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Abstract

Models for aggregating contributions by crowd workers
have been shown to be challenged by the rise of task-
specific biases or errors. Task-dependent errors in as-
sessment may shift the majority opinion of even large
numbers of workers to an incorrect answer. We intro-
duce and evaluate probabilistic models that can detect
and correct task-dependent bias automatically. First, we
show how to build and use probabilistic graphical mod-
els for jointly modeling task features, workers’ biases,
worker contributions and ground truth answers of tasks
so that task-dependent bias can be corrected. Second,
we show how the approach can perform a type of trans-
fer learning among workers to address the issue of an-
notation sparsity. We evaluate the models with varying
complexity on a large data set collected from a citizen
science project and show that the models are effective
at correcting the task-dependent worker bias. Finally,
we investigate the use of active learning to guide the
acquisition of expert assessments to enable automatic
detection and correction of worker bias.

Introduction
Crowdsourcing platforms such as Amazon Mechanical Turk
provide access to a large pool of people for solving hu-
man intelligence tasks. Examples of tasks successfully ap-
plied to crowdsourcing include image labeling, product cat-
egorization, speech transcription, and handwriting recogni-
tion (Ipeirotis 2010). Studies of crowdsourcing marketplaces
have shown that contributions from individual workers are
noisy (Ipeirotis, Provost, and Wang 2010). Accuracy has
been sought via statistical methods that leverage the wis-
dom of the crowd. For objective tasks (e.g., labeling), task
owners have relied upon an assumption that aggregation of
large numbers of contributions from the crowd will cancel
out noise coming from individuals (Bachrach et al. 2012;
Kamar, Hacker, and Horvitz 2012). The Condorcet Jury
Theorem provides formal support for this assumption for bi-
nary decision-making problems (Condorcet 1785). Conse-
quently, a well-studied problem in the field of human com-
putation has been computational models for aggregating the
contributions (annotations for labeling tasks) of individual
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workers to identify the correct answers (labels) of tasks. Un-
der the assumption of the wisdom of the crowd, researchers
have focused on modeling individuals workers’ quality, bias,
and expertise, and the relationship of their contributions to
ground truth answers and task difficulty (Dawid and Skene
1979; Raykar et al. 2010; Whitehill et al. 2009).

Although the wisdom of the crowd assumption may hold
in many cases, it may be invalid for specific tasks. Charac-
teristics of tasks may induce a population wide or subgroup
specific bias in worker contributions such that the majority
opinion of a large number of individuals may be incorrect.
Such systematic errors can be viewed as being analogous to
erroneous, universally perceived optical illusions that are in-
duced by certain visual patterns. Task-dependent biases can
be based upon visual or other properties of tasks. Worker
bias, usually represented with a confusion matrix, captures
the likelihoods of a worker making specific types of mis-
take for tasks. With task-specific bias, workers may be more
likely to make mistakes, such as confusing a specific class
with another, when a task has certain characteristics.

The effect of task characteristics on worker bias has been
studied on the Galaxy Zoo 2 project, a popular citizen sci-
ence application for categorizing imagery of galaxies and
other celestial objects, as captured by the Sloan Digital
Sky Survey (SDSS). Researchers have identified image fea-
tures associated with significant biases in worker annota-
tions (Willett et al. 2013). Our analysis on Galaxy Zoo 2 data
has shown that for 23% of the tasks, the majority opinion of
20 individuals disagrees with the ground truth answer. Ex-
isting aggregation models, assuming the correctness of the
majority opinion of a large group and overlooking more so-
phisticated models of performance that consider task charac-
teristics, cannot correct this bias. As a result, experts worked
to manually craft debiasing procedures aimed at correcting
the discovered bias (Willett et al. 2013). When data collec-
tion has a smaller scale than Galaxy Zoo 2 or resources for
expert analysis is scarce, such task-dependent worker biases
can go unrecognized. We describe methods that can auto-
matically recognize and correct for task-specific biases. We
believe that developing such methods will help to advance
the practice of human computation on consensus tasks.

We investigate a family of probabilistic graphical mod-
els that can represent and infer multiple types of variables
within the same model, handle missing data and capture un-



certainty over all variables of the model. We show how the
approach can detect and correct task-dependent worker bias
so that accurate task labels can be accurately inferred from
worker annotations. The methods can be used to infer the
relationships among task features, workers’ biases, anno-
tations and ground truth task answers (labels). Given a set
of ground-truth labels provided by experts, the models can
detect and learn about task-dependent biases by observing
when majority opinion disagrees with ground truth. Infer-
ences about the relationship among specific task features and
bias can be generalized to provide insights about tasks with
unknown labels. We furthermore show how the methods can
be used to selectively acquire a set of ground-truth labels
from experts that work to debias in an efficient manner.

