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Abstract

We take a utility-based approach to catego-
rization. We construct generalizations about
events and actions by considering losses as-
sociated with failing to distinguish among
detailed distinctions in a decision model.
The utility-based methods transform detailed
states of the world into more abstract cate-
gories comprised of disjunctions of the states.
We show how we can cluster distinctions into
groups of distinctions at progressively higher
levels of abstraction, and describe rules for
decision making with the abstractions. The
techniques introduce a utility-based perspec-
tive on the nature of concepts, and provide
a means of simplifying decision models used
in automated reasoning systems. We demon-
strate the techniques by describing the capa-
bilities and output of TUBA, a program for
utility-based abstraction.

1 INTRODUCTION

There has been long-term interest in cognitive and
computational models for transforming a set of de-
tailed attributes or concepts into more general con-
cepts. Most methods employed to date for categoriza-
tion are based on a consideration of similarities in the
attributes of different objects (Rosch and Lloyd, 1978;
Smith and Medin, 1981; Schank et al., 1986; Fisher,
1987; Ashby and Gott, 1988; Medin, 1989). We take a
decision-analytic perspective on the generation of cat-
egories and concepts by considering losses associated
with the clustering of distinctions about events and
actions. By tolerating increasing imprecision in the
utilities associated with the outcomes of actions, we
can generate increasingly abstract categories of states
of the world and of actions. The methods can be ap-
plied at design time, or in real time, for reducing the
size, and, potentially the computational complexity of
belief networks and influence diagrams.
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In earlier work, we explored the simplification of com-
putational models of decision making through gener-
alizing the distinctions considered in a decision model
(Horvitz et al., 1989). In that work, we increased the
speed of computation and the ease of explanation of
the results of automated medical diagnosis by employ-
ing abstraction hierarchies defined by expert physi-
cians to group diseases into categories of disease. In
this paper, we explore methods for automating the
construction of abstractions, and hierarchies of ab-
stractions, based on utility considerations.

We start by considering ideal actions under uncer-
tainty, given a detailed utility model, and show how we
can generalize the approach to consider groups consist-
ing of disjunctions of events. We describe some empir-
ical studies of utility-based abstraction using TUBA, a
program for utility-based abstraction. Then, we dis-
cuss decision making with abstract categories.

2 ACTIONS UNDER
UNCERTAINTY

The expected value of an action depends on the like-
lihoods of different states of the world, or events, and
on the possible outcomes that follow from that action.
Assume that there are H1, . . . , Hn mutually exclusive
and exhaustive states of the world. A decision makers
action Ai, taken in the context of a state of the world
Hi, defines an outcome (Ai, Hj). We use u(Ai, Hj) to
refer to the utility of a decision maker who takes an ac-
tion (or set of actions) Ai when state Hj is true. The
value of different actions under uncertainty depends
on the probability of different events, and the result or
outcome of different actions, given these probabilities.
Assume that a decision making agent has gathered a
set of evidence E about its environment (e.g., sensors
or direct observations), and employs probabilistic in-
ference over a belief-network to compute a probabil-
ity distribution over a set of mutually exclusive and
exhaustive hypotheses, p(H|E, ξ), where ξ represents
the background state of information. Given such a
distribution, the expected utility, eu, of each action Ai
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Figure 1: Given a utility model for a set of actions
A1 through Am and states of the world H1 through
Hm, we wish to group hypotheses into categories of
hypotheses (CHk ) (a) or into categories of actions (CAk )
(b) by considering the similarity of utilities of out-
comes, u(Ai, Hj) (bar-graph heights).

is

eu(Ai) =
n∑
j=1

p(Hj |E, ξ)u(Ai, Hj) (1)

and the ideal decision, A∗, is the action with the great-
est expected utility, given the probability distribution
and the set of utilities,

A∗ = arg max
Ai

n∑
j=1

p(Hj |E, ξ)u(Ai, Hj) (2)

In Section 6, we explore decision making with abstract
categories of events versus atomic events H. First, we
consider the generation of categories by introducing
tolerance for error in the utilities assigned to outcomes.

3 ABSTRACTION BY
UTILITY-BASED SIMILARITY

Given a utility model, we can reduce the size of de-
cision models, and thus, the computational or cogni-
tive requirements of decision making, by generating
abstract categories from base-level distinctions.

