an example, a lottery whose outcomes are other lotteries

can be decomposed into an equivalent one-stage lottery using the standard rules of

probability. The substitutability axiom states that, if a decision maker is indifferent

between a lottery and some certain outcome (a certain equivalent of the lottery), then

substituting one for the other as a possible outcome in some more complex lottery

should not affect his preference for the lottery. The continuity axiom dictates that,

if a person has preferences a Â b and b Â c, then there is some probability p such

that the person is indifferent between receiving the intermediate outcome (outcome

b) with certainty and a lottery with a probability p of receiving outcome a (the most

preferred outcome) and a probability of (1− p) of receiving the the worst outcome, c.

If we accept the axioms of utility, then there exists a scalar utility function which

assigns a number on a cardinal scale to each outcome and decision, indicating its

relative desirability. Furthermore, it follows that, when there is uncertainty about

outcomes, preferred decisions are those that maximize the expected utility, given the

probability of alternative outcomes. Thus, the axioms imply the MEU principle.
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A.1.5 Decision Analysis

Decision analysis is an engineering discipline that addresses the pragmatics of ap-

plying decision theory to real-world problems. The axioms of probability and utility

merely dictate a set of formal consistency constraints; they say nothing about how

we should elicit or represent a utility function or probability distribution, or about

the way we should represent or reason about a decision problem. For example, the

axioms have nothing to say about the level of detail we select for representing knowl-

edge in a model, or about the best procedures to enlist to search for and identify a

utility-maximizing action.

Decision analysis provides methods that help a decision maker to clarify the prob-

lem by explicating decision alternatives, values, and information. In particular, deci-

sion scientists have developed a battery of methods for performing sensitivity analysis,

to help a person identify those uncertainties and assumptions that could have a sig-

nificant effect on the best action to take, and the expected utility associated with that

action. Information-acquisition and reasoning resources, therefore, can be directed to

the most important or sensitive aspects of the problem.

A.2 Influence Diagrams and Belief Networks

A complete description of a decision problem is called a decision basis (Howard and

Matheson, 1984). A comprehensive decision basis includes information about alter-

nate actions, the nature and likelihood of possible outcomes, preferences about the

outcomes, and relationships among these entities. A variety of representations for a

decision basis have been developed in the decision-science community. Many people

are familiar with the decision-tree representation of actions, events, and outcomes.

Another representation for decision problems is the use of joint probability distribu-

tions over variables, in conjunction with a loss function that describes the cost of

different actions.

Over the last 10 years, decision analysts and computer scientists, interested in

computational applications of decision-theoretic reasoning, have attempted to de-

velop richer knowledge representations that allow people to encode decision bases
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at different levels of detail. In particular, there has been great interest in allowing

people to express qualitative, in addition to quantitative, knowledge about belief,

preferences, and decisions. Much of this work has centered on the use of graphical

representations called belief networks and influence diagrams.

The influence diagram is a graphical knowledge-representation language that rep-

resents the decision basis (Owen, 1978; Howard and Matheson, 1981; Olmsted, 1983;

Shachter, 1986; Shachter, 1988). More specifically, an influence diagram is an acyclic

directed graph containing nodes representing propositions (e.g., actions and out-

comes), and arcs representing interactions among nodes. Nodes representing proposi-

tions are associated with a set of mutually exclusive and exhaustive values that rep-

resent alternative possible states. The arcs represent deterministic, probabilistic, and

informational relationships between the nodes.

There has been much investigation on a specialization of influence diagrams that

do not contain information about decisions and preferences (Rousseau, 1968; Howard

and Matheson, 1981; Lemmer, 1983; Cooper, 1984; Pearl and Verma, 1987; Kim and

Pearl, 1983). These networks express probabilistic relationships among states of the

world exclusively. Several different terms are used for these representations, including

knowledge maps (Howard, 1989), causal networks, Bayesian nets, and belief networks

(Pearl, 1986). We shall use belief networks.

A.2.1 Alternate Levels of Representation

The human-oriented expressiveness of influence diagrams and belief networks is based

in these representations’ three levels of specification: relation, function, and number

(Howard and Matheson, 1981). In practice, a person can express relations at one level

without explicitly referring to more specific levels. The relation level captures the

qualitative structure of the problem as expressed in the topology of the network. At

this level, the arcs and nodes describe dependencies between the values of propositions

or variables (nodes). Each variable in an influence diagram is associated with a set

of mutually exclusive and collectively exhaustive values. At the level of function,

the functional form of the relationships among nodes is specified. At the level of

number, we specify numerical values that specify details about how the functional
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Figure A.1: A simple belief network.
In this belief network, the directed arc specifies a probabilistic dependency between the
nodes CORONARY ARTERY DISEASE and CHEST PAIN. Thus, we assert that the proba-
bility distribution over values of chest pain is dependent on the severity of coronary artery
disease.

forms interact.

Nodes in influence diagrams include chance nodes, decision nodes, and value nodes.

Belief networks only contain chance nodes. The chance nodes represent states of the

world that are uncertain. We depict chance nodes as circles or ovals. There are

two kinds of chance nodes: stochastic and deterministic (the latter are portrayed

as double-lined circles). The belief associated with a stochastic chance node is a

probabilistic function of the outcomes of its predecessor nodes. A deterministic chance

node is a special case of a stochastic chance node. The values of the predecessors

determine the node’s value with certainty. Chance nodes without predecessors are

specified at the level of number with prior probability distributions.

Figure A.1 displays a simple belief network expressing the uncertain relationship

between the degree of coronary artery disease afflicting a patient and that patient’s

chest pain. The directed arc from the node CORONARY ARTERY DISEASE to the node

CHEST PAIN means that the probability distribution over the values of chest pain

depends on the value of coronary artery disease.

Figure A.2 shows us more detail about the structure belief network. Associated

with each node is a set of mutually exclusive and exhaustive values. The figure also

displays the probabilities (as represented by the length of horizontal bars) for each of

the four possible values of chest pain, given that coronary disease is minor. As shown

in Figure A.3, the probability distribution over the different values of chest pain is

different when we condition on a more severe form of coronary artery disease.
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Figure A.2: Values of variables and probability distributions in a belief network.
A probability distribution is specified over values of nodes for each state of the predeces-
sor nodes. Here, the figure displays the probability of alternate values of CHEST PAIN
conditioned on CORONARY ARTERY DISEASE = Minor disease.

Figure A.3: A probability distribution conditioned on another state.
The figure displays the probability of alternate values of CHEST PAIN conditioned on the
state CORONARY ARTERY DISEASE = Major disease.



PAININFLAMMATIONBACTERIAL
INFECTION

264 Decision Theory and Decision Analysis

Figure A.4: Conditional independence in a belief network.
In this belief network, assertions about the value of INFLAMMATION renders BACTERIAL
INFECTION and PAIN conditionally independent.

A.2.2 Expressing Independence in Belief Networks

Belief networks and influence diagrams are useful for expressing independence among

variables. An independence assertion asserts that the belief in proposition Q is not

affected by knowledge about the belief in the truth of proposition R, given background

information ξ,

p(Q|R, ξ) = p(Q|ξ)

The lack of arcs among variables—are qualitative expressions of probabilistic indepen-

dence of various kinds. The independencies in belief networks and influence diagrams

are a formal representation of the local nature of the relationships among variables.