We develop models of varying complexity for identifying
and correcting task-dependent worker bias. First, we build
on the Bayesian classifier combination model (BCC) (Kim
and Ghahramani 2012), to develop the Worker Bias Model
(WBM), which models each workers’ bias separately with
a confusion matrix. Next, we move to leverage information
from a population of users. Experiments on crowdsourcing
marketplaces have identified the issue of annotation spar-
sity, where a majority of workers provide a small number of
contributions. To overcome sparsity in learning bias models,
we propose population wide and hybrid models for transfer
learning among workers. The Population Bias Model (PBM)
models bias with a confusion matrix shared by all workers.
Finally, we present the Hybrid Bias Model (HBM), which
learns a personalized mixture of population and individu-
alistic confusion matrices to represent each worker’s bias.
A key contribution of this work is the introduction of task-
dependent extensions of PBM and HBM for representing the
relationship between task features and bias. This relation-
ship is represented with the addition of logistic regression
models, which are used to learn a weighted combination of
task features to predict each row of the confusion matrix.

We evaluate our models on a large-scale data set col-
lected from volunteer citizen scientists who annotated ce-
lestial objects on the Galaxy Zoo 2 system. The data set
contains 91 thousand tasks (celestial objects) with an av-
erage of 27 annotations (votes), where tasks are described
by 52 task features that were automatically extracted via
machine vision analysis. Experimental results demonstrate
that the task-dependent models infer ground truth labels
of tasks more accurately than models without task features
when some ground truth labels are provided as observations.
They also show that the predictive performance can be fur-
ther improved by learning a mixture of population wide and
personalized components. Finally, we experiment with ac-
tive learning to guide the potentially costly acquisition of
ground-truth labels so as to learn task-dependent biases with
minimal expert labeling. The results show that such active
learning methods can successfully guide the contributions
from experts so as to ideally learn about task-dependent bias.

Related Work
Aggregating worker annotations to infer ground truth task
labels has been an active area of research. Several meth-
ods have been proposed for representing the relationship

among task labels, worker annotations, and worker ability
(Raykar et al. 2010; Yan et al. 2011; Welinder et al. 2010;
Kamar, Hacker, and Horvitz 2012). These models represent
worker ability in a single dimension that distinguishes work-
ers by performance. Such a one-dimensional representation
is expanded in other works to explicitly model worker bias
in the form of confusion matrices (Dawid and Skene 1979;
Kim and Ghahramani 2012; Simpson et al. 2013; Zhou et
al. 2012; Liu and Wang 2012). Ipeirotis et al. propose an
algorithm for estimating the inherent quality of a worker
by separating systematic worker bias from errors (Ipeiro-
tis, Provost, and Wang 2010). These models can represent
the types of mistakes made by individual workers but do
not represent the relationship between task characteristics
and worker mistakes. One approach for linking worker abil-
ity with task characteristics is adding task difficulty as a la-
tent variable in crowdsourcing models (Whitehill et al. 2009;
Bachrach et al. 2012; Dai et al. 2013; Simpson et al. 2013).
Without explicitly modeling task characteristics, modeling
the relationship between worker bias and task difficulty is
not sufficient to learn about and task-dependent worker bi-
ases; task difficulty helps to infer whether a worker is likely
to make a mistake but does not indicate the type of mistake.

In the work of Kamar et al., task features are used in
discriminative training to predict ground truth answers and
worker responses when large training sets are available (Ka-
mar, Hacker, and Horvitz 2012). The resulting models do
not explicitly represent worker bias nor the relationships
among task features, worker annotations, ground truth an-
swers and worker biases. Wauthier and Jordan present a
Bayesian latent feature model in which shared factors in-
fluence worker bias in crowdsourcing (Wauthier and Jordan
2011). Their investigations study how shared strategies may
affect worker bias but they overlook the influence of task
features on the labeling process. Welinder et al. propose a
multi-dimensional model of worker competence, expertise
and bias (Welinder et al. 2010). In this generative model,
abstract task features and worker characteristics may jointly
influence worker annotations but the bias representation is
not conditioned on features that describe the task. Instead,
the investigations are targeted at learning worker bias from
crowd consensus. They do not study systematic errors rising
population-wide task-specific biases.

Ipeirotis has shown that the number of annotations per
worker in crowdsourcing tasks is distributed with a power
law, meaning that most workers provide only a small num-
ber of annotations (Ipeirotis 2010). To address the spar-
sity, Liu and Wang propose models that learn worker spe-
cific bias and population wide bias, and a hybrid of the two
(Liu and Wang 2012). We follow a similar investigation in
this work. Alternatively, researchers have proposed models
for representing worker communities (Venanzi et al. 2014;
Simpson et al. 2013).

Researchers have studied active learning for acquiring
worker annotations and ground truth labels in order to learn
about workers and their biases (Yan et al. 2011; Bachrach et
al. 2012; Wauthier and Jordan 2011). We shall demonstrate
the use of active learning to collect ground truth task labels
aimed at ideal learning about task-dependent biases.



Bias Models
In this section, we discuss a family of probabilistic graph-
ical models for representing worker bias. The models are
generative—they describe the process of observed worker
annotations being created based on latent variables (e.g,
worker confusion matrices) and observed variables (e.g.,
task features). The relationships between variables in the
probabilistic graphical models encode our independence as-
sumptions about model variables (Pearl 1989). We use fac-
tor graphs to describe the probabilistic graphical models,
which represent the joint probability distribution of variables
as the product of factors (Koller and Friedman 2009). We
start with models for representing the relationships among
worker bias, worker annotations and true task labels. Then,
we expand these models to reason about task characteristics.

