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ABSTRACT
Inferring rankings over elements of a set of objects, such as
documents or images, is a key learning problem for such im-
portant applications as Web search and recommender sys-
tems. Crowdsourcing services provide an inexpensive and
efficient means to acquire preferences over objects via la-
beling by sets of annotators. We propose a new model to
predict a gold-standard ranking that hinges on combining
pairwise comparisons via crowdsourcing. In contrast to tra-
ditional ranking aggregation methods, the approach learns
about and folds into consideration the quality of contribu-
tions of each annotator. In addition, we minimize the cost of
assessment by introducing a generalization of the traditional
active learning scenario to jointly select the annotator and
pair to assess while taking into account the annotator quali-
ty, the uncertainty over ordering of the pair, and the current
model uncertainty. We formalize this as an active learn-
ing strategy that incorporates an exploration-exploitation
tradeoff and implement it using an efficient online Bayesian
updating scheme. Using simulated and real-world data, we
demonstrate that the active learning strategy achieves sig-
nificant reductions in labeling cost while maintaining accu-
racy.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval—
Retrieval models; H.1.2 [Information Systems]: User/Machine
Systems—Human factors
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1. INTRODUCTION
Obtaining a set of gold-standard labels for a set of objects

is a critical step in learning to rank. For example, when de-
termining how to rank the results returned in response to a
Web search, the results are often passed through a ranking
model that has been learned using a machine learning pro-
cedure [12]. In order to learn this model, learning methods
typically require a training set of queries and documents
where gold-standard labels on relevance with respect to a
query have been provided. The learning method optimizes
some objective with respect to the labels.

A variety of approaches can be employed to acquire la-
bels. We may obtain binary relevance judgments, graded
relevance judgments, or preferences [1]. Among these there
may be tradeoffs in the amount of information the label con-
tains and the noise associated with obtaining the label. For
example, while a graded relevance judgment on a five-point
scale may contain more information than a binary judgment,
annotators may also make more errors due to the complexity
of assigning finer-grained judgments. One approach to ac-
quiring inputs on rank is to obtain relative preference judg-
ments for pairs of items. This method promises assessments
that are easier and faster to obtain, is less prone to assessor
error, and enables fine-grained comparisons. Such pairwise
assessment may be especially valuable for ranking in tasks
with higher numbers of gradations, e.g. assessing reading d-
ifficulty into one of the standard 12 American grade levels
[3]. Pairwise assessment may also be valuable for inferring
global rankings in such settings as developing recommender
systems where we desire to order a set of products based
on a small number of observed preferences from individual
users.

We focus on the task of inferring a gold-standard rank-
ing from a set of preferences over objects given in the form
of pairwise comparisons (i.e., i is preferred to j denoted as
i � j). As in any collection of gold-standard data, we seek
to obtain the most accurate labeling with minimal label-
ing cost. To this end, we seek to take advantage of crowd-
sourcing services, such as Amazon Mechanical Turk, which
enables one to programmatically obtain large collections of
pairwise comparisons from sets of annotators at low cost.
However, the reliability of annotators available via crowd-
sourcing can vary significantly. In addition, seeking pair-
wise assessments from the crowd can lead to inconsistent
pairs (e.g., i � j by one annotator and j � i by another
annotator; or i � j, j � k and k � i). Many existing rank-
ing aggregation methods [20, 15, 18, 13, 2, 19] are either
incapable of modeling the quality of work by annotators or
are inadequate for dealing with inconsistent pairs.



To address the challenge of learning a global ranking in
a crowdsourced setting, we introduce the Crowd-BT algo-
rithm, which extends the widely used Bradley-Terry model
[20] by explicitly incorporating the quality of contributions
provided by different annotators. The Crowd-BT algorith-
m can both appropriately weight annotators’ contributions
by their annotation quality as well as distinguish between
spammers and malicious annotators: spammers assign ran-
dom labels,1 while malicious annotators (or poorly informed
annotators) assign the wrong label most of the time.2 Many
existing crowdsourcing algorithms treat assessments provid-
ed by spammers or malicious annotators the same as they
do assessments of low quality. In contrast, Crowd-BT can
exclude pairs labeled by spammers from the modeling while
automatically correcting the pairs provided by malicious an-
notators.

Beyond appropriately handling error, spam, and malicious
inputs, we seek to be budget-conscious; we typically prefer
to harness fewer labeled samples while achieving reasonably
good accuracy. Thus, we seek a formal model of active learn-
ing to guide the allocation of effort in crowdsourcing (e.g.,
see [9]). Most active learning methods [22] assume the avail-
ability of an oracle that can provide the correct label. In
such settings, we only need to decide how to select the nex-
t pairwise assessment. We typically do not have access to
such expertise in a crowdsourced setting. Thus, we face the
challenge of simultaneously selecting the best next pair to
be labeled and the best annotator to label the next pair. We
shall formulate and study an exploration-exploitation trade-
off in crowdsourcing, previously explored in bandit and re-
inforcement learning. More precisely, exploration refers to
using pairs with high-confidence labels to test the quality of
annotators, while exploitation refers to asking for labels for
the most uncertain pairs. We need to balance the tradeoff
between exploration and exploitation carefully: too much
exploration could lead to samples being repeatedly labeled,
so that we do not have a sufficient number of unique samples
within the assessment budget; however, too much emphasis
on exploitation may result in a large number of noisy labels
provided by low-quality annotators.

In the remainder of the paper, we first provide background
on the Bradley-Terry model and demonstrate how to incor-
porate annotator quality into the model. We then demon-
strate how to address situations that arise in practice vi-
a a regularization term before discussing how to optimize
the objective function to infer the model parameters. Next,
we formalize the active learning problem as an exploration-
exploitation tradeoff and derive an approach that enables
the efficient updates needed in an active learning setting.
Finally, we present a series of experiments with synthetic da-
ta to better understand model properties. The experiments
with real-world data demonstrate that modeling annotator
quality improves inferred ranking quality, and furthermore,
that our active learning approach achieves 90% of the best
gold-standard accuracy with only 3% of the total labeling
cost.