The graphical representations help us to ascertain the possible effects that one vari-

able can have on a distant variable. In particular, variables with no predecessors or

directed pathway between them are marginally independent. Where two variables

have one or more common parents, but no arc between them, they are conditionally

independent of each other given their common parents. A node is conditionally inde-

pendent of its indirect predecessors (i.e., nodes at a minimal directed path of distance

greater than 1) given all of the variable’s immediate predecessors.

In Figure A.4, variables BACTERIAL INFECTION and PAIN are conditionally inde-

pendent of each other, given an assertion about a value of INFLAMMATION.

A.2.3 Multiple Causation

Let us return to our patient who has been suffering with chest pain. Belief networks

are valuable for representing multiple causes among relevant distinctions. For exam-

ple, an expert physician may tell a decision analyst about several pathophysiological

causes of chest pain. In particular, he might point out that, in addition to being
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Figure A.5: Representing multiple causes.
We have extended our simple belief network to include knowledge about the relationship
between GASTRIC ULCER and CHEST PAIN. Adding this new node and dependency spec-
ifies that probability distributions over alternate values of CHEST PAIN are conditioned on
states defined by combinations of the values of GASTRIC ULCER and CORONARY ARTERY
DISEASE.

caused by coronary artery disease, chest pain also can be caused by a gastric ulcer.

In fact, chest pain can be caused by gastric ulcer, by coronary artery disease, or by

both ailments acting together. Figure A.5 displays the addition of the new node,

GASTRIC ULCER, and a new directed arc, representing the dependency between gas-

tric ulcers and chest pain. Now, the assessments for chest pain must be conditioned

simultaneously on combinations of all of the possible values of CORONARY ARTERY

DISEASE and GASTRIC ULCER.

A.2.4 Actions and Preferences

A physician examining a patient, with a chief complaint of chest pain, might desire

to test the patient to learn more about the likelihoods of coronary artery disease

and chest pain. On the other hand, the physician may recommend that the patient

take immediate action to treat one or both of the possible causes of chest pain.

Testing or treatment decisions are captured in the richer representation of influence-

diagrams. Figure A.6 displays an extension of the belief network in Figure A.5 to a

simple influence diagram. Note that we have added a decision node (square node),

representing alternative decisions, and a value node (diamond) capturing information

about the preferences of the patient.

The arc pointing into the decision node in Figure A.6 is called an informational



GASTRIC
ULCER

VALUE DECISION

CHEST PAIN
CORONARY

ARTERY
DISEASE

266 Decision Theory and Decision Analysis

Figure A.6: An influence diagram for treating chest pain.
This influence diagram represents the decision basis for a decision about the treatment
of chest pain that may be caused by GASTRIC ULCER, CORONARY ARTERY DISEASE,
or by both ailments. In addition to the chance nodes (ovals), we introduce a decision
node (square), and a value node (diamond). We also add an informational arc (thicker),
representing information that is known at the time a decision is made.

arc. Informational arcs represent knowledge about the world that is known at the

time a decision is made. In this case, the physician has information from the patient

about the nature of his chest pain. Notice that the value of alternative treatment and

testing actions is a function of the decision and the values of coronary artery disease

and gastric ulcer.

A decision analyst attempts to carefully refine a decision model to ensure that

all important factors are taken into consideration. The process of model building

often involves an iterative cycle consisting of the repeated modification or pruning

away of previously identified nodes and the addition of new nodes and arcs. Figure

A.7 represents a richer influence diagram that might be constructed to decide if

a patient should undergo surgery to repair his potential coronary artery disease.

This influence diagram includes distinctions about the probabilistic relationship of

coronary artery disease to myocardial infarction (heart attack). Also, important
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Figure A.7: An influence diagram for a decision about heart surgery.
This influence diagram represents a decision basis for analyzing the value of surgery that
would attempt to increase the flow of blood to the heart. Components of value explic-
itly represented in the diagram include LIFE QUALITY, REMAINING LIFE YEARS, and
MONETARY COST.

components of the utility model are explicitly broken out to facilitate an analysis

of the patient’s preferences. In this case, relevant attributes include life quality, life

years, and the monetary cost of the angiogram test, the cost of surgery, and the

cost of hospitalization if a myocardial infarction occurs. The diagram shows that the

quality of life is influenced by the level of chest pain and the morbidity of the surgery.

The value function is a real-valued scalar function that represents tradeoffs among

alternative attributes for a patient, as well as individual preferences about risk and

time.

It is frequently useful to gather additional information about important variables

before taking actions that can have dramatic effects on a patient’s utility. In the
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Figure A.8: Reasoning about the value of gathering additional information.
This influence diagram considers the value, monetary cost, and risk associated with perform-
ing a potentially dangerous imaging test to gather additional information about CORONARY
ARTERY STATUS. The decision to receive heart surgery could be sensitive to the result of
such a test.

case of an elderly patient complaining of chest pain, we might wish to perform a

test to gather more information about the likelihood of alternate values of coronary

artery disease. Figure A.8 shows an extension of the influence diagram, displayed in

Figure A.7, that captures the preliminary decision to perform a potentially dangerous

angiogram test to image the coronary arteries. If we do perform the test, we shall

know the result before we make a decision about whether to perform surgery.
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A.3 Inference Algorithms

Over the last 5 years, there has been substantial progress on algorithms for solv-

ing belief networks and influence diagrams. Belief-network algorithms allow us to

draw conclusions about variables of interest in the networks, given information or as-

sumptions about the value of other variables. A common application of belief network

algorithms is to compute the marginal probability distribution for a proposition, given

the value of other variables. For example, we may wish to determine the probability

of myocardial infarction for a specific patient, given information about his medical

history, and observations about his current pain and physical endurance. There are

several classes of algorithm for probabilistic inference in belief networks. Alterna-

tively, we may wish to determine directly the best decision to make, given the current

state of information. Investigators have developed algorithms that work directly on

influence diagrams to address this task.

A.3.1 Exact methods

Exact methods are algorithms that precisely solve belief-network problems, yielding

point probabilities of interest. Cooper performed a complexity analysis of probabilis-

tic inference, and demonstrated that the problem of probabilistic inference in belief

networks is NP-hard (Cooper, 1990b). This result highlights the futility of develop-

ing an exact method that is computationally efficient for arbitrary belief networks.

Nevertheless, progress has been made on exact methods for the tractable solution

of specific belief-network topologies. Most of these methods take advantage of the

special structure and sparseness in the interconnectivity of sample networks.

A belief network with probabilities assigned to all nodes and influences specifies

a complete joint probability distribution over the variables in the network. We can

generate the joint distribution defined by a belief network in a brute-force manner

by taking the product of all of the assigned distributions. Once we generate the joint

distribution, we can compute the marginal and conditional probabilities of interest

by summing over the relevant dimensions of the joint distribution. Although the

brute-force approach is conceptually straightforward, it requires computational effort
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that is exponential in the number of variables.

The key to efficient exact computation in belief networks is to exploit indepen-

dencies to avoid having to calculate the full joint probability distribution. Kim and

Pearl have developed a distributed algorithm for solving singly connected networks, or

polytrees (Kim and Pearl, 1983). The algorithm is linear in the number of variables in

the network. In the distributed approach, each node in the network receives messages

from each of its parent and child nodes, representing all the evidence available from

alternative portions of the network. Each time a new observation is made, messages

are propagated through the network to update the probabilities of the values of other

variables.