Problem Formulation
We focus on a class of crowdsourcing tasks called consensus
tasks (Kamar, Hacker, and Horvitz 2012). The goal of a con-
sensus task is to identify a correct answer which is unknown
to the task owner, via the aggregation of predictions pro-
vided by workers. Consensus tasks are common in crowd-
sourcing and provide workers with labeling challenges. Ex-
amples include games with a purpose (e.g., image labeling
in the ESP game) (von Ahn and Dabbish 2008), paid crowd-
sourcing systems (e.g., product categorization in Mechanical
Turk) (Ipeirotis 2010), and citizen science projects (e.g., ef-
forts to classify birds, plants, and celestial objects) (Lintott
et al. 2008).

Formally, let T be the number of consensus tasks that W
workers are providing annotations for. K is the set of pos-
sible answers for the task and C is the number of elements
in K. For each task i, ti ∈ K is the true class (label) of the
task. awi ∈ K is the annotation from worker w for task i.
Each task has a set of F -dimensional task features xi, which
are automatically generated to represent task characteristics.

The inference problem is predicting t, the true labels of
consensus tasks, based onA, the set of collected annotations,
and X , the set of task features. To facilitate the learning of
worker biases, a subset of task labels T can be acquired from
experts as observations. For simplicity of formalization, our
notation assumes that all workers provide annotations for
all tasks resulting in a dense worker-task annotation matrix.
However, this assumption is not realistic in crowdsourcing
since most workers provide a small number of annotations.
Neither our implementation nor our experiments make this
assumption and they can work with more realistic sparsely
annotated matrices.

Task-Independent Bias Models
Prior Work: Worker Bias Model The core of our ap-
proach is the Bayesian Classifier Combination (BCC) model
that was proposed in (Kim and Ghahramani 2012). We first
describe this model and then describe several key extensions
that provide more expressive bias models that incorporate
task-dependent features.

The BCC model has been used in the crowdsourcing
domain for modeling the relationship between individual

workers’ biases, the annotations collected from them, and
the true labels of tasks (Simpson et al. 2013). The Worker
Bias Model (WBM) given in Figure 1(a) is a modification of
the BCC model so that we can easily integrate task features
as will be described in the next section 1.

The factor graph for the Worker Bias Model is presented
in Figure 1(a) and it defines key relationships among the
workers, tasks, and class labels. The figure has three plates
for representing classes, workers, and tasks, representing the
number instances of each variable in the model. For exam-
ple, the variable awi is at the intersection of worker and task
plates and there existsW×T instances of that variable in the
model. Here, p is a random variable denoting class frequen-
cies in task labels. The model represents worker w’s bias
with a C by C confusion matrix πw, such that each row πwc
is a probability vector. πw is generated from σw, a C by C
probability score matrix. The Worker Bias Model assumes
that each worker’s bias is independent of other workers’ bi-
ases, and each task label is independently generated from the
distribution p.

Given the annotationsA, the factor model defines a poste-
rior distribution on the true labels t, the class frequencies p,
the confusion matrices π and the probability score matrices
σ for all W workers.

Pr(p, t, π, σ|A) =
1
ZW

T∏
i=1

ψt(p, ti)×

W∏
w=1

ψπ(σwti , π
w
ti ) ψa(πwti , a

w
i )

here ZW is the partition function (normalization term) for
the worker bias model, and the potentials ψt, ψa, ψπ take
the following form:

ψt(p, ti) = Dir(p|γ) Cat(ti|p)
ψπ(σwc , π

w
c ) = N (σwc |µσc , IC) δ(πwc − softmax(σwc ))

ψa(πwc , a
w
i ) = Cat(awi |πwc )

Each potential is marked on Figure 1(a). Intuitively, po-
tential ψt describes the generation of task labels. The true
label ti for task i is generated from a categorical distribution
from parameter p, where p denotes frequencies of classes for
all tasks and is generated from conjugate Dirichlet prior γ.
γ is initialized with uniform values, giving equal prior like-
lihood to all classes.

The potential ψa describes the relationship between task
label ti, workerw’s annotation for task i awi and the worker’s
confusion matrix πw. The random variable awi is generated
with a categorical distribution from πwti , where ti identi-
fies which row of the confusion matrix generates awi . This
relationship of ti acting as an indicator of the categorical
distribution between πw and awi is represented with a gate
(dashed box) as introduced by (Minka and Winn 2008).