1Annotators who either do not actually look at instances,
or robots pretending to be human annotators, presumably
to quickly receive pay for work.
2That is, they label i � j whenever j � i and vice versa,
perhaps because the annotators are malicious or misunder-
stand the labeling criteria.

2. RELATED WORK
Early work for modeling annotator quality is presented in

[5], where the true category of an object is inferred from
the crowd. With the availability of programmatic access to
human effort via crowdsourcing platforms, a range of studies
have applied machine learning to data collected from the
crowd. Raykar et al. [21] extended Dawid & Skene’s work [5]
by introducing a logistic classification model to incorporate
features of the input data. Wang et al. [25] proposed to
separate malicious annotators from spammers in a binary
classification setting. Our Crowd-BT algorithm extends the
latter work to pairwise ranking aggregation problems.

Karger et al. [10] proposed an iterative algorithm to infer
consensus class labels with asymptotic consistency guaran-
tees. Welinder et al. [26] extended Dawid & Skene’s work [5]
to Bayesian updating procedures. While most of the work in
learning from the crowd has focused on classification prob-
lems, several studies examine ordinal regression and ranking
problems with assessments [21, 24]. For example, the for-
mulation presented by Volkovs & Zemel [24] models anno-
tator quality as the variance term in a logistic formulation
and could be used to address our challenge. However, the
methodology suffers from the weakness that it cannot distin-
guish spammers and malicious (or poorly informed) anno-
tators. In addition, Bayesian modeling and active learning
with the variance term in their logistic formulation provide
more difficult computational challenges. In contrast, we will
show computationally efficient solutions for our formulation-
s.

Cost and efficiency within a budget are important for
learning about and harnessing a crowd for problem solving.
Costs can be throttled with selective assessments guided by
active-learning procedures. Unlike many applications of ac-
tive learning, in a crowd setting, we cannot assume we have
access to an oracle with answers. Yan et al. [29] proposed
an active learning strategy for binary classification with a
crowd. This work mainly focused on selection of an annota-
tor who can provide the most confident label for an actively
selected sample. Kamar et al. [9] describe methods for guid-
ing the acquisition of votes in a crowdsourcing system for
citizen science with a decision-theoretic computation of val-
ue of information within a POMDP representation, using a
voting rule on a training set to define ground truth.

A great deal of prior work has been devoted to chal-
lenges with aggregation of rankings. Methods studied in-
clude permutation-based methods (e.g., Mallows [2] and CP-
S [19] models), matrix factorization methods (e.g., [6]) and
score-based probabilistic methods (e.g., Bradley-Terry [20],
Plackett-Luce [15, 18] and Thurstone [13] models).

Permutation-based methods are generally computational-
ly expensive while matrix factorization methods lack prob-
abilistic interpretation. Thus, we build our work on score-
based methods which are both more suitable for modeling
pairwise comparisons and computationally efficient.

In summary, in contrast to previous work in pairwise rank-
ing aggregation, our method can learn annotator quality
with a unified model and distinguishes malicious annotators
from spammers. More importantly, the active learning s-
trategy proposed in this paper explicitly models the tradeoff
between the learning of annotator quality versus the learn-
ing of pairwise preference. Our work formalizes this as the
important concept of an exploration-exploitation tradeoff in
active learning with the crowd.



3. CROWD-BT: EXTENDING BRADLEY
-TERRY MODEL TO CROWDSOURCING

As mentioned above, we choose to extend the Bradley-
Terry model because it has a well-understood probabilistic
interpretation, is well-suited to preferences, and can be op-
timized for computational efficiency. In particular, we ex-
tend the Bradley-Terry model [20] to incorporate parameters
for individual annotator quality. We first review the basic
Bradley-Terry model before demonstrating how annotator
quality can be incorporated.

For any two objects X and Y , Bradley-Terry models the
probability that X is preferred over Y as Pr(X � Y ) =
πX

πX+πY
, where πX , πY > 0 can be viewed as relevance s-

cores for X and Y respectively (alternative interpretations
in other settings are as skill scores or difficulty scores). By
defining πX = exp{sX}, we obtain:

Pr(X � Y ) =
esX

esY + esY
=

e(sX−sY )

1 + e(sX−sY )
. (1)

The Bradley-Terry model can be easily extended to model
preferences among a small set of objects:

Pr(X � {Y,Z}) =
esX

esX + esY + esZ
. (2)

It can also model a chain-complete partial order by decom-
posing it into pairwise preferences: Pr(X � Y � Z)

.
=

Pr(X � Y ) Pr(Y � Z).
We assume there are N objects {o1, . . . , oN} and a pool

of K annotators {a1, . . . , aK}. We denote the set of labeled
pairs by the k-th annotator as Sk = {(i, j) : oi �k oj}, where
oi �k oj represents that the k-th annotator prefers oi over
oj . Here, we make an implicit assumption that an annota-
tor never simultaneously claims oi � oj and oi ≺ oj , so that
each pair (i, j) in Sk can be ordered by oi �k oj . Direct-
ly applying the Bradley-Terry model without distinguishing
each annotator’s quality, we have Pr(oi �k oj) = esi

esi+e
sj .

Then, pairwise ranking aggregation can be directly formu-
lated into a log-likelihood maximization problem as follows:

max
s

log

 K∏
k=1

∏
(i,j)∈Sk

Pr(oi �k oj)

 =

K∑
k=1

∑
(i,j)∈Sk

log

(
esi

esi + esj

)

s.t.

N∑
i=1

si = 0. (3)

Because the objective function on the left of Eq. (3) is not
scale-invariant : if we increase all si by any given constant
c, the log-likelihood will remain the same. Therefore, to
make the objective identifiable, we use a standard trick (e.g.,

[8]), which adds one additional constraint,
∑N
i=1 si = 0. By

maximizing Eq. (3), we can obtain a global ranking over N
objects by sorting the obtained s.