Another approach, developed by Pearl, called the method of conditioning relies

on the transformation of multiply connected networks to a set of singly connected

networks (Pearl, 1986) (this method is described in more detail in Chapter 5). The

method relies on the identification of a loop cutset, that “breaks” all of the cycles

in a network. Loop-cutset nodes must be instantiated with each possible value (or

combination of values). Once the method of conditioning has been applied, techniques

for solving singly connected networks (such as the Kim and Pearl distributed polytree

algorithm) can be applied to solve the polytree network subproblems.

An arc-reversal method developed by Shachter (Shachter, 1988) applies a sequence

of operators to reverse the arcs in a belief network. Arc reversal is equivalent to

applying Bayes’ rule. Through a series of arc reversals and node removal, a belief

network can be reduced to one node, representing the answer to a probabilistic query.

Shachter’s algorithm can be applied to multiply connected networks, but requires

detailed knowledge about topology.

Lauritzen and Spiegelhalter have developed an approach based on the reformula-

tion of a belief network into a tree by forming clusters of nodes or cliques (Lauritzen

and Spiegelhalter, 1987; Lauritzen and Spiegelhalter, 1988). A clique is defined as a

set of nodes where each node in the set has an arc to all other nodes in the set. Any

network can be converted into a corresponding singly connected network of cliques.

The Lauritzen and Spiegelhalter approach makes use of an algorithm for propagating

evidence within a tree of cliques. This approach is linear in the number of cliques



A.3. Inference Algorithms 271

and exponential in the size of the largest clique. Although this algorithm is one of

the fastest available, it quickly becomes intractable as the connectedness of a network

increases.

In other work, Heckerman has developed an algorithm named Quickscore for

performing inference in a special two-level diagnostic network consisting of binary

variables (Heckerman, 1989). The algorithm relies on an assumption of causal in-

dependence (the noisy-or assumption (Pearl, 1988)) in the special diagnostic model.

Quickscore has a complexity that is exponential in the number of positive findings

(findings observed to be present).

Recently, Cooper developed an approach to exact inference called the method of

dissection (Cooper, 1990a). His approach relies on a method for recursively decom-

posing a belief network into a binary tree. Then, inference is performed over the

tree. Cooper describes a heuristic procedure that searches among alternative decom-

positions to find a decomposition associated with the smallest number of arithmetic

operations to calculate a probability of interest.

A.3.2 Approximation Methods

All of the exact methods are highly sensitive to the connectedness of belief net-

works. Inference approximation methods promise to solve networks more quickly.

However, the performance of these methods often escape crisp a priori characteriza-

tion. Approximation methods include stochastic simulation and probability-bounding

algorithms.

A.3.2.1 Stochastic Simulation

Simulation techniques estimate the probability of an event based on the frequency

with which that event occurs in a set of simulation trials. Some simulation methods

report a probability distribution or partial characterization of a distribution over

probabilities of interest.

Henrion introduced the notion of using simulation to solve belief-network infer-

ence with a technique called logic sampling (Henrion, 1988). Convergence rates of
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logic sampling degrade exponentially with the number of pieces of evidence consid-

ered in a problem. Several promising simulation algorithms have been developed

recently, including Chavez and Cooper’s randomized polynomial method (Chavez

and Cooper, 1989a) and the likelihood-weighting approaches of Shachter and Peot

(Shachter and Peot, 1989), and of Fung and Chang (Fung and Chang, 1989). The

likelihood-weighting approaches employ techniques for directing the simulation to

generate and analyze cases that are more likely to explain evidence.

A.3.2.2 Bounding

There has been ongoing interest in the calculation of upper and lower bounds on

point probabilities of interest. Probabilistic bounding techniques determine bounds

on probabilities through a logical analysis of constraints acquired during a partial

analysis. Bounds become tighter as additional constraints are brought into consid-

eration. Cooper (Cooper, 1984) and Peng (Peng, 1986) have investigated the use of

a best-first search algorithm to focus attention on the most relevant aspects of the

problem in calculating bounds on the hypotheses. These methods are able to prune

the search dramatically by eliminating all extensions of a diagnosis that are provably

less probable than the current best.

In more recent work, Henrion developed a bounding method named TopN that

relies on search techniques in a special two-level network (Henrion, 1990). A version

of the algorithm can be used to identify the most probable hypotheses. Work is in

progress on the characterization of this method.

In Chapter 5, I describe a bounding method algorithm named bounded condi-

tioning (Horvitz et al., 1989c). Bounded conditioning is based on Pearl’s method of

conditioning, described in Section A.3.1. With this method, bounds are generated

on probabilities of interest through modulating the completeness of an analysis. In

particular, we vary the fraction of polytree subproblems that are solved, and bound

the possible contributions of the unsolved subproblems.
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A.3.3 Algorithms for Inference in Influence Diagrams

A straightforward method to solve a well-structured influence diagram is to convert

the influence diagram into a corresponding decision tree, and to solve that tree. We

can solve a decision tree by computing the utility for each terminal node. The well-

known “roll-back” method for solving decision trees computes the expected utility

over the branches at each outcome variable, and the maximum expected utility over

the alternatives at each decision. In the worst case, the tree-processing algorithm is

exponential in the number of outcome and decision variables.

Shachter has developed a method that operates directly on influence diagrams

(Shachter, 1986). The algorithm applies a sequence of operations to the diagram,

successively eliminating nodes when their effects have been accounted for through

expected value calculations. The operations correspond to applying Bayes’ theorem

(corresponding to an arc-reversal operation), forming conditional expectations (equiv-

alent to removing a chance node), and maximizing the expected utility (equivalent

to removing a decision node). The algorithm’s identifies the optimal decisions, con-

ditioned on the information available when each decision is made, and the expected

value of the decision strategies. Unfortunately, the algorithm is liable to the same

NP-hardness problem that hinders exact probabilistic inference.
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Appendix B

Glossary of Belief-Network

Abbreviations

A VENT: Alveolar ventilation

A VENT/BREATH: Alveolar ventilation per breath

BP: Blood pressure

CHF: Congestive heart failure

CO: Cardiac output

CO2 PRODUCTION: Rate of production of carbon dioxide by the tissues

CVP: Central venous pressure

DISCONNECTION: Indication if the ventilator is disconnected from the patient

ERROR CAUTER: Error in HR from EKG because of cautery use

ERROR LOW OUTPUT: Error in HR from the blood pressure monitor or from the pulse

oximeter due to a low cardiac output

FIO2: Fraction of inspired oxygen

HGB: Hemoglobin (also referred to as Hb in medicine)

HR: Heart rate

HR BP: Heart rate from the arterial blood-pressure measuring device
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HR EKG: Heart rate determined from the electrocardiograph (EKG)

HR SAT: Heart rate from the pulse oximeter

LVED VOLUME: Left-ventricular end-diastolic volume

MAP: Mean arterial pressure

MV: Minute ventilation

MV SETTING: Minute ventilation set at the ventilator as the product of the set tidal

volume and respiratory rate

O2 CONCENTRATION: Fraction of inspired oxygen (also called FIO2)

O2 CONSUMPTION: Rate of oxygen consumed by the tissues

O2 DELIVERY: Oxygen delivered to the tissues and available for consumption

PACO2: Partial pressure of carbon dioxide in the arterial blood

PAO2: Partial pressure of oxygen in the arterial blood

PAP: Mean pulmonary artery pressure

PAPO2: Partial pressure of oxygen in the arterial blood

PA SAT: Pulmonary venous (highly oxygenated) oxygen saturation.