The potential ψπ describes the process of generating
worker confusion matrices from Gaussian priors using the

1In the BCC model, πw
c is generated with a Dirichlet distribu-

tion. In the WBM model, it is generated by applying the softmax
operator to σw

c , which is a multivariate Gaussian variable.
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Figure 1: Models for representing and inferring bias. In each model, shaded regions mark potentials defined for inference.
Dashed lines represent plates for classes, workers, and tasks. Gates are represented with darker dashed squares and observed
variables are represented with shaded circles.

softmax operator as proposed by Venanzi et al. (Venanzi et
al. 2014). Each row of the probability score matrix σwc is a
multivariate Gaussian variable generated from Gaussian pri-
ors µσc and IC . µσc is initialized to the cth row of the identity
matrix so that the prior of each confusion matrix assigns a
higher likelihood to a worker annotation to be correct than
incorrect. IC is the identity matrix of dimension C. cth row
of the worker confusion matrix is generated by applying the
softmax operator to σwc to derive a proper probability vector.
δ operator in ψπ is the Dirac delta function ensuring that the
posterior distribution is positive only when πwc is equal to
softmax(σwc ).

Extension 1: Population Bias Models The Worker Bias
Model assumes that workers’ biases are independent given
common priors. Such an assumption of independence may
often be incorrect: mistakes made by workers may depend

in a systematic manner on human perception and the task
itself. On the other hand, learning separate confusion matri-
ces per worker that are accurate requires having sufficient
annotation data per worker. Such data sufficiency does not
hold in many crowdsourcing scenarios, including Galaxy
Zoo, where a majority of workers perform only a few tasks
(Kamar, Hacker, and Horvitz 2012) and the worker-task an-
notation matrix is sparse. Not having sufficient annotation
data per worker can degrade the performance of the Worker
Bias Model.

The Population Bias Model (PBM) makes the opposite
assumption that all workers share the same confusion ma-
trix, meaning that the ways that all workers make mistakes
are identical. Instead of learning πw, a confusion matrix per
worker, it learns π̂, a single confusion matrix for the pop-
ulation. The model uses the annotation data collected from
all workers to learn this single matrix. This assumption ad-



dresses the annotation sparsity problem but the population-
wide model cannot learn about individual workers.

The factor model for the Population Bias Model is given
in Figure 1(b). The model learns population score matrix σ̂
and confusion matrix π̂. The posterior distribution for vari-
ables σ̂, π̂, t, ψ are inferred as follows using the potentials
already defined, where Zp is the partition function of PBM:

Pr(p, t, π̂, σ̂|A) =
1
Zp

T∏
i=1

ψt(p, ti)×

ψπ(σ̂ti , π̂ti)
W∏
w=1

ψa(π̂ti , a
w
i )

Extension 2: Hybrid Bias Model Both PBM and WBM
have limitations in that the former cannot learn about in-
dividual worker characteristics and the latter cannot gen-
eralize the data of a worker to other workers. The Hybrid
Bias Model (HBM) bridges the gap between these models
by modeling both worker specific and population-wide con-
fusion matrices, and learning a mixture weight per worker
describing which model to trust for that worker. By doing
so, the model can learn to depend heavily on the population-
wide data for workers with small number of annotations and
it can learn an accurate worker confusion matrix for each
worker with a large number of annotations.

HBM is presented in Figure 1(c). π̂ is the population con-
fusion matrix and πw is the confusion matrix for worker w.
mw is the mixture weight of worker w. The posterior distri-
bution for variables p, t, σ̂, π̂, σ, π,m are inferred as follows:

Pr(p, t, σ̂, π̂, σ, π,m|A) =
1
Zh

T∏
i=1

ψt(p, ti)×

ψπ(σ̂ti , π̂ti)
W∏
w=1

ψπ(σwti , π
w
ti ) ψ

h
a (π̂ti , π

w
ti , a

w
i ,m

w)

where Zh is the partition function (normalization term) for
HBM. Potentials ψt, ψπ were described previously and ψha
take the following form:

ψha (π̂c,πwc , a
w
i ,m

w) = Beta(mw|αw, βw)×
(mw Cat(awi |π̂c) + (1−mw) Cat(awi |πwc ))

ψha is expanded from ψa to reason about the mixture
of population and worker specific confusion matrices. mw,
mixture weight of worker w, determines the influence of π̂
and πw in modeling workerw’s bias; π̂ is weighted withmw

and πw is weighted with (1−mw). mw is generated from a
Beta distribution with parameters αw and βw. αw is constant
between workers. The value of βw is set to be proportional
to the number of annotations provided by worker w so that
the prior of mw is adjusted with respect the the amount of
data available for worker w. For workers with a small num-
ber of annotations, the prior is skewed to have a higher value,
which assigns a larger weight to π̂. For workers with a large
number of annotations, the prior is skewed to have a lower
value, which results in a higher dependency to πw.

Task-Dependent Bias Models
The bias models presented in the previous section assume
that workers’ biases are conditionally independent of the
task characteristics given the true labels of tasks. This as-
sumption does not hold when task characteristics affect hu-
man perception and decision making (e.g., Galaxy Zoo 2
tasks). In this section, we expand the bias models presented
so far to learn task-specific worker biases.