3.1 Categorization of World States

Assume that we have a set of mutually exclusive and
exhaustive states of the world of interest, and wish
to generate a set of disjoint categories. More specif-
ically, we seek to identify categories CH , defined as
a set of base-level events H. We interpret a cate-
gory of events as a disjunction of states of the world
CHk → (H1 ∨H2∨, . . . ,∨Hm), and consider the utility
of actions given the probability of alternate categories.

We generate abstractions by grouping states of the
world that are associated with a similar pattern of util-
ities, with repsect to a given set of feasible actions. We
can construct groups by progressively increasing the

number of terms in disjunctions of base-level hypothe-
ses. To build categories, we employ a search algorithm
in conjunction with a threshold on error in utilities for
taking actions, given the possibility of any states in a
category.

Let us focus on the construction of a set of disjoint
categories of hypotheses H, based on a process of iden-
tifying similarities in the utility of outcomes. For each
action A ∈ A of feasible actions, and each category
CH , we determine the maximum difference or span in
utility associated with taking that action, when any
one of several states H ∈ CH might be true. We iden-
tify the maximum and minimum utilities of taking ac-
tion when CHk is true, and compute the difference, or
span in utility represented by the outcomes associated
with a group of states. That is,

UspanH = max
Hj∈CHk

u(Ai, Hj)− min
Hj∈CHk

u(Ai, Hj) (3)

where UspanH(Ai, CHk ) is the breadth of the range of
utility values associated with an outcome when consid-
ering an action in a context where we only know that
the disjunction CHk is true, as compared with deci-
sion making with detailed elementsHj . The maximum
span of utility encountered with the consideration of
the presence of a group, versus an explicit consider-
ation of outcomes in terms of each of its disjuncts is
just the maximum of all the Uspan measures,

maxUspanH = max
Ai∈A

UspanH (4)

We can employ preferences about maxUspan to control
the size, and thus, the number of categories used in
decision making.

Employing a general search to identify all appropriate
abstractions is computationally intractable. In Section
4, we describe polynomial clustering methods to build
a hierarchy of categories and to select a level of ab-
straction at which the range of utility values is always
less than a specified maxUspan tolerance. In Section
6, we discuss decision making with abstract disjunc-
tions in lieu of base-level hypotheses. First we review
an analogous approach for categorizing actions.

3.2 Categorization of Actions

We generate abstractions about actions in a manner
analogous to the way we generate abstractions of states
of the world. Rather than group states, we group
actions that are associated with a similar pattern of
utilities, as we consider all feasible hypotheses. We
identify categories of actions CA by identifying groups
of actions associated with outcomes that have utilities
within an acceptable range, with respect to states of
the world H ∈ H. As decision making agents can take
only a single action at any time, we interpret a decision
to commit to a specific category of actions as taking
one of any actions A ∈ CA in a group.

For each category CA and each hypothesis H ∈ H of
events of interest, we determine the span in utility gen-



erated as we assume different states of the world. We
identify the maximum and minimum utilities of taking
any action from CAk , when Hj is true, and compute the
difference

UspanA = max
Ai∈CAk

u(Ai, Hj)− min
Ai∈CAk

u(Ai, Hj) (5)

UspanA is the span of utility associated with taking
one of any actions from group CA when Hj is true.
The maximum range in utility associated with use of
groups of actions versus an explicit consideration of
detailed outcomes is,

maxUspanA = max
Hj∈H

UspanA(CAk , Hj) (6)

We can consider the expected span in utility,
EUspanA(CAk , Hj), for groups of actions, and the max-
imum of this expectation, by weighting the span, asso-
ciated with each category of actions and state, by the
probability of each state. That is,

EUspanA =

p(Hj |E, ξ)
[

max
Ai∈CAk

u(Ai, Hj)− min
Ai∈CAk

u(Ai, Hj)

]
(7)

We can assume for the probability of each state, pos-
terior probabilities computed explicitly, or, assume as
a heuristic, prior probabilities of hypotheses. Alterna-
tively, a system engineer may wish to encode distinct
sets of categories in terms of contexts defined by com-
mon patterns of evidence.

4 POLYNOMIAL COMPUTATION
OF ABSTRACTIONS

As highlighted in Figures 1(a) and 1(b), we seek a
tractable means of identifying hypotheses that are sim-
ilar in terms of the utilities of the set of outcomes gen-
erated by crossing the hypotheses with a set of actions,
and in analogous analyses to generate categories of ac-
tions in terms of the similarity in utility of outcomes
across sets of events. We focus in this section on prag-
matic concerns with regard to utility-based grouping
of events and actions, in accordance with a maximal
allowed span in utility for categories. We have exper-
imented with several polynomial algorithms for build-
ing clusters of events based on the utility of outcomes,
so as to identify categories and hierarchies of categories
containing outcomes at increasingly greater differences
in utility. Building hierarchies of categories at increas-
ing levels of abstraction, allows us to generate sets of
categories with different maximal spans in utility.