PCWP: Pulmonary capillary wedge pressure (also called pulmonary artery wedge

pressure [PAW])

PEEP: Positive end expiratory pressure

PRESSURE: Peak inspirational pressure delivered by the ventilator

PVCO2: Pulmonary venous carbon-dioxide tension

PVO2: Pulmonary venous oxygen tension

RQ: Respiratory quotient, the ratio of oxygen consumption to carbon dioxide

production

SAO2: Level of oxygen saturation in the arterial blood

TEMP: Body temperature

TPR: Total peripheral resistance (also called systemic vascular resistance [SVR])

VENT ALV: Ventilation at the alveoli

VENT LUNG: Ventilation at the major airways of the lung (bronchi)

VENT MACHINE: Ventilation at the ventilation machine

VENT TUBE: Ventilation at the ventilation tube



Bibliography

Aggarwal, A. and Vitter, J. (1988). The input/output complexity of sorting and

related problems. CACM, 31(9):1116–1127.

Agogino, A. and Ramamurthti, K. (1989). Real-time reasoning about time con-

straints and model precision in complex distributed mechanical systems. In

Working Notes: Spring Symposium Series on AI and Limited Rationality, pages

1–5, Stanford University. American Association for Artificial Intelligence.

Agre, P. and Chapman, D. (1987). Pengi: An implementation of a theory of activity.

In Proceedings of the Sixth National Conference on Artificial Intelligence, pages

268–272, Seattle, WA. AAAI-87.

Aho, A., Hopcroft, J., and Ullman, J. (1983). Data Structures and Algorithms.

Addison-Wesley, Menlo Park, California.

Andreassen, S., Woldbye, M., Falck, B., and Andersen, S. (1987). MUNIN—a causal

probabilistic network for interpretation of electromyographic findings. In Pro-

ceedings of the Tenth International Joint Conference on Artificial Intelligence,

Milan, Italy, pages 366–372. Morgan Kaufman, San Mateo, CA.

Barnett, J. (1984). How much is control knowledge worth? Journal of Artificial

Intelligence, 22:77–89.

277



278 Bibliography

Barry, M., Mulley, Jr., A. Fowler, F., and Wennberg, J. (1988). Watchful waiting

versus immediate transurethral resection for symptomatic prostatism: The im-

portance of patients’ preferences. Journal of the American Medical Association,

259:3010–17.

Bayes, T. (1958). An essay towards solving a problem in the doctrine of chances.

Biometrika, 46:293–298. Reprint of Bayes’ 1763 manuscript.

Beinlich, I., Suermondt, H., Chavez, R., and Cooper, G. (1989). The ALARM moni-

toring system: A case study with two probabilistic inference techniques for belief

networks. In Proceedings of the Second European Conference on Artificial Intel-

ligence in Medicine, London. Springer Verlag, Berlin.

Ben-Bassat, M. (1978). Myopic policies in sequential classification. IEEE Transac-

tions on Computers, 27:170–178.

Ben-Bassat, M. and Teeni, D. (1984). Human-oriented information acquistion in

sequential pattern classification: Part 1 - single membership classification. IEEE

Transactions on Systems, Man, and Cybernetics, 14:131–138.

Boddy, M. and Dean, T. (1989). Solving time-dependent planning problems. In

Proceedings of the Eleventh IJCAI. AAAI/International Joint Conferences on

Artificial Intelligence.

Breese, J. (1987). Knowledge Representation and Inference in Intelligent Decision

Systems. PhD thesis, Department of Engineering-Economic Systems, Stanford

University, Stanford, CA.

Breese, J. (1990). Construction of belief and decision networks. Technical Report

Technical Memorandum 30, Rockwell International Science Center, Palo Alto,

California.

Breese, J. and Horvitz, E. (1990). Ideal reformulation of belief networks. In Proceed-

ings of Sixth Conference on Uncertainty in Artificial Intelligence, Cambridge,

MA, pages 64–72. Association for Uncertainty in Artificial Intelligence, Moun-

tain View, CA.



Bibliography 279

Brooks, R. (1987). Planning Is Just a Way of Avoiding Figuring Out What to Do

Next. Technical Report Working Paper 303, M.I.T. Artificial Intelligence Labo-

ratory, Massachusetts Institute of Technology.

Bruner, J., Goodnow, J., and Austin, G. (1956). A study of thinking. Wiley and

Sons.

Buchanan, B. (1966). Logics of Scientific Discovery. PhD thesis, University of Michi-

gan.

Buchanan, B. and Shortliffe, E., editors (1984). Rule-Based Expert Systems: The

MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-

Wesley, Reading, MA.

Buchanan, B. G. (1982). Research on expert systems. In J. Hayes, D. Michie, Y.

H. P., editor, Machine Intelligence, volume 10, pages 269–299. Ellis Howard Ltd.,

Chichester, England.

Charniak, E. and Goldman, R. (1989). A semantics for probabilistic quantifier-free

first-order languages, with particular application to story understanding. In Pro-

ceedings Eleventh IJCAI, Detroit, Michigan. International Joint Conferences on

Artificial Intelligence.

Chavez, R. and Cooper, G. (1989a). An empirical evaluation of a randomized al-

gorithm for probabilistic inference. In Proceedings of Fifth Workshop on Un-

certainty in Artificial Intelligence, Windsor, ON, pages 60–70. Association for

Uncertainty in Artificial Intelligence, Mountain View, CA.

Chavez, R. and Cooper, G. (1989b). A randomized approximation algorithm for

probabilistic inference on Bayesian belief networks. Technical Report KSL-88-

72, Medical Computer Science Group, Section on Medical Informatics, Stanford

University, Stanford, CA.

Clancey, W. (1985). Heuristic classification. Artificial Intelligence, 27:289–350.



280 Bibliography

Cohen, P. R., DeLisio, J. L., and Hart, D. M. (1989). A declarative representation of

control knowledge. IEEE Trans. on Systems, Man and Cybernetics, 19(3):546–

557.

Coles, L., Robb, A., Sinclair, P., Smith, M., and Sobek, R. (1975). Decision analysis

for an experimental robot with unreliable sensors. In Proceedings of the Fourth

International Joint Conference on Artificial Intelligence, Georgia, USSR, pages

749–757. International Joint Conference on Artificial Intelligence.

Cooper, G. (1984). NESTOR: A Computer-based Medical Diagnostic Aid that Inte-

grates Causal and Probabilistic Knowledge. PhD thesis, Computer Science De-

partment, Stanford University, Stanford, CA. Rep. No. STAN-CS-84-48. Also

numbered HPP-84-48.

Cooper, G. (1990a). Bayesian belief-network inference using nested dissection. Tech-

nical Report KSL-90-05, Stanford University.

Cooper, G. (1990b). Probabilistic inference using belief networks is NP-hard. Artificial

Intelligence, 42:393–405.

Cox, R. (1946). Probability, frequency and reasonable expectation. American Journal

of Physics, 14:1–13.

David, F. (1962). Games, Gods, and Gambling. Charks Griffen and Company, Lon-

don.