Extension 3: Task-Dependent Population Bias Model
Figure 1(d) presents the factor model for the Task-
Dependent Population Bias Model (TD-PBM). This model
expands PBM by incorporating a generative process that de-
scribes the way task features influence worker mistakes. We
model this process in the form of multinomial logistic re-
gression (Bishop 2006), where the input is a vector of con-
tinuous task features xi for task i and the output is π̂ic, the
cth row of the confusion matrix for task i. Using the logistic
regression component, the model infers a confusion matrix
for each task based on the task’s features. π̂ic describes the
likelihood of a worker providing annotations when the true
label of the task is c and it has features xi. F is the dimen-
sion of the feature vector xi. Ωc is a F by C matrix of re-
gression coefficients of the logistic regression model and εc
is the mean vector to be added to the multiplication of xi and
Ωc. The posterior distribution for variables p, t, σ̂, π̂,Ω, ε are
inferred as follows:

Pr(p, t,σ̂, π̂,Ω, ε|A,X) =
1
Zt

T∏
i=1

ψt(p, ti)×

ψtπ(σ̂iti , π̂
i
ti ,Ωti , εti)

W∏
w=1

ψa(π̂iti , a
w
i )

where Zt is the partition function (normalization term) for
T-PBM. The new term, ψtπ take the following form:

ψtπ(σ̂ic, π̂ic,Ωc, εc) = N (εc|µεc, IC)
F∏
j=1

N (Ωjc|µΩ
c , IC)×

δ(σ̂ic − (xiΩc + εc)) δ(π̂ic − softmax(σ̂ic))

ψtπ denote the generation of the cth row of the task-
dependent confusion matrix π̂ic with respect to the following
equation of multinomial logistic regression:

π̂ic = softmax(xiΩc + εc)

The logistic regression model links the task features with the
matrix of regression coefficients (Ωc) and the mean vector
(εc) to predict π̂ic. Mean vector εc is a multivariate Gaussian
generated with parameters µεc and identity matrix IC . µεc is
initialized to the cth row of the identity matrix so that the
prior of π̂ic assigns a higher likelihood to producing a cor-
rect annotation than an incorrect annotation. Each row of the
coefficients matrix Ωjc is a multivariate Gaussian generated
with parameters µΩ

c and identity matrix IC . µΩ
c is initialized

to a vector of zeros. Finally, to make the model identifiable,
we constrain the last element of Ωjc and µεc to be zero.



Extension 4: Task-Dependent Hybrid Bias Model The
shortcoming of TD-PBM is that it assumes that all workers
are identical and it does not model worker characteristics.
One way to address this shortcoming is to expand the WBM
to reason about task features similar to the construction of
TD-PBM. This expansion results in an explosion in the num-
ber of variables in the model since the number of confusion
matrices to be inferred increases with T ×W , where T is
the number of tasks, and W is the number of workers. The
sparsity of the worker-task annotation matrix makes learning
task-dependent worker bias models infeasible.

The Task-Dependent Hybrid Bias Model (TD-HBM) uses
the idea of learning a weighting of population and worker
confusion matrices, as the Hybrid Bias Model does, to
jointly model the relationships among task features, worker
characteristics, and bias. The factor model for TD-HBM is
given in Figure 1(e). The model decouples learning about
task features from learning about worker characteristics. It
has different generative processes for modeling population
bias and for modeling worker bias. The population bias is
task dependent. π̂i, population confusion matrix for task i,
is generated with the logistic regression component as de-
scribed for TD-PBM based on task features xi. On the other
hand, πw, confusion matrix for worker w, is task indepen-
dent. With this construction, we can use the annotation set
collected from all workers to learn about the task-specific bi-
ases that affect the population (e.g., the systematic influence
of task features on human perception). We can also use the
set of annotations collected from each worker to personalize
the bias model independently of task features. The number
of confusion matrices to be inferred by this model grows lin-
early with T and W .

The posterior distribution for variables p, t, σ̂, π̂, σ, π, m,
Ω, ε are inferred as follows:

Pr(p, t,σ̂, π̂, σ, π,m,Ω, ε|A,X) =
1
Zth
×

T∏
i=1

ψt(p, ti) ψtπ(σ̂iti , π̂
i
ti ,Ωti , εti)×

W∏
w=1

ψπ(σwti , π
w
ti ) ψ

h
a (π̂ti , π

w
ti , a

w
i ,m

w)

where Zth is the partition function (normalization term) for
TD-HBM. The factor model does not have any new compo-
nents. The potentials ψt, ψtπ , ψπ and ψha were introduced in
the construction of WBM, TD-PBM and HBM.

Empirical Analysis
We evaluate the bias models on a dataset collected from the
Galaxy Zoo 2 project. This project provides an ideal, large-
scale data set to evaluate the models we have presented since
expert annotations have verified that visual features of tasks
bias worker annotations. Our experiments focus on auto-
matic detection and correction of this bias with probabilistic
modeling. We provide evaluations for both batch and incre-
mental active learning settings.