Several practical utility-based categorization methods,
and auxiliary abstraction facilities, are embodied in a
program named TUBA. The program runs on the Ap-
ple Macintosh family of computers. TUBA takes as
input a utility model and outputs an abstraction hier-
archy of categories based on similarities in the utility
of outcomes.

4.1 Distances and Similarity in Utility Space

TUBA constructs categories by clustering of hypothe-
ses by similarity in outcome utility. As portrayed
in Figure 2, the task of generating utility-based ab-
stractions can be viewed as the delineation of bound-
aries around clusters of events in a geometric collec-
tion of points representing hypotheses or actions in
an n-dimensional utility space. Several distance met-
rics can be used to cluster hypotheses based on prefer-
ences about losses associated with generalization. We
can cluster atomic events into clusters of events with
a goal of minimizing the maximum range of utility
values associated with outcomes of decisions based on
a consideration of the likelihood of categories. This
can be accomplished by using the maximum Uspan as
a metric to drive such clustering. Alternatively, we
can build concepts that capture an intention to min-
imize expected losses of decisions with abstract con-
cepts. For such clustering, we categorize events and
actions based on minimizing the Euclidean distance in
a utility space. We can employ an unweighted Eu-
clidean distance, or a distance metric that is weighted
to take into consideration the different probabilities of
events.

With a Euclidean distance metric, we compute the dis-
tance between vectors of utilities of outcomes in n di-
mensions, reflecting each of n actions under consider-
ation. For building categories of events, we compute
D for any two hypotheses, H1 and H2, as,

D(H1, H2) =

√√√√ n∑
i=1

[u(Ai, H1)− u(Ai, H2)]2 (8)

For building categories of actions, we compute D for
any two actions, A1 and A2, as,

D(A1, A2) =

√√√√ n∑
i=1

[u(A1, Hi)− u(A2, Hi)]
2 (9)

For building categories of actions, based on a metric of
expected distance, we compute D for any two actions,
A1 and A2, D(A1, A2) =√√√√ n∑

i=1

(p(Hi|E, ξ) [u(A1, Hi)− u(A2, Hi)])
2 (10)

so that differences in utility of actions, given the oc-
curence of world states, are weighted according to the
probability of the states. With application of this dis-
tance metric, categories can be constructed for prior
probability distributions, or can be dynamically refor-
mulated given changes in the posterior probabilities of
world states as evidence is observed.

4.2 Utility-Based Abstraction Hierarchies

We have examined several different utility-based clus-
tering algorithms for building hierarchies of categories.
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Figure 2: We construct a hierarchy of categories by
clustering outcomes by similarity in a multidimen-
sional utility-space.

The methods for building abstractions available in
TUBA are adaptations of traditional clustering meth-
ods (Johnson and Wichern, 1982). The methods differ
as to how distance between two groups of hypotheses is
defined. Both methods start with the set of base-level,
atomic hypotheses as groups. The two closest hy-
potheses are merged and distances between all groups
are updated to reflect the merger. The merger pro-
cedure continues until all hypotheses or actions have
been merged into a single group. At each merger,
the distance between the two groups being merged
is recorded. The complete-linkage method defines the
distance between two groups as the greatest distance
between any member of one group and any member of
the other. For hypothesis clustering, that is

D(C1, C2) = max [D(Hi, Hj)] (11)

where Hi ∈ C1and Hj ∈ C2.

The single-linkage method, in contrast, takes the dis-
tance between two groups to be defined by their closest
members. In practice, the complete-linkage method is
generally preferable, since at each stage it minimizes
the maximum cost of error based in failing to distin-
guish among members of the same group.

The result of hierarchical clustering based on utility
is summarized graphically by an abstraction hierarchy
of categories, with atomic events as leaves. Vertical
lines extend upward from each group, and a horizontal
line joining two vertical lines indicates a merger. The
height of line indicating a merger indicates the distance
between the two groups being merged.