Davis, R. (1982). Consultation, knowledge acquisition, and instruction. In Szolovits,

P., editor, Artificial Intelligence In Medicine, pages 57–78. Westview Press, Boul-

der, CO.

Dawes, R. and Corrigan, B. (1974). Linear models in decision making. Psychological

Bulletin, 81:95–106.

de Dombal, F., Leaper, D., Horrocks, J., Staniland, J., and McCain, A. (1974).

Human and computer-aided diagnosis of abdominal pain: further report with

emphasis on performance. British Medical Journal, 1:376–380.



Bibliography 281

de Dombal, F., Leaper, D., Staniland, J., McCann, A., and Horrocks, J. (1972).

Computer-aided diagnosis of acute abdominal pain. British Medical Journal,

2:9–13.

de Finetti, B. (1970). Theory of Probability. Wiley and Sons, New York.

Dean, T. and Boddy, M. (1988). An analysis of time-dependent planning. In Pro-

ceedings AAAI-88 Seventh National Conference on Artificial Intelligence, pages

49–54. American Association for Artificial Intelligence.

Dean, T. and Kanazawa, K. (May, 1988). Probabilistic temporal reasoning. Technical

report, Brown University.

Doyle, J. (1988). Artificial intelligence and rational self-government. Technical Report

CS-88-124, Carnegie-Mellon University.

Durfee, E. and Lesser, V. (1987). Planning to meet deadlines in a blackboard-based

problem solver. In Stankovic, J. . K. R., editor, Tutorial on Hard Real-Time

Systems, pages 595–608. IEEE Computer Society Press.

Elstein, A., Loupe, M., and Erdman, J. (1971). An experimental study of medical

diagnostic thinking. Journal of Structural Learning, 2:45–53.

Elstein, A., Shulman, L., and Sprafka, S. (1978). Medical Problem Solving: An

Analysis of Clinical Reasoning. Harvard University Press, Cambridge, MA.

Erman, L., Hayes-Roth, F., Lesser, V., and Reddy, D. (1980). The HEARSAY-

II speech understanding system: integrating knowledge to resolve uncertainty.

ACM Computing Surveys, 12:213–253.

Etzioni, O. and Mitchell, T. (1989). A comparative analysis of chunking and decision-

analytic control. In Working Notes: Spring Symposium Series on AI and Limited

Rationality, pages 42–45, Stanford University. American Association for Artificial

Intelligence.



282 Bibliography

Fehling, M. and Breese, J. (1988). A computational model for the decision-theoretic

control of problem solving under uncertainty. Technical Report Rockwell Tech-

nical Report 837-88-5, Rockwell International Science Center.

Feigenbaum, E. (1964). Computers and Thought. McGraw-Hill, New York.

Feldman, J. R. and Sproull, R. F. (1975). Decision theory and artificial intelligence

ii: The hungry monkey. Cognitive Science, 1:158–192.

Fishburn, P. (1981). Subjective expected utility: A review of normative theories.

Theory and Decision, 13:139–199.

Fung, R. and Chang, K. (1989). Weighting and integrating evidence for stochastic

simulation in Bayesian networks. In Proceedings of Fifth Workshop on Uncer-

tainty in Artificial Intelligence, Windsor, ON, pages 112–117. Association for

Uncertainty in Artificial Intelligence, Mountain View, CA.

Gaines, B. R. (1978). Fuzzy and probability uncertainty logics. Information and

Control, 38:154–169.

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, New York.

Ginsberg, M. (1987). Readings in Nonmonotonic Logic. Morgan Kaufman, San Mateo,

CA.

Good, I. (1950). Probability and the Weighing of Evidence. Hafners, New York.

Good, I. (1952). Rational decisions. J. R. Statist. Soc. B, 14:107–114.

Good, I. (1977). Dynamic probability, computer chess, and the measurement of

knowledge. In Elcock, E. and D., M., editors, Machine Intelligence, pages 139–

150. Wiley, New York.

Gorry, G. (1973). Computer-assisted clinical decision making. Methods of Information

in Medicine, 12:45–51.



Bibliography 283

Gorry, G. and Barnett, G. (1968). Experience with a model of sequential diagnosis.

Computers and Biomedical Research, 1:490–507.

Hacking, I. (1975). The Emergence of Probability. Cambridge University Press, Cam-

bridge.

Hansson, O. and Mayer, A. (1989). Probabilistic heuristic estimates. In Proceedings

of the Second International Workshop on AI and Statistics, Ft. Lauderdale, FL.

Hayes-Roth, B. (1985). A blackboard architecture for control. Artificial Intelligence,

26(2):251–321.

Heckerman, D. (1986). Probabilistic interpretations for MYCIN’s certainty factors. In

Kanal, L. and Lemmer, J., editors, Uncertainty in Artificial Intelligence, pages

167–196. North Holland, New York.

Heckerman, D. (1989). A tractable algorithm for diagnosing multiple diseases. In

Proceedings of Fifth Workshop on Uncertainty in Artificial Intelligence, Wind-

sor, ON, pages 174–181. Association for Uncertainty in Artificial Intelligence,

Mountain View, CA.

Heckerman, D. (1990a). An empirical comparison of three inference methods. In

Levitt, R. S. T., Lemmer, J., and Kanal, L., editors, Uncertainty in Artificial

Intelligence 4. North Holland, New York.

Heckerman, D. (1990b). Probabilistic Similarity Networks. PhD thesis, Medical Com-

puter Science Group, Section on Medical Informatics, Stanford University, Stan-

ford, CA.

Heckerman, D., Breese, J., and Horvitz, E. (1989a). The compilation of decision

models. In Proceedings of Fifth Workshop on Uncertainty in Artificial Intelli-

gence, Windsor, ON, pages 162–173. Association for Uncertainty in Artificial

Intelligence, Mountain View, CA.

Heckerman, D. and Horvitz, E. (1987). On the expressiveness of rule-based systems for

reasoning under uncertainty. In Proceedings AAAI-87 Sixth National Conference



284 Bibliography

on Artificial Intelligence, Seattle, WA, pages 121–126. Morgan Kaufmann, San

Mateo, CA.

Heckerman, D. and Horvitz, E. (1990). Problem formulation as the reduction of

a decision problem. In Proceedings of Sixth Conference on Uncertainty in Ar-

tificial Intelligence, Cambridge, MA. Association for Uncertainty in Artificial

Intelligence, Mountain View, CA.

Heckerman, D., Horvitz, E., and Nathwani, B. (1985). Pathfinder research direc-

tions. Technical Report KSL-89-64, Medical Computer Science Group, Section

on Medical Informatics, Stanford University, Stanford, CA.

Heckerman, D., Horvitz, E., and Nathwani, B. (1989b). Update on the Pathfinder

project. In Proceedings of the Thirteenth Symposium on Computer Applications

in Medical Care, Washington, DC, pages 203–207. IEEE Computer Society Press,

Los Angeles, CA.

Heckerman, D., Horvitz, E., and Nathwani, B. (1990). Toward normative expert sys-

tems: The Pathfinder project. Technical Report KSL-90-08, Medical Computer

Science Group, Section on Medical Informatics, Stanford University, Stanford,

CA. Submitted to Artificial Intelligence in Medicine.

Heckerman, D. and Jimison, H. (1989). A perspective on confidence and its use

in focusing attention during knowledge acquisition. In Kanal, L., Levitt, T.,

and Lemmer, J., editors, Uncertainty in Artificial Intelligence 3, pages 123–131.