When directly applying the Bradley-Terry model in crowd-
sourcing, as in Eq. (3), each annotator is treated equally
and, hence, the model is incapable of capturing the variabil-
ity in quality of contribution across individual annotators.
We now introduce a parameter ηk for the k-th annotator
which is defined as the probability that the k-th annotator
agrees with the true pairwise preference. In particular, for
any pair with the true preference X � Y :

ηk ≡ Pr(X �k Y |X � Y ). (4)

If the k-th annotator is perfect, we have ηk ≈ 1; if he/she is
a spammer, we have ηk ≈ 0.5; while if he/she is a malicious

or poorly informed annotator, we have ηk ≈ 0. Applying
the law of total probability, we have

Pr(oi �k oj) = Pr(oi �k oj |oi � oj) Pr(oi � oj)
+ Pr(oi �k oj |oi ≺ oj) Pr(oi ≺ oj)

= ηk
esi

esi + esj
+ (1− ηk)

esj

esi + esj
. (5)

The log-likelihood L(η, s) thus takes the form

L(η, s) =

K∑
k=1

∑
(i,j)∈Sk

log Pr(oi �k oj) (6)

=

K∑
k=1

∑
(i,j)∈Sk

log

[
ηk

esi

esi + esj
+ (1− ηk)

esj

esi + esj

]
.

3.1 Thurstone model
A closely related model to the Bradley-Terry model is the

Thurstone model [13], which assumes that the score for each
object X has a Gaussian distribution N(SX , σX). For sim-
plicity, here we only consider the Case V Thurstone model
where σX = 1 for all objects. Then, the difference between
the score of X and that of Y follows a Gaussian distribution
N(SX − SY ,

√
2) and thus

Pr(X � Y ) = Φ

(
SX − SY√

2

)
, (7)

where Φ(·) is the standard Gaussian cumulative distribution
function. The likelihood L(η, s) under the Thurstone model
thus takes the following form:

L(η, s) =

K∑
k=1

∑
(i,j)∈Sk

log

[
ηkΦ

(
si − sj√

2

)
+ (1− ηk)Φ

(
sj − si√

2

)]
.

To solve this corresponding maximum likelihood problem,
we need to evaluate Φ(·) many times, which involves an in-
tegration and hence is computationally more expensive than
maximizing Eq. (6). Thus, we adopt the Bradley-Terry
model in the paper. However, we note that the performance
of Bradley-Terry and Thurstone models have been shown to
be very similar [23]; and all the developed methods in this
paper can be used in a straightforward way to extend the
Thurstone model for use in crowdsourcing.

3.2 Regularization
For better visualization and interpretation, pairwise com-

parisons are often presented as a comparison graph: if an an-
notator prefers oi over oj , we draw a directed edge from oj to
oi. We first point out that application of the Bradley-Terry
model in Eq. (3) can face numerical challenges if the under-
lying comparison graph is not strongly-connected.3 More
specifically, one cannot have a maximizer of the log-likelihood
in Eq. (3) when the comparison graph is not strongly-connected.
As an example, we consider the comparison graph in Fig. 1
with two strongly-connected components in red circles. For
any given solution sA, sB , sC , sD, if one adds an arbitrary
positive constant c to sA, sB and subtracts the constant c
from sC , sD, then the likelihood terms corresponding to the
edges C → A and D → B (i.e., esA

esA+esC
and esB

esB+esD
)

will always increase, while the likelihood terms correspond-
ing to the edges within each strongly-connected component

3A directed graph is called strongly-connected if there is a
path from each node in the graph to every other node.



Figure 1: Example of comparison graph.

(i.e., A → B, B → A, C → D and D → C) will remain
the same. Therefore, we could not have a maximizer of the
log-likelihood.

We address this numerical problem by introducing a vir-
tual object (node) o0 with the score es0 . We assume that
each object oi is compared to o0 by a perfect annotator
with one virtual win and one virtual loss. We can make any
graph strongly-connected with this procedure. According
to [14], the log-likelihood will then have a unique maximiz-
er. The virtual node regularization technique has been used
for ranking problems in different settings (e.g., [4]). In the
setting of our problem, this amounts to using a regularized
form L(η, s) +λR(s), where the regularization term R(s) is
defined as

R(s) =

N∑
i=1

(
log

(
es0

es0 + esi

)
+ log

(
esi

es0 + esi

))
and λ > 0 is the predefined regularization parameter.

3.3 Crowd-BT
The final Crowd-BT formulation for pairwise ranking ag-

gregation in crowdsourcing is essentially a regularized max-
imum likelihood problem:

max
η,s

L(η, s) + λR(s) (8)

.
=

K∑
k=1

∑
(i,j)∈Sk

log

[
ηk

esi

esi + esj
+ (1− ηk)

esj

esi + esj

]

+ λ

N∑
i=1

(
log

(
es0

es0 + esi

)
+ log

(
esi

es0 + esi

))
s.t. 0 ≤ ηk ≤ 1, ∀k ∈ {1, . . . ,K}.
As we can see from Eq. (8), another benefit of this extra

regularization is that the constraint
∑N
i=1 si = 0 in Eq. (3)

is no longer needed if we fix s0. Recall that this constraint is
used to address the scale-invariant problem in the objective
function in Eq. (3). Now, in Eq. (8), if we fix s0, the ob-
jective is no longer scale-invariant and hence the constraint∑N
i=1 si = 0 could be dropped.
Let us provide more detailed explanations for the objec-

tive in Eq. (8). The first term L(η, s) is the log-likelihood:

that is, L(η, s) =
∑K
k=1

∑
(i,j)∈Sk

log Pr(oi �k oj) with

Pr(oi �k oj) = ηk
esi

esi+e
sj + (1 − ηk) e

sj

esi+e
sj as defined in

Eq. (5). Due to the principle of maximum likelihood and
desirable properties of maximum-likelihood estimates (e.g.,
consistency, normality, invariance and efficiency), it is nat-
ural to maximize L(η, s).