Empirical Setup
Galaxy Zoo 2 is designed to collect classifications (annota-
tions) for millions of galaxies from the Sloan Digital Sky
Survey (SDSS) (Galaxy Zoo 2 Team 2009). Its interface
presents an image of a galaxy and asks workers (a.k.a. citi-
zen scientists) to provide classifications with increasing so-
phistication. The project has collected more than 16 million
annotations for 304 thousand galaxies. A catalog containing
aggregate statistics about worker labels and ground truth la-
bels has been made available for a subset of galaxies studied
in Galaxy Zoo 2 (Willett et al. 2013). We study the galaxies
in the main sample with spectroscopic redshifts (Galaxy Zoo
2 data release 2013). In addition, we obtained two separate
data sets from the Galaxy Zoo 2 team: a log file containing
detailed information on worker annotations, and the SDSS
feature file reporting 52 features describing the features of
each task obtained via machine vision analysis of each ce-
lestial object. The final data is created by merging these data
sets by filtering out galaxies with missing ground truth la-
bels, SDSS features or that are missing in the annotation
log files. In our studies, we focus on the top-level classifi-
cation question of the Galaxy Zoo 2 task hierarchy, which
asks workers to classify an image as one of the three classes
(smooth, disk and artifact). Our data set includes 2.5 million
annotations collected for 91 thousand galaxies from 46 thou-
sand unique workers. The average, minimum and maximum
number of annotations per task in the data set is 27, 8 and 76
respectively. The average number of annotations per worker
is 51. The minimum and the maximum number of annota-
tions by a worker are 1 and 13384. The distribution of the
three classes (smooth, disk and artifact) in the resulting data
set are 27.03%, 72.94% and 0.03%.

The availability of the SDSS features enables us to study
the automatic detection of task-dependent worker bias for
the Galaxy Zoo 2 tasks. Experts have compared worker an-
notations with expert annotations and identified 3 of the 52
SDSS features that are linked to significant systematic bi-
ases in worker annotations. The analysis was used to guide
the manual authoring of a debiasing procedure for correcting
worker bias to reach ground truth classifications of galaxies.
In our studies, we evaluate the performance of various ag-
gregation models in capturing and correcting this bias.

We evaluate the aggregation models on the complete
data set created by merging SDSS, annotation and ground
truth data sources. Most annotation sets collected for com-
mon crowdsourcing tasks are much smaller in size than the
Galaxy Zoo 2 catalog. To evaluate the performance of our
models on smaller scale data sets, we devised an algorithm
to randomly sample a subset of the data. The algorithm takes
two parameters, n–the number of tasks and k–the number
of annotations per task (i.e., overlap). The algorithm ran-
domly selects a worker and adds the complete annotation set
of that worker until k many annotations are collected for n
tasks. This sampling procedure reflects the long tail power-
law property of the dataset in which the majority of workers
provide a few annotations and a small number of workers
provide large amounts of work.

For our experiments, we sample data sets of sizes 100,
1000 and 10000 in which each task has a minimum of 20
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Figure 2: Accuracy of bias models with increasing number of ground truth label observations. The plots from left to right are
for experiments with 100, 1000, and 10000 tasks respectively.

annotations. We subsample the annotations of each task to
experiment with smaller values of overlap. In each experi-
ment, we divide the data set in half; ground truth labels are
provided as observations for only the tasks in the training
set, and accuracy results are reported for the tasks in the
testing portion. Experiments are repeated for 100, 20 and
10 times for data sets of sizes 100, 1000 and 10000. On av-
erage, data sets with 100 tasks and 20 overlap have 1246
judges with 1.64 annotations per worker and the worker with
the maximum number of annotations has 30 maximum judg-
ments. Data sets with 1000 tasks and 20 overlap have 5790
judges with 3.48 annotations per worker and the worker
with the maximum number of annotations has 143 maxi-
mum judgments. Data sets with 10000 tasks and 20 overlap
have 16858 judges with 11.86 annotations per worker and
the worker with the maximum number of annotations has
2126 maximum judgments.

We compare the performance of the models introduced
in earlier sections with the majority voting baseline, the
Bayesian Classifier Combination (BCC) model (Kim and
Ghahramani 2012), and the Dawid-Skene algorithm. The
Dawid-Skene algorithm uses Expectation Maximization to
simultaneously infer worker bias, worker annotations and
ground truth answers, and is shown to perform consistently
well across different data sets in comparison to other ag-
gregation algorithms studied in the literature (Sheshadri and
Lease 2013). We experiment with a public implementation
of the algorithm that is available online (Ipeirotis and oth-
ers. 2014). We use Infer.Net (Minka et al. 2014) for coding
and for performing inference on BCC, WBM, PBM, HBM,
TD-PBM, TD-HBM models. Inference is done using vari-
ational message passing (Koller and Friedman 2009) for a
fixed number of 100 iterations. We use the Wilcoxon sign
test to evaluate the significance of differences between the
performance of models. We report the model performance
with predictive accuracy for interpretability of the results.
All trends and significant results hold when performance is
reported based on the F1 metric.