North Holland, New York.

Henrion, M. (1988). Propagation of uncertainty by probabilistic logic sampling in

Bayes’ networks. In Lemmer, J. and Kanal, L., editors, Uncertainty in Artificial

Intelligence 2, pages 149–164. North Holland, New York.

Henrion, M. (1990). Towards efficient probabilistic diagnosis in multiply connected

networks. In Oliver, R. and Smith, J., editors, Influence Diagrams, Belief Net-

works, and Decision Analysis, pages 385–409. John Wiley and Sons, Chichester.



Bibliography 285

Herskovits, E. and Cooper, G. (1989). Algorithms for belief-network precomputation.

Technical Report KSL-89-35, Stanford University.

Holtzman, S. (1985). Intelligent Decision Systems. PhD thesis, Department of

Engineering–Economic Systems, Stanford University, Stanford, CA.

Holtzman, S. (1989). Intelligent Decision Systems. Addison–Wesley, Menlo Park,

CA.

Horvitz, E. (1986). Toward a science of expert systems. Proceedings of the 18th

Symposium on the Interface of Computer Science and Statistics, pages 45–52.

Horvitz, E. (1987a). A multiattribute utility approach to inference understandability

and explanation. Technical Report KSL-28-87, Medical Computer Science Group,

Section on Medical Informatics, Stanford University, Stanford, CA.

Horvitz, E. (1987b). Problem-solving design: Reasoning about computational value,

tradeoffs, and resources. In Proceedings of the NASA Artificial Intelligence Fo-

rum, pages 26–43, Palo Alto, CA.

Horvitz, E. (1987c). Reasoning about beliefs and actions under computational re-

source constraints. In Proceedings of Third Workshop on Uncertainty in Artifi-

cial Intelligence, Seattle, Washington. American Association for Artificial Intelli-

gence. Also in L. Kanal, T. Levitt, and J. Lemmer, ed., Uncertainty in Artificial

Intelligence 3, Elsevier, 1989, pps. 301-324.

Horvitz, E. (1988). Reasoning under varying and uncertain resource constraints.

In Proceedings AAAI-88 Seventh National Conference on Artificial Intelligence,

Minneapolis, MN, pages 111–116. Morgan Kaufmann, San Mateo, CA.

Horvitz, E. (1989a). Rational metareasoning and compilation for optimizing decisions

under bounded resources. In Proceedings of Computational Intelligence 89. Asso-

ciation for Computing Machinery. Also available as Technical Report KSL-89-81

Knowledge Systems Laboratory, Stanford University, April 1989.



286 Bibliography

Horvitz, E. (1989b). Reasoning about beliefs and actions under computational re-

source constraints. In Kanal, L., Levitt, T., and Lemmer, J., editors, Uncertainty

in Artificial Intelligence 3, pages 301–324. North Holland, New York. Also in

Proceedings of Third Workshop on Uncertainty in Artificial Intelligence, Seatle,

Washington, 1987.

Horvitz, E. and Breese, J. (1990). Ideal partition of resources for metareasoning.

Technical report, Knowledge Systems Laboratory, Stanford University. KSL-90-

26.

Horvitz, E., Cooper, G., and Heckerman, D. (1989a). Reflection and action under

scarce resources: Theoretical principles and empirical study. In Proceedings of

the Eleventh International Joint Conference on Artificial Intelligence, Detroit,

MI, pages 1121–1127. International Joint Conference on Artificial Intelligence.

Horvitz, E., Heckerman, D., and Langlotz, C. (1986a). A framework for comparing

alternative formalisms for plausible reasoning. In Proceedings AAAI-86 Fifth

National Conference on Artificial Intelligence, Philadelphia, PA, pages 210–214.

Morgan Kaufmann, San Mateo, CA.

Horvitz, E., Heckerman, D., Nathwani, B., and Fagan, L. (1986b). The use of a

heuristic problem-solving hierarchy to facilitate the explanation of hypothesis-

directed reasoning. In Proceedings of Medinfo, Washington, DC, pages 27–31.

North Holland, New York.

Horvitz, E., Heckerman, D., Ng, K., and Nathwani, B. (1989b). Heuristic abstraction

in the decision-theoretic Pathfinder system. In Proceedings of the Thirteenth

Symposium on Computer Applications in Medical Care, Washington, DC, pages

178–182. IEEE Computer Society Press, Los Angeles, CA.

Horvitz, E., Suermondt, H., and Cooper, G. (1989c). Bounded conditioning: Flexible

inference for decisions under scarce resources. In Proceedings of Fifth Workshop

on Uncertainty in Artificial Intelligence, Windsor, ON, pages 182–193. Associa-

tion for Uncertainty in Artificial Intelligence, Mountain View, CA.



Bibliography 287

Howard, R. (1966). Decision analysis: Applied decision theory. In Hertz, D. and

Melese, J., editors, Proceedings of the Fourth International Conference on Oper-

ational Research, pages 55–71. Wiley-Interscience.

Howard, R. (1970). Decision analysis: Perspectives on inference, decision, and exper-

imentation. Proceedings of the IEEE, 58:632–643.

Howard, R. (1980). On making life and death decisions. In Howard, R. and Matheson,

J., editors, Readings on the Principles and Applications of Decision Analysis,

volume II, pages 483–506. Strategic Decisions Group, Menlo Park, CA.

Howard, R. (1988). Decision analysis: Practice and promise. Management Science,

34:679–695.

Howard, R. (1989). Knowledge maps. Management Science, 35(8):903–922.

Howard, R. and Matheson, J. (1981). Influence diagrams. In Howard, R. and Mathe-

son, J., editors, Readings on the Principles and Applications of Decision Analysis,

volume II, pages 721–762. Strategic Decisions Group, Menlo Park, CA.

Howard, R. and Matheson, J., editors (1984). Readings on the Principles and Appli-

cations of Decision Analysis. Strategic Decisions Group, Menlo Park, Ca.

Jacobs, W. and Keifer, M. (1973). Robot decisions based on maximizing utility. In

Proceedings of the Third International Joint Conference on Artificial Intelligence,

??, pages 402–411. International Joint Conference on Artificial Intelligence.

Jimison, H. (1990). Generating explanations of decision models based on an aug-

mented representation of uncertainty. In Shachter, R., Kanal, L., Levitt, T., and

Lemmer, J., editors, Uncertainty in Artificial Intelligence 4. North Holland, New

York. in press.

Kaelbling, L. (1987). An architecture for intelligent reactive systems. In Lansky, A.

and Georgeff, M., editors, Reasoning About Actions and Plans: Proceedings of

the 1986 Workshop, pages 395–410. Morgan-Kaufmann.



288 Bibliography

Kahneman, D., Slovic, P., and Tversky, A., editors (1982). Judgment Under Uncer-

tainty: Heuristics and Biases. Cambridge University Press, New York.

Kanazawa, K. and Dean, T. (1989). A model for projection and action. In Proceed-

ings of the Eleventh IJCAI. AAAI/International Joint Conferences on Artificial

Intelligence.

Keeney, R. and Raiffa, H. (1976). Decisions with Multiple Objectives: Preferences

and Value Tradeoffs. Wiley and Sons, New York.