Now we examine each term in L(η, s). For a perfect anno-
tator with ηk = 1, Pr(oi �k oj) will reduce to the Bradley-

Terry model. For a spammer with ηk = 0.5, Pr(oi �k oj) ≡
0.5 for any si, sj and hence all the pairs provided by a s-
pammer will not affect our objective in Eq. (8). In other
words, once we detect a spammer, we automatically discard
all the pairs labeled by him/her. For a malicious annota-

tor with ηk = 0, we have Pr(oi �k oj) = e
sj

esi+e
sj , which is

equivalent to having oj � oi provided by a perfect annota-
tor. This means that our model can automatically recover
the errors made by a malicious annotator. On the other
hand, if si � sj (i.e., there is a significant difference be-
tween these two objects), we have Pr(oi �k oj) ≈ ηk, which
indicates that the probability depends largely on the anno-
tator’s quality. If si ≈ sj , we have Pr(oi �k oj) ≈ 0.5
which indicates that for two very similar objects, they are
indistinguishable regardless of the annotator’s quality.

The second part of Eq. (8) is the regularization term.
First, as we show in Section 3.2, without the regularization,
the corresponding optimization is not well-defined when the
graph is not strongly connected, and we will not have a finite
solution. Therefore, the regularization is indispensable for
comparison graphs that are not strongly connected. Second-
ly, when the graph is indeed strongly connected, the regu-
larization might change the solution. However, if we set λ to
be sufficiently small, the ranking inferred from s will be the
same as that obtained from the un-regularized problem. In-
terestingly, in many problems, the regularized problem could
lead to an even better solution than the un-regularized one
as shown in our experiments. In practice, if one only wants
to recover the ranking from the un-regularized problem (as-
suming it is well-defined), one could just use a sufficiently
small λ. On the other hand, if gold pairs are available (i.e.,
samples with the true label provided by experts),4 one can
carefully use them to tune the parameter λ to achieve the
best performance on gold samples. Regardless of the opti-
mal choice, we show empirically later that for a broad range
of λ ∈ [0.1, 10] our algorithm outperforms the baseline (see
Tables 2 and 3).

To maximize the objective L(η, s) + λR(s), a natural op-
timization strategy is the alternating approach [16]: fix η
and optimize over s; then fix s and optimize over η; and
iterate over these two steps. In particular, we adopt limited-
memory BFGS [16] to optimize s and the projected Newton
method to optimize η [11]. We note that as Eq. (8) is a
non-concave maximization problem, a good initialization is
important to avoid being trapped in local minima. As long
as the average quality of the annotators is better than that
of spammers, we suggest starting with ηk = 1 for each an-
notator and first optimizing over s. In fact, this strategy
is better than the traditional multiple random initialization
strategy for solving non-convex optimization since we utilize
the prior side information of the problem (i.e., most anno-
tators are good). If there are more spammers and malicious
annotators (although it may happen rarely in practice), we
could initialize ηk by measuring the performance of each an-
notator on a handful of gold samples. In particular, ηk could
be initialized as the ratio of the correct answers on the gold
samples.

4In fact, even if there is no expert, one can construct gold
pairs from the data. For example, we could treat a pair as
a gold sample if more than 10 annotators rank the pair and
at least 90% of them agree on the same preference.



4. ACTIVE LEARNING
Active learning in crowdsourcing is fundamentally differ-

ent from traditional active learning in two different aspects:
(1) we do not have access to an oracle for labels and (2)
beyond selecting pairs to be labeled (exploitation) we also
need to probe each annotator’s quality (exploration), and
carefully balance this exploration-exploitation tradeoff. For
pairwise comparison, at each round, we need to choose a
triplet (object i, object j, annotator k) and ask for the pref-
erence between object i and object j from the annotator k.
Let T be the total budget, i.e., the total number of triplet-
s that we can query. The high-level picture of the active
learning in crowdsourcing for our problem is as follows. For
each round t = 1, . . . , T run the following steps:

1. Choose the triplet (oi, oj , k) that maximizes the impact
on the model uncertainty given the expectation over
the annotator k’s response.

2. Query the preference between oi and oj from the an-
notator k.

3. Update the model with the elicited preference.

However, there are three major challenges for implement-
ing the above approach. First, the sheer number of possible
triplets is KN(N − 1)/2 so that the maximization in Step
1 is taken over a large space. The second is quantifying the
impact on the model uncertainty in a way that also incor-
porates the notion of an exploration-exploitation tradeoff.
The third is how to update the model in a time-efficient
manner without re-training the whole model. For the first
issue, since the maximization can be solved in a straightfor-
ward parallel manner, this challenge can be addressed giv-
en enough computational power. For the second issue, we
establish a Bayesian framework for our problem and intro-
duce a novel definition of the expected information gain by
extending the traditional Kullback-Leibler (KL) divergence
to incorporate the exploration-exploitation tradeoff. Final-
ly, in the next subsection, we introduce an efficient online
update of the model parameters that will enable a constant
time update for a new incoming triplet.

We first extend Crowd-BT into a Bayesian framework to
enable the definition of the information gain/model uncer-
tainty and facilitate the development of an online updating
method. We assume {si}Ni=1 and {ηk}Kk=1 are independent
random variables and introduce a Gaussian prior for each
si (i.e., si ∼ N(µi, σi)) and a Beta prior for each ηk (i.e.,
ηk ∼ Beta(αk, βk)). Given a pair labeled by the k-th anno-
tator, (oi �k oj), we have the prior

p(si, sj , ηk) = N(si;µi, σi)N(sj ;µj , σj)B(ηk;αk, βk)

with the likelihood l(si, sj , ηk) given in Eq. (5). Then the
posterior can be calculated from Bayes’ rule. However, s-
ince the marginal posterior will be again used as the prior
for the coming pairs, it is difficult to directly use the exact
inferred posterior. Therefore, we approximate the posterior
p(si, sj , ηk|oi �k oj) using the variational approximation:

p(si, sj , ηk|oi �k oj) = l(si, sj , ηk)p(si, sj , ηk)/C (9)

≈ N(si;µ
i�kj
i , σ

i�kj
i )N(sj ;µ

i�kj
j , σ

i�kj
j )B(ηk;α

i�kj
k , β

i�kj
k ).

where

l(si, sj , ηk) = Pr(oi �k oj) = ηk
esi

esi + esj
+(1−ηk)

esj

esi + esj
,

is the likelihood function and C = Pr(oi �k oj) is the nor-
malization constant. In particular, we assume si, sj and ηk
are (conditionally) independent in posterior, the posterior
distributions for si and sj are still Gaussian, and ηk is Beta.