If Uspan is used as a distance metric, the level of the
hierarchy is the maximum span of utility of the groups
formed by a merger. We can select a maximal level of
abstraction by noting the level at which categories ex-
ceed a preferred maximum span of utility. Categories
that lie just below this line are admitted; disjunctions
of states formed by mergers above this cutoff represent
groups in which the maximum span has been exceeded.
Similarly, when complete-linkage is used, we can spec-
ify a cutoff in terms of maximum distance in n-space.
The two methods are closely linked; whereas complete-
linkage can be viewed geometrically as mimimizing the

span of a group across a Euclidean hyperspace, the
use of the Uspan metric minimizes the span of a group
across each individual axis in the same hyperspace.

4.3 Extensions of the General Approach

We have explored several extensions of the basic
utility-based approach to constructing categories of
events, including the use of multiattribute utility and
considering subsets of actions and hypotheses. These
facilities are available in the TUBA program.

Abstraction for Multiattribute Utility. Prefer-
ences about outcomes may be represented as a function
of several independent variables (Keeney and Raiffa,
1976; Keeney, 1977). For example, decision analysts
often represent preference with an additive multiat-
tribute model. TUBA allows the user to specify mul-
tiattribute utility models, and to explore how altering
the weights of a utility model affect the classifications
generated.

Subsets of Actions and Hypotheses. Rather
than examining a distance vector of size defined by
all available actions or hypotheses, we may wish to ex-
plore categories for subsets of actions or hypotheses.
For example, in constructing categories in the context
of a study on antibiotics, records containing detailed
information about the response of diseases to therapy
might be categorized solely on the basis of the utility
of outcomes of antibiotic therapy, ignoring the out-
comes associated with other therapy actions. TUBA
allows users to specify arbitrary sets of actions, to al-
low for the generation of utility-based abstractions for
different categories.

5 EXAMPLES OF UTILITY-BASED
ABSTRACTION

We shall review examples of utility-based abstractions
for robot decision making and medical diagnosis cre-
ated by TUBA.

5.1 Robot Decision Making

Consider the problem domain of an autonomous robot
developed to roam the corridors of a computer-science
department in search of trash. The robot has the abil-
ity to perform four basic actions: (1) locate a socket
to recharge its batteries while scanning an area for
garbage, (2) meander about and record the location
of trash, (3) actively gather refuse into its trashbag,
and (4) beep to request assistance about the loca-
tion of garbage. Engineers are faced with the task
of developing visual sensors and a belief network to
generate probabilities about the location of the robot.
The robot’s engineers initially divide the department
into a set of six types of location: (1) a hallway, (2)
a closet, (3) a restroom, (4) a stairwell, (5) a class-
room, and (6) an office. They assess a utility model
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Action/Location Hallway Closet Office Stairwell Restroom Class
Charge/Scan q=0.6 r=0.2 1.0 0.8 0.9 0.6 0.7 0.1 0.9 0.1 0.8 0.5
Query Assist 0.8 0.8 0.9 0.1 0.4 0.8 0.8 0.4 0.2 0.7 0.1 0.8
Meander/Scan 0.6 0.5 0.9 0.3 0.7 0.7 0.3 0.1 0.7 0.7 0.4 0.6
Gather 0.5 0.7 1.0 0.8 0.4 0.6 0.3 0.2 0.3 0.3 0.4 0.5

Table 1: Multiple attributes of utility for a refuse-collecting robot.

Figure 3: Utility-based abstraction hierarchies generated by TUBA for reducing the complexity of sensors and
decision model of a wandering robot. Different sets of abstractions are generated by changing the weightings of
a multiattribute utility function. The maximum span in utility of groups of events is indicated in labels at the
merger lines.

for the 24 possible outcomes u(Ai, Hj). The design-
ers wish to maximize the rate at which the robot col-
lects garbage but minimize the annoyance of robot
operation to people at the department. They de-
velop an additive multiattribute utility model which
weights outcomes of actions in terms of the efficiency
of garbage collection and the degree to which the robot
operates without distracting or annoying research staff
and students. They specify a multiattribute function,
U = Q(q) + R(r), where r represents garbage collect-
ing efficiency, and q is the degree to which the robot
is quiet and unobstructive. Table 1 is believed to ac-
curately describe preferences of the design team. Q
and R are initially assigned the values of 0.1 and 0.9,
respectively.