Kim, H., Zelman, R., Fox, M., Bennett, J., Berard, C., Butler, J., Byrne, G., Dorf-

man, R., Hartsock, R., Lukes, R., Mann, R., Neiman, R., Rebuck, J., Sheehan,

W., Variakojis, D., Wilson, J., and Rappaport, H. (1982). Pathology panel for

lymophoma clinical studies: A comprehensive analysis of cases accumulated since

its inception. Journal of the National Cancer Institute, 68:43–67.

Kim, J. and Pearl, J. (1983). A computational model for causal and diagnostic

reasoning in inference engines. In Proceedings of the 8th International Joint

Conference on Artificial Intelligence, Karlsruhe, West Germany, pages 190–193.

International Joint Conference on Artificial Intelligence.

Klein, D. (1987). Explaining and refining decision-theoretic choices. Technical Report

MS-CIS-87-57 (LINC 74), Dept. of Computer and Information Science, Univer-

sity of Pennsylvania.

Klein, D. (1989). Explaining and Refining Decision-Theoretic Choices. PhD thesis,

Dept. of Computer and Information Science, University of Pennsylvania.

Knuth, D. (1973). Sorting and Searching. Addision-Wesley, Reading, Massachusetts.

Kripke, S. (1975). Outline of a theory of truth. Journal of Philosophy, 72:690–716.

Laffey, T., Cox, P., Schmidt, J., Kao, S., and Read, J. (1988). Real-time knowledge-

based systems. AI Magazine, Spring:27ff.



Bibliography 289

Langlotz, C., Shortliffe, E., and Fagan, L. (1986). A methodology for computer-

based explanation of decision analysis. Technical Report KSL-86-57, Stanford

University.

Langlotz, C. P., Shortliffe, E. H., and Fagan, L. M. (1988). A methodology for

generating computer-based explanations of decision-theoretic advice. Medical

Decision Making, 8(4):290–303.

Lauritzen, S. and Spiegelhalter, D. (1987). Fast manipulation of probabilities with

local representations with applications to expert systems. Technical Report R-

87-7, Institute of Electronic Systems, Aalborg University, Aalborg, Denmark.

Lauritzen, S. and Spiegelhalter, D. (1988). Local computations with probabilities on

graphical structures and their application to expert systems. J. Royal Statistical

Society B, 50:157–224.

Lawler, E., Lenstra, J., Kan, A. R., and Shmoys, D. (1985). The Traveling Salesman

Problem. John Wiley and Sons, New York.

Ledley, R. and Lusted, L. (1959). Reasoning foundations of medical diagnosis. Science,

130:9–21.

Lehman, R. (1955). On confirmation and rational betting. Journal of Symbolic Logic,

20:251–262.

Lemmer, J. (1983). Generalized Bayesian updating of incompletely specified distri-

butions. Large Scale Systems, 5.

Lindberg, D., Sharp, G., Kingsland, L., Weiss, S., Hayes, S., Ueno, H., and Hazel-

wood, S. (1980). Computer-based rheumatology consultant. In Proceedings of

Medinfo, pages 1311–1315. North Holland, New York.

Lindley, D. (1982). Scoring rules and the inevitability of probability. International

Statistical Review, 50:1–26.



290 Bibliography

Lipman, B. (1989). How to decide how to decide hot to...: Limited rationality in

decisions and games. Technical report, Carnegie Mellon University, Pittsburgh.

Logan (1985). The Value of Probability Assessment. PhD thesis, Department of

Engineering-Economic Systems, Stanford University.

March, J. (1978). Bounded rationality, ambiguity, and the engineering of choice. Bell

Journal of Economics, pages 587–608.

Matheson, J. (1968). The value of analysis and computation. IEEE Transactions on

Systems Science, and Cybernetics, 4:211–219.

McCarthy, J. and Hayes, P. J. (1969). Some philosophical problems from the stand-

point of artificial intelligence. Machine Intelligence, 4.

Mclaughlin, J. (1987). The utility-directed presentation of graphical simulation. Tech-

nical Report TR-87-59, Stanford University.

McNeil, B. J., Pauker, S. G., Sox, H. C., and Tversky, A. (1982). On the elicita-

tion of preferences for alternative therapies. New England Journal of Medicine,

306:1259–62.

McNutt, R. and Pauker, S. (1987). Competing rates of risk in a patient with subarach-

noid hemorrhage and myocardial infarction: Its now or never. Medical Decision

Making, 7(4):250–259.

Mesarovic, M., Macko, D., and Takahara, Y. (1970). Theory of Hierarchical, Multilevel

Systems. Academic Press, New York.

Miller, G. (1956). The magical number seven, plus or minus two. Psychological

Review, 63:81–97.

Miller, R., McNeil, M., Challinor, S., Masarie, F., and Myers, J. (1986). The

INTERNIST-1/Quick Medical Reference project–status report. Western Journal

of Medicine, 145:816–822.



Bibliography 291

Miller, R., Pople, E., and Myers, J. (1982). INTERNIST-1: An experimental

computer-based diagnostic consultant for general internal medicine. New Eng-

land Journal of Medicine, 307:476–486.

Newell, A. and Simon, H. (1963). GPS, a program that simulates human thought. In

Computers and Thought. McGraw-Hill, New York.

Nicholson, W. (1984). Microeconomic Theory. Dryden Press, Chicago.

Nilsson, N. (1986). Probabilistic logic. Artificial Intelligence, 28:71–87.

Olmsted, S. (1983). On Representing and Solving Decision Problems. PhD thesis,

Department of Engineering-Economic Systems, Stanford University.

Owen, D. (1978). The use of influence diagrams in structuring complex decision

problems. In Howard, R. and Matheson, J., editors, Readings on the Principles

and Applications of Decision Analysis, volume II, chapter 38, pages 763–771.

Strategic Decisions Group, Menlo Park, Ca.

Papadimitriou, C. and Steiglitz, K. (1982). Combinatorial Optimization: Algorithms

and Complexity. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Pauker, S., Gorry, G., Kassirer, J., and Schwartz, W. (1976). Toward the simulation

of clinical cognition: Taking a present illness by computer. American Journal of

Medicine, 60:981–995.

Pearl, J. (1986). Fusion, propagation, and structuring in belief networks. Artificial

Intelligence, 29:241–288.

Pearl, J. (1987). Evidential reasoning using stochastic simulation of causal models.

Artificial Intelligence, 32:245–257.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, San Mateo, CA.



292 Bibliography

Pearl, J. and Verma, T. (1987). The logic of representing dependencies by directed

graphs. In Proceedings AAAI-87 Sixth National Conference on Artificial Intelli-

gence, Seattle, WA. American Association for Artificial Intelligence, Palo Alto,

CA.

Peng, Y. (1986). A Formalization of Parsimonious Covering and Probabilistic Rea-

soning in Abductive Diagnostic Inference. PhD thesis, Department of Computer

Science, University of Maryland. TR-1615.

Politser, P. (1984). Explanations of statistical concepts: Can they penetrate the haze

of Bayes? Methods of Information in Medicine, 23:99–108.

Pople, H. (1982). Heuristic methods for imposing structure on ill-structured prob-

lems: The structuring of medical diagnostics. In Szolovits, P., editor, Artificial

Intelligence in Medicine, pages 119–190. Westview Press, Boulder, CO.

Raiffa, H. (1968). Decision Analysis: Introductory Lectures on Choice Under Uncer-

tainty. Addison-Wesley, Reading, Ma.