Let us defer the discussion of how to efficiently update the
posterior parameters to the next subsection and first present
the proposed active learning strategy. For each potential
triplet in the pool (oi, oj , ak) (i.e., represents asking the k-th
annotator to compare oi and oj), we compute the expected
information gain:

Pr(oi �k oj)
(
KL

(
N(µ

i�kj
i , σ

i�kj
i )||N(µi, σi)

)
(10)

+KL
(
N(µ

i�kj
j , σ

i�kj
j )||N(µj , σj)

)
+γKL

(
Beta(α

i�kj
k , β

i�kj
k )||Beta(αk, βk)

))
+Pr(oi ≺k oj)

(
KL

(
N(µ

i≺kj
i , σ

i≺kj
i )||N(µi, σi)

)
+KL

(
N(µ

i≺kj
j , σ

i≺kj
j )||N(µj , σj)

)
+γKL

(
Beta(α

i≺kj
k , β

i≺kj
k )||Beta(αk, βk)

))
where KL(·) denotes the Kullback-Leibler (KL) divergence.
Since we do not know whether oi �k oj or not before the
pair is labeled, we take the expected information gain over
the Bernoulli outcome; the computation of Pr(oi �k oj) is
shown in the next section (Eq. (16) and Eq. (19)). At each
iteration, we choose the triplet (oi, oj , ak) that maximizes
Eq. (10). In other words, we use a pure greedy strategy to
select the most informative triplet. We also realize that oth-
er mixed methods may work better in practice. For example,
one can use an ε-greedy approach, i.e., with probability 1−ε
select the triplet that maximizes the expected information
gain, else with probability ε, select a random triplet.

The expected information gain defined via KL divergence
has been a popular utility function in traditional active learn-
ing [22] and used for ranking problems [17]. To extend ac-
tive learning to crowdsourcing, our formulation in Eq. (10)
generalizes the traditional expected information gain by in-
troducing an extra parameter γ. In particular, recall that
the traditional information gain is simply defined by the KL
divergence between the posterior and the prior:

KL
(
p(si, sj , ηk|oi �k oj) || p(si, sj , ηk)

)
(11)

= KL
(
N(µ

i�kj
i , σ

i�kj
i ) ||N(µi, σi)

)
+ KL

(
N(µ

i�kj
j , σ

i�kj
j ) ||N(µj , σj)

)
+ KL

(
Beta(α

i�kj
k , β

i�kj
k ) ||Beta(αk, βk)

)
.

As compared to Eq. (11), our formulation in Eq. (10) in-
troduces the parameter γ which represents the tradeoff be-
tween exploration and exploitation. A larger γ will give
more weight to the KL divergence terms related to annota-
tor quality in the objective in Eq. (10), which means that
we are willing to spend more to explore the quality of an-
notators. On the other hand, a smaller γ will result in rel-
atively more emphasis on exploiting the information in the
observed pairwise comparisons. When there are gold sam-
ples, one could choose γ by testing the performance on the
gold samples. However, when gold samples are not avail-
able, according to our experience, any γ ∈ [5, 10] could lead
to much better performance than setting γ = 0 (i.e., tradi-
tional active learning without exploring annotator quality)
or γ = 1 (i.e., traditional information gain defined by KL
divergence). Meanwhile, setting γ larger than 10 could lead
to too much exploration at the beginning–especially when
the budget is limited. Therefore, as a simple rule of thumb,



one could set γ = 5 when the budget is limited while γ = 10
when the budget is sufficient. Although such a simple rule is
by no means an optimal choice of γ, it often leads to superior
empirical performance. We can adopt a more sophisticated
guideline for the selection of γ. Specifically, we can start
from a large γ; and gradually reduce the parameter γ by
half for every τ% of the budget (e.g., τ = 25). The reason
behind such a dynamic strategy of setting γ is as follows:
at the beginning, we may typically have very little knowl-
edge about the quality of annotators, so more exploration
should be carried out with a larger γ. As we gradually gath-
er more information about annotator quality, we should do
more exploitation instead of exploration using a smaller γ.

4.1 Online Learning
To update the posterior parameters efficiently in Eq. (9),

we use a moment-matching strategy. We first approximate
the first- and second-order moments for si, sj , ηk under the
true posterior distribution and then update the posterior
parameters accordingly. To compute E(si), E(sj), Var(si),
Var(sj) under the true posterior, we first integrate out ηk
and the marginal posterior for (si, sj) takes the form:

fs(si, sj)N(si;µi, σi)N(sj ;µj , σj),

where

fs(si, sj) =
αk

αk + βk

esi

esi + esj
+

βk
αk + βk

esj

esi + esj
.

Let zi = si−µi
σi

∼ N(0, 1) and zj =
sj−µj
σj

∼ N(0, 1). We

can view fs(si, sj) as a function of zi, zj and rewrite it as:

fz(zi, zj) =
αk

αk + βk

eσizi+µi

eσizi+µi + eσjzj+µj

+
βk

αk + βk

eσjzj+µj

eσizi+µi + eσjzj+µj
.

Using the extension of Stein’s Lemma [28], the expectation
E(zi) can be approximated as in [27]:

E(zi) = E
(∂fz(zi, zj)/∂zi

fz(zi, zj)

)
≈
∂ log fz(zi, zj)

∂zi

∣∣∣∣
zi=zj=0

.