Suppose that the robot’s information about its loca-
tion comes from cues in its environment (e.g., preex-
isting items or custom-tailored color coding of base-
boards of rooms in the department). The robot’s de-
signers wish to reduce the number of cues that the
robot needs to distinguish, so as to simplify visual
processing algorithms and reduce hardware require-

ments. Thus, the researchers apply TUBA to analyze
the complete utility model of building areas. Using
the initial multiattribute weightings, the optimal clas-
sifications, based on a utility-based Euclidean distance
metric and the complete-linkage algorithm, are repre-
sented by the abstraction hierarchy displayed in Figure
3(a). The maximum possible loss of utility associated
with the robot misclassifying its location among loca-
tions grouped into a category is printed at the merger
line defining new groups. Based on this analysis, and
a decision to tolerate a predefined error in the util-
ity, the engineers decide to consider classrooms, offices,
and hallways as a single group for the purposes of the
robot’s sensor discrimination and reasoning apparatus.

After several weeks of allowing the robot to roam
through the department, the robotics group receives
a note from the departmental administrator. Appar-
ently, the robot has been disrupting several classes and
important meetings in the building. To reduce the risk
of department administration developing a policy re-
stricting the robot’s autonomous roaming, the engi-
neers decide to consider a new utility model, and to



redesign the reasoning system and sensor array. The
revised utility model places more weight on the robot
becoming less conspicuous, with Q = 0.9 and R =
0.1. These new coefficients result in a revised utility-
based abstraction hierarchy displayed in Figure 3(b).
The technicians now redesign the robot with sensors
and uncertain reasoning apparatus for three classes
of states, describing the location of the robot: office-
restroom-classroom, stairway-hallway, and closet.

5.2 Medical Decision Making

We have applied utility-based abstraction to medical
diagnosis and therapy problems to generate categories
of therapy actions and disorders. Figure 5 displays
TUBA output of an abstraction hierarchy of sets of ac-
tions generated from a detailed utility model for the di-
agnosis and treatment of lymph-node pathology. The
utility model was developed and assessed for use in
the Pathfinder pathology diagnostic system (Hecker-
man et al., 1992; Heckerman and Nathwani, 1992).
The utility model represents preferences about 3600
outcomes. The model represents the utility of disease–
treatment outcomes associated with a correct and er-
roneous diagnoses, where it is assumed that, should
a disease be misdiagnosed and mistreated, the correct
diagnosis will be made after some predefined length of
time.

Utility-based categories of diseases in lymph-node
pathology identified by TUBA using an unweighted
Euclidean distance are displayed in Figure 4. Figure 5
demonstrates the identification of categories of therapy
for lymph-node diseases by utility-based abstraction
procedures. These classes of therapy include treat-
ment for infection, Hodgkin’s lymphomas, and non-
Hodgkin’s lymphomas. Note that, as one might ex-
pect, HIV is identified as an important distinguished
entity in the disease categorization abstraction. How-
ever, it is admixed, at the same level as many other
entities, in the treat as infectious-benign category in
the treatment categorizations because the treatments
for AIDS have relatively few side-effects and delays in
treating many of the benign and infectious diseases
affect patients minimally.

6 DECISIONS WITH
ABSTRACTIONS

The utility-based construction of categories can be
used solely as a means of posing to engineers valu-
able and simplifying generalizations about events and
actions. Utilities of outcomes defined by generaliza-
tions of base-level distinctions can be assessed directly
and the resulting abstract utility models can be used
in automated decision-analytic reasoning. However, it
is also possible to reason about utilities and decisions
in terms of the base-level distinctions.

6.1 Decisions with Categories of Events

Let us first consider decision making based on a con-
sideration of categories of states of the world, in lieu
of atomic events. The probability of a disjunction of
mutually exclusive events, p(CHk |E, ξ), is the sum of
the probabilities of its disjuncts,

p(CHk |E, ξ) =
∑

Hi∈CHk

p(Hi|E, ξ) (12)

The expected utility of an action A, given the utilities
assigned to actions when a disjunction is true, given a
probability distribution over categories is,

eu(Ai) =
n∑
j=1

p(CHj |E, ξ)u(Ai, Cj) (13)

We select the decision A∗ with the maximum expected
utility, given the probability distribution over cate-
gories C, as described in Equations 1 and 2.