Reggia, J. and Perricone, B. (1985). Answer justification in medical decision support

systems based on Bayesian classification. Computers in Biology and Medicine,

15:161–167.

Rivest, R. and Knuth, D. (1973). Bibilography 26: Computing sorting. Computing

Reviews, 13(6).

Rosenberg, S. (1985). The low-grade non-Hodgkin’s lymphomas: Challenges and

opportunities. Journal of Clinical Oncology, 3:299–310.

Rosenschein, S. and Kaelbling, L. (1986). The synthesis of digital machines with

provable epistemic properties. In Proceedings of the Conference on the Theoretical

Aspects of Reasoning About Knowledge, pages 83–98, Asilomar, CA. AAAI.

Rousseau, W. (1968). A method for computing probabilities in complex situations.

Technical Report 6252-2, Center for Systems Research, Stanford University, Stan-

ford, CA.



Bibliography 293

Russell, S. and Wefald, E. H. (1989). Principles of metareasoning. In Brachman, R. J.,

Levesque, H. J., and Reiter, R., editors, Proceedings of the First International

Conference on Principles of Knowledge Representation and Reasoning, Toronto.

Morgan Kaufman.

Rutledge, G., Thomsen, G., Beinlich, I., Farr, B., Kahn, M., Sheiner, L., and Fagan,

L. (1989). Ventplan: An architecture for combining qualitative and quantitative

computation. In Proceedings of the Thirteenth Symposium on Computer Appli-

cations in Medical Care, Washington, DC. IEEE Computer Society Press, Los

Angeles, CA.

Samuelson, P. (1973). Economics. McGraw-Hill, New York.

Savage, L. (1972). The Foundations of Statistics. Dover, New York. 2nd edition,

First edition 1954.

Shachter, R. (1986). Evaluating influence diagrams. Operations Research, 34:871–882.

Shachter, R. (1988). Probabilistic inference and influence diagrams. Operations Re-

search, 36:589–604.

Shachter, R. and Peot, M. (1989). Simulation approaches to general probabilistic

inference on belief networks. In Proceedings of Fifth Workshop on Uncertainty in

Artificial Intelligence, Windsor, ON, pages 311–318. Association for Uncertainty

in Artificial Intelligence, Mountain View, CA.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press,

Princeton, NJ.

Sheppard, L. (1980). Computer control of infusion of vasoactive drugs. Annals of

Biomedical Engineering, 8:431–438.

Sheppard, L. and Sayer, B. (1977). Dynamic analysis of blood-pressure response to

hypotensive agents: Studies in post-operative cardiac surgery patients. Comput-

ers and Biomedical Research, 10:237–245.



294 Bibliography

Shimony, A. (1955). Coherence and the axioms of confirmation. Journal of Symbolic

Logic, 20:1–28.

Shortliffe, E. (1982). The computer and medical decision making: Good advice is not

enough. IEEE Engineering in Medicine and Biology Magazine, 1:16–18.

Shortliffe, E. and Buchanan, B. (1975). A model of inexact reasoning in medicine.

Mathematical Biosciences, 23:351–379.

Shugan, S. M. (1980). The cost of thinking. Journal of Consumer Research, 7:99–111.

Shwe, M., Middleton, B., Heckerman, D., Henrion, M., Horvitz, E., Lehmann, H.,

and Cooper, G. (1990a). A foundation for normative decision making in internal

medicine: A probabilistic reformulation of QMR. Technical Report KSL-90-

09, Medical Computer Science Group, Knowledge Systems Laboratory, Stanford

University, Stanford, CA.

Shwe, M., Middleton, B., Heckerman, D., Henrion, M., Horvitz, E., Lehmann, H.,

and Cooper, G. (1990b). A probabilistic reformulation of the Quick Medical

Reference System. In Proceedings of the Fourteenth Symposium on Computer

Applications in Medical Care, Washington, DC. IEEE Computer Society Press,

Los Angeles, CA.

Simon, H. (1955). A behavioral model of rational choice. Quarterly Journal of Eco-

nomics, 69:99–118.

Simon, H. (1969). The Sciences of the Artificial. M.I.T. Press, Cambridge, Mas-

sachusetts.

Simon, H. (1972). The theory of problem solving. Information Processing, 71:261–277.

Simon, H. (1973a). The organization of complex systems. In Pattee, H., editor,

Hierarchy Theory, pages 3–27. G. Braziller.

Simon, H. (1973b). The organization of complex systems. In Pattee, H., editor,

Hierarchy Theory, pages 3–27. G. Braziller.



Bibliography 295

Smith, D. (1986). Controlling inference. Technical Report STAN-CS-86-1107, Com-

puter Science Department, Stanford University.

Spiegelhalter, D. and Knill-Jones, R. (1984). Statistical and knowledge-based ap-

proaches to clinical decision support systems, with an application in gastroen-

terology. Journal of the Royal Statistical Society, 147:35–77.

Suermondt, H. and Cooper, G. (1988). Updating probabilities in multiply connected

belief networks. In Proceedings of Fourth Workshop on Uncertainty in Artificial

Intelligence, Minneapolis, MN. American Association for Artificial Intelligence.

Suermondt, H. and Cooper, G. (1989). Initialization for the method of conditioning

in Bayesian belief networks. Technical Report KSL-89-61, Medical Computer

Science Group, Knowledge Systems Laboratory, Stanford University, Stanford,

CA.

Szolovits, P. (1982). Artificial intelligence in medicine. In Szolovits, P., editor, Arti-

ficial Intelligence In Medicine, pages 1–19. Westview Press, Boulder, CO.

Teach, R. and Shortliffe, E. (1981). An analysis of physician attitudes regarding

computer-based clinical consultation systems. Computers and Biomedical Re-

search, 14:542–558.

Tribus, M. (1969). Rational Descriptions, Decisions, and Designs. Pergamon Press,

New York.

Tversky, A. and Kahneman, D. (1974). Judgment under uncertainty: Heruistics and

biases. Science, 185:1124–1131.

Velez-Garcia, E., Durant, J., Gams, R., and Bartolucci, A. (1983). Results of a

uniform histopathological review system of lymphoma cases: A ten-year study

of the southeastern cancer study group. Cancer, 52:675–679.

von Neumann, J. and Morgenstern, O. (1947). Theory of Games and Economic

Behavior. Princeton University Press, Princeton, NJ.



296 Bibliography

Warner, H., Toronto, A., Veasy, L., and Stephenson, R. (1961). A mathematical

approach to medical diagnosis: Application to congenital heart disease. Journal

of the American Medical Association, 177:177–183.

Watson, S. and Brown, R. (1978). The valuation of decision analysis. J.R. Statist.

Soc. A., 141(1):69–78.

Waugh, N. and Norman, D. (1965). Primary memory. Psychological Review, 72:89–

104.

Weiss, J., Kulikowski, C., Amarel, S., and Safir, A. (1978). A model-based method

for computer-aided medical decision-making. Artificial Intelligence, 11:145–172.

Wellman, M. (1988). Formulation of Tradeoffs in Planning Under Uncertainty.

PhD thesis, Department of Electrical Engineering and Computer Science, Mas-

sachusetts Institute of Technology, Cambridge, MA.

Zadeh, L. (1983). The role of fuzzy logic in the management of uncertainty in expert

systems. Fuzzy Sets and Systems, 11:199–227.