Therefore, we have:

µ
i�kj
i = E(si) = µi + σiE(zi) (12)

≈ µi + σ2
i

(
αke

µi

αkeµi + βke
µj
−

eµi

eµi + eµj

)
.

We can interpret this updating rule as follows. For a perfect

annotator with αk � βk, we have αke
µi

αke
µi+βke

µj ≈ 1 and

hence µ
i�kj
i ≈ µi + σ2

i
e
µj

eµi+e
µj . This formulation captures

the intuition that µi should increase when an observation
oi �k oj is made by a good annotator. Secondly, if µi � µj ,
the extra information of observing oi �k oj is limited and

hence the amount of increase of µi, σ
2
i

e
µj

eµi+e
µj , is very small.

On the other hand, for a random annotator with αk ≈ βk,
we have µ

i�kj
i ≈ µi while for a malicious annotator, µ

i�kj
i ≈

µi − σ2
i

eµi

eµi+e
µj . Similarly, we have:

µ
i�kj
j = E(sj) = µj + σjE(Zj) (13)

≈ µj + σ2
j

(
βke

µj

αkeµi + βke
µj
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eµj

eµi + eµj

)
≈ µj − σ2

j

(
αke

µi

αkeµi + βke
µj
−

eµi

eµi + eµj

)
.

We can derive σ
i�kj
i , σ

i�kj
j in the same way. Using the

extension of Stein’s Lemma as in [28, 27]:

Var(zi) = E(z2i )− (E(zi))
2

=

(
1 + E
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∂2fz(zi, zj)/∂z

2
i
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− E
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)2
= 1 + E

(
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∂z2i

)
≈ 1 +
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.

Then we have:(
σ
i�kj
i

)2
= Var(si) = σ2

iVar(zi) (14)

= σ2
i max

(
1 + σ2

i

(
αke

µiβke
µj

(αkeµi + βkeµj )2
− eµieµj

(eµi + eµj )2

)
, κ

)
,

(σ
i�kj
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.

where the parameter κ is a small constant (e.g., 10−4) to
ensure the positivity of variance.

To update αk and βk, let C1 = EN
(

esi

esi+e
sj

)
, where EN

denotes the expectation over the prior Gaussian distribu-

tion of (si, sj) and let C2 = EN
(

e
sj

esi+e
sj

)
= 1 − C1. The

normalization constant C = Pr(oi �k oj) in Eq. (9) can be
computed as:

C =

∫
[0,1]

(C1ηk + C2(1− ηk)) Beta(ηk;αk, βk)dηk

=
C1αk + C2βk
αk + βk

. (16)

Then we can compute the first and second order moment of
ηk as follows:

E(ηk) =
1

C

∫
[0,1]

ηk (C1ηk + C2(1− ηk)) Beta(ηk;αk, βk)dηk

=
C1(αk + 1)αk + C2αkβk
C(αk + βk + 1)(αk + βk)

.

E(η2k) =
C1(αk + 2)(αk + 1)αk + C2(αk + 1)αkβk
C(αk + βk + 2)(αk + βk + 1)(αk + βk)

.

and update the αk and βk as follows:

α
i�kj
k =

(E(ηk)− E(η2k))E(ηk)

E(η2k)− (E(ηk))2
(17)

β
i�kj
k =

(E(ηk)− E(η2k))(1− E(ηk))

E(η2k)− (E(ηk))2
(18)

Now the challenge is to compute C1 efficiently. Let g(si, sj) =
esi

esi+e
sj and we take the second-order Taylor expansion of

g(si, sj) at (µi, µj):

g(si, sj) ≈ g(µi, µj) + (si − µi)∇sig(µi, µj)+

(sj − µj)∇sjg(µi, µj) +
1

2
(si − µi)2∇si,sig(µi, µj)+

(si − µi)(sj − µj)∇si,sjg(µi, µj) +
1

2
(sj − µj)2∇sj ,sjg(µi, µj).

We take the expectation of g(si, sj) under the prior distri-
bution and we obtain C1. In particular, by the fact that
EN (si − µi) = EN (sj − µj) = 0, we have:

C1 ≈
eµi

eµi + eµj
+

1

2
(σ2
i + σ2

j )
sµisµj (sµj − sµi )

(sµi + sµj )3
. (19)



Algorithm 1 Active Ranking Aggregation in Crowd

Input: Prior distribution parameters {µi}, {σi}, {αk},
{βk}, the tradeoff parameter γ and the total budget T .

for t = 1, . . . T do
Select a pair (oa, ob) and an annotator k which maxi-
mize the expected information gain in Eq. (10).
Query the annotator k on the preference between oa
and ob.
if oa �k ob then

Set i = a and j = b
else

Set i = b and j = a.
end if
Update µi, µj , σi, σj , αk and βk according to Eq. (12),
(13), (14), (15), (17) and (18).

end for

Output: Rank objects by sorting the obtained {µi}.

We can use the above closed-form updating rules to infer
approximate posterior distributions in constant time. Com-
bining the posterior update rules with our selection criteria
based on expected information gain in Eq. (10), the entire
active algorithm is presented in Algorithm 1. We note that,
after labeling the pairs, we can simply sort {µi} to obtain
the ranking (which is used in our experiments), or we could
rank the objects by using Crowd-BT. In general, solving the
optimization of Crowd-BT leads to a slightly better perfor-
mance than sorting {µi} but is also computationally more
expensive.

5. EXPERIMENTS

5.1 Simulated Study

5.1.1 Accuracy for Different Distributions of Anno-
tator Quality

We first conduct experiments with simulated data to test
the performance where the average quality of annotators is
varied. We assume that there are 100 objects, each with
an underlying true score in the range of 1 to 100. We ran-
domly sample 400 pairs of objects and assume that each
pair is labeled by 10 different annotators. In this way, we
gather 4000 labeled pairs. We assume that the ground truth
quality of 100 annotators {η∗k}100k=1 follow a Beta distribu-
tion Beta(α, β). For any pair (oi, oj) labeled by the k-th
annotator, he/she will claim oi �k oj with the probability
ηk and vice versa with the probability 1 − ηk. We test our
Crowd-BT method Eq. (8) with two different initialization
schemes: (1) initialize each ηk by 1, i.e., starting by as-
suming that all annotators are perfect (Crowd-BT-One) and
(2) initialize each ηk by the accuracy on 5 gold pairs with
known true relationship (Crowd-Gold); and compare them
with the vanilla Bradley-Terry model (BT) in Eq. (3). We
evaluate algorithms using the accuracy based on Wilcoxon-
Mann-Whitney statistics:

ACC :=

∑
i,j I(yi > yj ∧ si > sj)∑

i,j I(yi > yj)
, (20)

where y is the true relevance score and s is the estimated
score.