Batch Learning
Figure 2 compares the accuracy of bias models when 0%,
25%, 50%, 75% and 100% of the tasks in the training set

have observed ground truth labels. The tasks have 20 over-
lap. TD-PBM and TD-HBM are given all 52 task features
as input. The experiment is repeated for data sizes with
100, 1000 and 10000 tasks and plots summarizing the re-
sults are presented from left to right. The figure shows that
the task-dependent models perform better than other mod-
els when some ground truth labels are provided as observa-
tions (p < 0.05). The performance of these models improves
with increasing numbers of ground truth labels as these ob-
servations help the models to identify which features are
linked to biases in worker annotations (p < 0.01). The re-
sults also show that TD-HBM, having both population and
worker-specific components, helps to learn more accurate
models; TD-HBM outperforms TD-PBM for data sizes 1000
and 10000 for varying percentages of training instances with
ground truth labels (p < 0.05). The significance of the dif-
ferences between the accuracy of TD-PBM and TD-HBM
increase with large data sets as these data sets contain larger
amounts of annotations per worker, which help in learning
about individual worker’s characteristics.

Table 1 reports the time required to perform inference on
various models for data sizes of 100, 1000 and 10000 tasks
when tasks have 20 overlap and when all training instances
are given ground truth labels. For all models except Dawid-
Skene, model generation and inference are performed on the
Infer.Net platform. The running times are recorded on a ma-
chine with 2.50 GHz CPU and 64 GB RAM. In terms of
modeling worker confusion matrices, modeling population-
wide confusion matrices results in the fastest inference and
the hybrid components are the most expensive. Reasoning
about task-dependent bias also increase the complexity of
inference.

Figure 3 shows the effect of annotation overlap on the per-
formance of models when each data set has 1000 tasks and
ground truth labels are observed for all tasks in the training
set. The figure shows that increasing overlap from three to
larger values has a positive effect on the models reasoning
about task features (p < 0.01). It shows that larger overlap
helps to learn more accurate task-dependent models as tasks
with larger overlap have more information about how task
features affect worker annotations. For models without task
features, we observe an opposite trend. The performances



100 tasks 1000 tasks 10000 tasks
Dawid-Skene 0.79 70.96 2449.35
BCC 1.30 7.75 71.38
WBM 4.79 24.61 163.10
PBM 0.69 2.85 24.88
HBM 6.95 38.10 216.81
TD-PBM 2.59 18.38 173.39
TD-HBM 8.42 60.02 376.96

Table 1: Running times (in seconds) of inference on various
models for increasing data set sizes.
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Figure 3: Accuracy of bias models with variation in annota-
tion overlap.

of Dawid-Skene, BCC, PBM and HBM degrade when the
overlap is increased from 3 to larger numbers (p < 0.05)
since the generative processes expressed in these models are
not expressive enough to represent the different facets of
the data. Overall, the results highlight the value of machine
learned aggregation models for the Galaxy Zoo tasks. For
this data set, the value to be gained from more expressive
machine learned models is greater than the improvement
achieved from increasing the overlap from 3 to 20 when ma-
jority voting is the chosen method for aggregation. Under-
standing the effect of annotation overlap on model perfor-
mance can be a guiding factor in deciding how to allocate
worker resources in crowdsourcing tasks. Models that can
achieve the performance of majority voting with fewer an-
notation overlap can solve more crowdsourcing tasks with
the same worker resources.

Next we take a closer look at the way task-dependent bias
models detect and correct worker bias for a run on 1000 ran-
domly selected tasks. On this run, majority voting has 0.76
accuracy and TD-HBM has an accuracy of 0.94 when all
training instances have observed ground truth labels. Among
the tasks that majority opinion predicted the ground truth an-
swer incorrectly, TD-HBM is able to correctly infer the an-
swer 75% of the time. For only one of the tasks, TD-HBM
makes a mistake when the majority opinion is correct. The
task-dependent bias models are able to correct worker bias
without knowing about the structure of the bias, by only ob-
serving worker annotations and ground truth labels. The way
we choose to represent the relationship between task fea-
tures and worker bias with a logistic regression component
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0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

0 0.25 0.5 0.75 1
A

C
C

U
R

A
C

Y

PERCENTAGE OF TRAINING INSTANCES WITH OBSERVED LABELS

Majority Voting

BCC

WBM

PBM

HBM

TD-PBM

TD-HBM

Figure 5: Accuracy of bias models when evaluated on the
complete Galaxy Zoo 2 data set.

does not have the same form as the expert representation in
the hand-crafted debiasing procedure. In fact, we seek to un-
derstand how well the automated approaches can detect and
correct worker bias without knowing about the structure of
this relationship.

To analyze the extent that the task-dependent bias models
can correct worker bias, we focus on the three task features
that are identified by experts as influencing worker anno-
tations and observe how the predictions of majority voting
and TD-HBM change over the different values of these fea-
tures. Figure 4 presents a visualization of the way one of the
expert identified features (galaxy size) influences worker an-
notations and how this bias is corrected by TD-HBM (1000
tasks, 20 overlap, ratio of training instances with labels 1.0).
In the figure, the gap between the thick and dashed lines
quantifies how much majority opinion diverges from ground
truth. As shown by the figure, majority voting underesti-
mates the fraction of smooth galaxies between bins 1 and
5. The label distribution inferred by TD-HBM is closer to
ground truth. We observe patterns similar to the ones re-
ported in Figure 4 for the two other features.