What point utilities should we assign to abstract out-
comes u(Ai, Cj)? If the uncertain-reasoning machin-
ery is available we can compute directly the utility of
taking an action given the truth of a category as,

eu(Ai, CHk ) =
∑

Hj∈CHk

p(Hj |CHk ,E, ξ)u(Ai, Hj) (14)

and can substitute the result of this calculation into
Equation 14. However, given the theme of attempting
to simplify multiple components of a decision model,
the probabilities for each Hj may not be available. If
this is the case, we can employ expectations of actions
for groups based on prior probabilities, or on proto-
typical contexts defined by common sets of evidence.
A special case of computing the expected utility of
action, given a group of events, is the case where we
consider all hypotheses to be equally likely, given the
truth of a category. The expected utility is equivalent
to taking the average of the utilities, ū(Ai, CHj ),

ū(Ai, CHj ) =
∑

Hj∈CHk

u(Ai, Hj)
||CHk ||

where ||CHk || is the cardinality of the set of hypotheses
CHk .

Rather than making decisions based on expectation
over utilities with a predefined tolerance of error, we
can employ a minimax utility-bounding approach to
decision making. We seek to determine whether the
minimum expected utility associated with an action
dominates the maximum expected value associated
with all other actions. If this is true, we know that
the leading action dominates the other actions, given
error associated with abstraction. That is, we store
only the minimum and maximum values of u(Ai, CHj )
and seek to identify A∗ that uniquely satisfies the fol-
lowing,

n∑
j=1

p(CHj |E, ξ) min
H∈CH

j

[u(A∗, H)] ≥
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Figure 4: Disease categories generated by applying utility-based abstraction to a detailed utility model for
oncology.

Figure 5: Therapy categories generated by applying utility-based abstraction to a detailed utility model for
oncology.

n∑
j=1

p(CHj |E, ξ) max
H∈CH

j

[u(A,H)] (15)

for A ∈ A, A∗ 6= A.

6.2 Decisions with Categories of Actions

Groups of actions in decision making differ from the
consideration of groups of events in that a decision
maker can take only a single action. One approach to
simplifying decision models with the result of utility-
based categorization of actions is to select a single
base-level action A from each category CAk , and to use
these actions, and their associated utilities u(A,Hj),
to make decisions based on Equations 1 and 2. To
minimize losses with considering a reduced set of ac-
tions, we can select, from each group of actions, that
action with the highest expected utility, given an as-
sumed probability distribution over events, p(H|E, ξ).
That is, we select A∗ for each CAk ,

A∗ = arg max
Ai∈CAk

∑
Hj

p(Hj |E, ξ)u(Ai, Hj) (16)

As we may not wish to continually compute these ac-
tions, based in a continually updated probability dis-
tribution, we may wish to preselect the set of actions

based on the prior probability distribution over events,
or on posterior probabilities for a set of contexts.

We can also employ a minimax bounding methodology
to make decisions at the level of categories of action,
analogous to the bounding method we described for
making decisions with categories of states. We seek
to determine whether the minimum expected utility
associated with taking any action A ∈ CAk dominates
the maximum expected utility of taking any actions
that are elements of other groups of actions. We store
only the minimum and maximum values of u(CAi , Hj)
and search for an action CA∗ such that,

n∑
j=1

p(Hj |E, ξ) min
A∈CA∗

[u(CA∗, Hj)] ≥

n∑
j=1

p(Hj |E, ξ) max
A∈CA

[u(CA, Hj)] (17)

for CA ∈ CA, CA∗ 6= CA.

7 SUMMARY AND CONCLUSIONS

We described a utility-based approach to generating
categories, and presented examples of the application



of the methods in robotics and medical diagnosis. The
utility-based methods complement the more familiar
similarity-based and probability-based approaches to
the construction and interpretation of concepts. We
believe that many commonsense natural categories
about events and actions have a basis in the similarity
of the utility of outcomes. Utility-based categoriza-
tion and abstraction can be useful in engineering de-
cision systems, given constraints in modeling or com-
putational resources. Beyond direct application of the
abstraction methods to reduce detailed distinctions to
categories, the hierarchical abstraction methods can
offer experts and engineers intuitions about the level
of detail at which to frame a decision problem.

Utility-based categorization methods also provide an
additional tool for exploring rational decisions un-
der bounded resources. In particular, the abstraction
methods provide a means of trading off the complex-
ity of reasoning with the precision of decision mod-
els. Beyond application of utility-based abstraction in
the engineering of automated reasoning systems, the
methods hold promise for dynamic, real-time applica-
tion in agents that are forced to make decisions under
varying and uncertain resource constraints (Horvitz,
1990). For example, when combined with an explicit
model of the cost of reasoning as a function of the size
of the action and outcome space, utility-based abstrac-
tion methods can be used to select the ideal level of
detail at which to perform automated reasoning. We
invite others to join us in experimenting with utility-
based categorization; the TUBA program is available
to interested researchers.
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