We first vary the distribution of annotator quality and
report the accuracy for each distribution in Table 1 with
virtual node regularization parameter λ = 0.5. The sensi-
tivity of λ will be further investigated in another simulated
experiment. As we can see from Table 1, when the aver-
age quality is above 0.5, the two initialization strategies for
Crowd-BT achieve very similar performance and are both
better than the Bradley-Terry model. For a difficult scenari-
o with many more malicious annotators, the performance of
Crowd-BT with “all ones” initialization is indeed quite bad.
However, initialization by a very rough estimate of quality
using only five gold pairs will lead to a significant boost in
performance. This is because our method has the ability to
automatically recover from the errors made by malicious an-
notators with a reasonable initialization. In summary, when
there are more good annotators, which is often the case in
practice, we could directly apply Crowd-BT with “all ones”
initialization; otherwise, it is necessary to obtain a rough
estimate of quality via several gold samples.

5.1.2 Exploration-Exploitation Tradeoff
We now investigate the effect of considering the control of

an exploration-exploitation tradeoff in active learning and
compare our active learning method with different configu-
rations of the tradeoff to the random selection strategy. In
particular, we assume that the true quality for each anno-
tator is drawn from the Beta distribution Beta(2, 1). This
is similar to one of the most common settings in practice
where we have many good annotators but also some spam-
mers and malicious contributors. We initialize the prior of
the quality with Beta(10, 1) to reflect our starting assump-
tion that all annotators are very good. We plot the number
of sampled pairs against accuracy by varying the parame-
ter γ. As displayed in Figure 2, the active learning strategy
with an appropriate γ (e.g., blue line with γ = 5) significant-
ly outperforms the random selection strategy. If one uses too
small a value for γ (e.g., red line with γ = 0), the accuracy
has a sharp increase at the beginning, but becomes worse as
we sample more pairs. This outcome arises because in the
absence of enough exploration of annotator quality, we may
assign many pairs to bad annotators and thus harm the per-
formance in the long run. On the other hand, if we adopt
too large γ (e.g., black line with γ = 30), the increase in
accuracy is slow at the beginning. The main reason for this
is that during the first few hundred iterations, we perform
too much exploration and hence obtain limited information
about pairwise preferences.

We also study the exploration-exploitation tradeoff under
different settings of averaged annotator quality. For each dis-
tribution of annotator quality and each setting of γ, we cal-
culate the normalized area under the active learning curve.
A typical active learning curve is displayed in Figure 2. As
presented in Figure 3, in both (a) and (b) with different pri-
ors, when the average quality is relatively low (e.g., 0.667),
a larger γ (e.g., γ = 5, 10) performs best, which means that
we need more exploration in that scenario. On the other
hand, when average quality approaches one, exploration be-
comes unnecessary and γ = 0 or γ = 1 leads to the best
performance.

5.1.3 Virtual Node Regularization
Finally, we conduct a simulated experiment to investigate

the effect of the virtual node regularization parameter λ.



(α, β) (10, 1) (5,1) (2,1) (2,2) (1,2) (1,5)
Average Quality 0.909 0.833 0.667 0.500 0.333 0.166

BT 0.882 0.890 0.800 0.542 0.171 0.144
Crowd-BT-One 0.899 0.918 0.869 0.849 0.109 0.122
Crowd-BT-Gold 0.899 0.917 0.869 0.850 0.897 0.878

Table 1: Accuracies of different approaches on the simulated datasets. Average Quality is the mean α/(α+β)
of the Beta distribution. Best performance in each column is in bold.

n×m 4000× 1 400× 10 200× 20
λ 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1

BT (ACC) 0.849 0.849 0.849 0.803 0.804 0.804 0.745 0.748 0.749
Crowd-BT (ACC) 0.955 0.946 0.936 0.893 0.894 0.883 0.793 0.803 0.810

Crowd-BT Estimate vs. Truth
Quality Correlation 0.956 0.950 0.945 0.957 0.950 0.947 0.972 0.970 0.967

Table 2: Simulated studies for the virtual node regularization. Best performance in each block is in bold.
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exploration 

Too much 

exploration  

Figure 2: Active Learning with different γ.

We generate the synthetic data in a similar manner as in
the previous section. Again, we assume that there are 100
objects, each with an underlying true score in the range 1
to 100, and 100 annotators with the ground truth quality
{η∗k}100k=1 following a Beta distribution Beta(2, 1). We ran-
domly sample n pairs of objects and assume that each pair
is labeled by m = (4000/n) distinct annotators. We test our
Crowd-BT algorithm in Eq. (8) with different virtual node
regularization λ under different settings of n and compare
the accuracies with that from the Bradley-Terry (BT) mod-
el. We report the accuracy and the correlation between the
estimated quality η̂ and true quality η∗ in Table 2. For all
settings, Crowd-BT is superior to the baseline Bradley-Terry
model. In addition, the correlations between the estimated
quality and true quality are very close to one. More inter-
estingly, when n is smaller (i.e., the number of unique pairs
is small), we need a larger regularization weight λ to achieve
better performance. In fact, when n = 4000, it is very likely
that the underlying comparison graph is strongly connect-
ed and hence we do not need a strong regularization. On
the other hand, when n = 200, then we have at most 400
directed edges in the graph. In such a sparse graph, strong
regularization will help to improve performance.