Finally, Figure 5 reports the performance of the models
when they are evaluated on the complete data set. Each task
in the data set is randomly assigned to either to the training
or the testing set. The implementation we use for the Dawid-
Skene approach does not scale. The results highlight a large
improvement from the TD-HBM model, combining the hy-



brid modeling of confusion matrices with the modeling of
task features.

Overall, the results show that when task-dependent
worker bias is present, the effort for generating task features
and reasoning about them in aggregation leads to improved
model performance. Results given in Figures 2 and 5 show
that the percentage of training instances with observed la-
bels have a similar effect on performance over data sets with
different number of tasks. This observation reflects a char-
acteristic of the Bayesian joint inference framework. Learn-
ing and inference takes into account both instances with ob-
served and unobserved labels. The ratio of these instances
determines how much weight to put into explaining obser-
vations on ground truth labels versus labels collected from
workers. When the ratio of instances with ground truth la-
bels is small, the weights of these instances can be adjusted
to promote learning from gold set questions for better pre-
dictive performance.

Active Learning
The batch learning experiments show that task-dependent
models are effective in correcting worker bias when ground
truth labels can be provided by experts. We can apply active
learning techniques to guide decisions about which expert
labels to acquire so as to build accurate models while mini-
mizing the quantity of potentially costly expert annotations.

We implement and study two active learning methods.
The guidance provided by these methods depends on infer-
ences performed with existing observations. Once a new la-
bel is collected, and revised posterior probabilities are used
to generate recommendations on the next annotations to
seek. The entropy method computes the entropy of label pre-
diction, H(ti), for each task i and chooses the task with the
highest entropy to be labeled by the expert. The information
gain method maximizes the expected reduction of entropy
over the label predictions of all tasks (IG) (MacKay 1992).
IG for task i is computed as:

IGi =
C∑
j=1

Pr(ti = j)
T∑
k=1

(H(tk)−H(tk|ti = j))

whereH(tk|ti = j) is the label entropy of kth task when the
inference is repeated after observing the true label of task
i as j. This calculation is expensive; it requires repeating
model inference for each possible value of each ti.

We implement the random method as a baseline, which
chooses a remaining task randomly at each round. We aver-
age the results of the random method 10 times for each data
set.

We compare random, entropy and information gain meth-
ods when they are applied to task-dependent and task-
independent models. Given the complexity of running the in-
formation gain method, we run the experiments on data sets
with 100 tasks and 20 overlap and apply PBM and TD-PBM
models, which have smaller running times but reach accura-
cies comparable to their hybrid counter parts for this data set
size. Figure 6 shows that the task selection using the active
learning methods improves model accuracy. Both the en-
tropy and information gain methods are able to choose tasks

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

A
C

C
U

R
A

C
Y

NUMBER OF LABEL OBSERVATIONS

Random (PBM)

Entropy (PBM)

Information Gain (PBM)

Random (TD-PBM)

Entropy (TD-PBM)

Information Gain (TD-PBM)

Figure 6: Accuracy of active learning methods.

that help the models improve more quickly with additional
expert annotations than when tasks are chosen randomly for
expert annotation. The results also highlight the advantage
of task-dependent models on accuracy in the active learning
setting. The results do not report a superior performance for
the information gain method as compared to entropy. In our
setting, the observations available from the start (annotations
and task features) may contradict expert labels. As a result,
the entropy of the model may not decrease monotonically.
Thus the myopic nature of information gain calculation may
fail to capture the true value of a label.

Conclusion and Future Work
We reviewed methods aimed at automating the identification
and correction of task-dependent worker biases in crowd-
sourcing. We leverage probabilistic graphical models to per-
form joint learning and inference about the relationships
among workers’ biases, their annotations, ground truth task
labels, and task features. Our evaluations showed that mod-
els with explicit representations of task features and their
influences are effective in correcting worker bias when they
are given some task labels as observations. The experiments
also show that the models can successfully generalize or
transfer observations among workers so as to facilitate learn-
ing under annotation sparsity.

The proposed models can be improved in several ways.
We believe we can enhance active learning by moving be-
yond greedy, single-step computation of information gain.
Speed-ups in model inference can enable the use of richer
computation of the value of information of expert annota-
tions that would perform richer lookahead. We are also in-
terested in pursuing richer transfer learning among work-
ers. We observed transfer learning via the use of a mix-
ture of personalized and population-wide confusion matri-
ces. Future extensions of transfer learning are possible with
the integration of community-based models as proposed by
Venanzi et al. (Venanzi et al. 2014). We also see possibili-
ties for moving beyond models that capture the relationships
among task features and bias to include other factors such
as incentives and market dynamics. Finally, the probabilistic
graphical models representing uncertainty over model vari-
ables can enable algorithms that can be used to route tasks
among experts and workers based on a consideration of the
likelihood of the presence different kinds of biases.
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