5.2 Real-World Challenge: Reading Level
We now apply Crowd-BT to the task of ranking docu-

ments by their reading difficulty. Our dataset is composed
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Figure 3: Normalized area under the active learning
curve for different averaged quality and γ.

of 491 documents, each assigned a gold-standard reading d-
ifficulty level from 1 to 12, as described in [3] in more detail.
Using the CrowdFlower crowdsourcing platform,5 a total of
624 distinct annotators in the United States and Canada
were shown representative passages from randomly selected
pairs of these documents, and asked to decide which of the
two texts was more challenging to read and understand. To
help avoid an imbalanced judgment pool that is biased to-

5http://crowdflower.com/



ACC
λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 50

BT 0.6760 0.6796 0.6815 0.6802 0.6629
Majority-Vote-BT 0.6686 0.6700 0.6688 0.6483 0.6409
Variance-BT 0.6790 0.6835 0.6862 0.6828 0.6658
Crowd-BT 0.6924 0.6961 0.6978 0.6874 0.6690

Table 3: ACC for different methods on reading level dataset (with all 12,728 pairs). Best performance in
each column is in bold. Best performance in each row is in italics.
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Figure 4: Histogram for the estimated η for different
annotators.

ACC

TrueSkill 0.6722 (0.002)
Online-Crowd-BT 0.6822 (0.002)

Table 4: Comparisons of online learning methods on
reading level dataset (with all 12,728 pairs).

ward a few prolific annotators, each annotator was allowed
to contribute a maximum of 40 judgments. We obtained a
total of 12,728 pairwise comparisons. The overall quality of
annotators on this task is known to be relatively high.

We compare Crowd-BT with ηk = 1 as the initialization
to several competitors: (1) Bradley-Terry (BT) model; (2)
for each pair of objects (oi, oj), we first use majority vote to
obtain the preference between them and apply the BT model
(e.g., if 3 annotators claim oi � oj and 2 claim oi ≺ oj ,
then we generate a pair oi � oj as labeled by a perfect
annotator); (3) a model proposed in [24] where the difference
for annotators is captured by a variance term in the logistic
form in Bradley-Terry model. We call this method Variance-
BT. As the evaluation metric, we again use the accuracy in
Eq. (20) as in the simulated experiments which measures
the overall accuracy across all pairs in the gold-standard
ranking. The results are presented in Table 3. As we can
see, Crowd-BT performs the best for any λ, followed by
Variance-BT and Majority-Vote-BT, which has the worst
performance. We also plot the histogram for the estimated η
in Figure 4 and we observe that about half of the annotators
are estimated to be perfect annotators on this dataset.

We also compare our Bayesian online Crowd-BT with
another well-known online ranking aggregation algorithm:
Trueskill [7]. Since the sample ordering in an online algo-
rithm is random, the results could be slightly different for
each run, so we report the mean and standard deviation
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Figure 5: Active learning vs. random strategy on
reading level dataset.

over 50 runs in Table 4. As we can see, our method im-
proves over the TrueSkill method’s accuracy. We note that
the performance of the online methods is worse than that of
the deterministic methods. The main advantages of online
methods are their computational efficiency and the ability
to handle streaming data.

Finally, we compare the active-learning strategy with dif-
ferent exploration-exploitation tradeoffs, against the random
strategy. For better visualization, we only present the accu-
racy for the first 4,500 labeled pairs in Figure 5. As captured
in the figure, the active learning strategy significantly out-
performs the random strategy. The exploration-exploitation
tradeoff can also be observed from Figure 5. In particular,
the accuracy for γ = 0 (red line) increases sharply at the be-
ginning; on the other hand, the accuracy for γ = 50 (black
line) increases slowly at the beginning but outperforms the
γ = 0 case after about 3,000 samples. This indicates that
different from traditional active learning, the exploration-
exploitation tradeoff leveraged by γ is very important for
active learning in crowdsourcing. In practice, according to
our experience, we suggest choosing γ ∈ [1, 10] to achieve
better performance. To further quantify the improvemen-
t, we report the number of sampled pairs to first achieve a
certain accuracy. In particular, the best accuracy over dif-
ferent methods after sampling all 12,728 pairs is 0.6843. We
report the number of sampled pairs to achieve a certain ratio
of best accuracy in Table 5. As we can see, the number of
pairs needed for the active learning strategy is much smaller
than that for the random strategy. With active learning,
we can achieve 90% of the best accuracy with only about
400/12, 728 ≈ 3.14% of the total pairs.



Ratio to best accuracy γ = 0 γ = 5 γ = 20 Random

98 % 1850 1400 3650 7250
95 % 700 850 2450 5350
90 % 400 450 850 2150

Table 5: Number of pairs required to achieve a spec-
ified level of accuracy. Best performance in each row
is in italics.

6. CONCLUSIONS AND FUTURE WORK
We have explored the challenge of learning a global rank-

ing from pairwise comparisons via inputs from the crowd.
We generalized the widely applied Bradley-Terry model by
incorporating annotator quality. We further proposed an ac-
tive learning strategy that can adaptively sample the next
assessment pair and annotator. We introduced and studied
an exploration-exploitation tradeoff in active learning with
crowdsourcing pairwise comparisons, and demonstrated the
importance of the configuration of this tradeoff via empirical
studies. Although we developed methods on the foundation
provided by the Bradley-Terry model, the proposed methods
can be applied to other models for pairwise ranking, such as
the Thurstone model [13].

We see several interesting future directions for extending
this work. In one direction of research, we see opportuni-
ties for reducing the computational cost via narrowing the
sampling space for active learning. Heuristics for narrow-
ing the space promise to be valuable. For example, if we
are certain about oi � oj and oj � ok, we may exploit the
nearly certain preference between oi and ok which can be
inferred by the transitivity rule. A second direction of re-
search centers on optimizing in an automated manner both
the exploration-exploitation tradeoff parameter γ and virtu-
al node regularization parameter λ. We are also interested
in better ways of harnessing limited sets of gold samples in
validation sets.
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