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Abstract
As machine learning systems move from computer-science
laboratories into the open world, their accountability becomes
a high priority problem. Accountability requires deep under-
standing of system behavior and its failures. Current evalua-
tion methods such as single-score error metrics and confusion
matrices provide aggregate views of system performance that
hide important shortcomings. Understanding details about
failures is important for identifying pathways for refinement,
communicating the reliability of systems in different settings,
and for specifying appropriate human oversight and engage-
ment. Characterization of failures and shortcomings is partic-
ularly complex for systems composed of multiple machine
learned components. For such systems, existing evaluation
methods have limited expressiveness in describing and ex-
plaining the relationship among input content, the internal
states of system components, and final output quality. We
present Pandora, a set of hybrid human-machine methods and
tools for describing and explaining system failures. Pandora
leverages both human and system-generated observations to
summarize conditions of system malfunction with respect to
the input content and system architecture. We share results
of a case study with a machine learning pipeline for image
captioning that show how detailed performance views can be
beneficial for analysis and debugging.

Introduction
In light of growing competencies, machine learning and in-
ference are being increasingly pressed into service for anal-
yses, automation, and assistance in the open world. Efforts
with machine learning have been undertaken in transporta-
tion, healthcare, criminal justice, education, and produc-
tivity. Applications include uses of automated perception
and classification in high-stakes decisions with significant
consequences for people and broader society (Dietterich
and Horvitz 2015; Russell, Dewey, and Tegmark 2015;
Salay, Queiroz, and Czarnecki 2017; Amodei et al. 2016).
Standard methods for evaluating the performance of models
constructed via machine learning provide a superficial view
of system performance. Single-score success metrics, such
as the area under the receiver-operator characteristic curve
(AUC) or false positive and false negative rates, are com-
puted over test datasets. Such summarizing measures are
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useful for broad understandings of the statistics of perfor-
mance and for comparisons across systems. However, they
do not provide insights into the details on when and how
systems fail. The common metrics on performance are par-
ticularly limited for systems composed of multiple compo-
nents as they fail to reflect how interactions among sets of
machine-learned components contribute to errors.

Detailed characterization of system performance through
systematic and fine-grained failure analyses has important
implications for deploying AI systems in the real world.
Identifying and explaining errors at execution time is essen-
tial for enabling people to complement or override the sys-
tem. Understanding when and where errors occur is also a
crucial step in detecting and addressing bias. For example, a
medical diagnostic system that is 95% accurate can be expe-
rienced as being highly unreliable if the bulk of its errors oc-
cur when interpreting symptoms from an under-represented
population group. Finally, system designers can use detailed
error analyses to make informed decisions on next steps for
system improvement.

We present a set of hybrid human-in-the loop and ma-
chine learning methods named as Pandora that facilitate the
process of describing and explaining failures in machine
learning systems. We apply these methods to systems that
have a human-interpretable input and that integrate multi-
ple learning components. Failure analysis in these systems
presents two main challenges. First, the system may exhibit
a non-uniform error behavior across various slices of the in-
put space. For instance, the accuracies of a face recognition
system may depend on the demographic properties of people
(e.g., race, gender, age) (Buolamwini and Gebru 2018). Tra-
ditional evaluation metrics like error scores and confusion
matrices have limited expressiveness in reporting such non-
uniformity of error. Second, the complex interactions among
the uncertainties of different components can lead to a com-
plex compounding of error that prevents practitioners from
understanding the internal dynamics of system failure.

Pandora addresses these challenges by modeling the rela-
tionships among input instances, system execution signals,
and errors to develop detailed predictive summaries of per-
formance. First, it clusters the input domain into topical clus-
ters constructed either from human-generated content fea-
tures or from automated system-generated features repre-
senting content. Next, it uses the examples in each cluster



Figure 1: Pandora applied to an image captioning system.

to learn interpretable decision-tree classifiers for predicting
and summarizing conditions of failure. The classifiers pro-
vide transparent performance views explaining under which
circumstances the system is most likely to err.

Pandora provides multiple views to highlight different re-
lationships between input data, system execution and system
errors. Along one dimension, the views choose the type of
data being used for error analysis: signals drawn from con-
tent being analyzed or signals collected from component ex-
ecution. Content-based views use detailed ground truth or
automatically detected content (i.e., input data) features to
learn common situations associated with poor performance.
For instance, a face recognizer could report that the sys-
tem may make more mistakes in recognizing faces of old
men wearing eyeglasses. Component-based views in-
stead model the relationship between the uncertainty as well
as the individual performance state of each component and
system failures. For a face recognizer that includes a face
detector, component-based views can describe how often the
system fails when the detector is uncertain (i.e., low confi-
dence) or wrong (i.e., false detection).

The second dimension for generating views varies the
source of data used to provide a multi-faceted error anal-
ysis. For this, the views can either choose data generated
by the system itself or data collected via human computa-
tion. The different views created by varying the data source
have complementary purposes: Views generated based on
system data characterize performance from an inner system
perspective, i.e., what the system knows. Views generated
based on crowd input describe system performance from
an outer user perspective, i.e., what an ideal system should
know (ground-truth). The inner perspective is important to
teach the system itself about its failures, whereas the outer
perspective helps users understand when to expect failures
and cannot be created without the input from human com-
putation. The whole process highlights how human com-
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Figure 2: The image captioning system.

putation can be valuable for machine learning not only for
simply collecting training data but also for solving complex
problems like understanding failure modes.

Figure 1 shows an overview of the approach when applied
to an Image Captioning System as a real-world case study.
The goal of the system is to automatically generate image
captions for given images and it consists of three machine
learning components in a pipeline (Fang et al. 2015). Pan-
dora creates content topical clusters (e.g., city, snowboard-
ing, kitchen etc.) and reports the system performance for
each distinct cluster. Most importantly, it generates custom
decision trees, which uncover surprising facts about the sys-
tem behavior relevant to its input conditions and the internal
state of its architecture.

In summary, this work makes the following contributions:
• A new systematic approach for describing and explain-

ing system failure in component-based machine learning
systems. Pandora supports system designers and machine
learning practitioners in understanding system failure and
it can be used as an effective tool for debugging and re-
vealing hidden artifacts of system malfunction.

• An end-to-end case study of applying Pandora to a real-
world system for image captioning. The application show-
cases how such an approach can be implemented in prac-
tice to a multi-modal system with a rich input domain as
well as multiple machine learning components.

• An experimental study for showing and comparing the
benefits of the various performance views generated by
Pandora.

Background
We first describe our main case study, an image captioning
system for generating textual descriptions of images. This
system was chosen as one of the winners of the 2015 cap-
tioning challenge1 and is the blueprint for several applica-
tions including the provision of descriptions for assisting
visually impaired people2(Salisbury, Kamar, and Morris ).
Then, we use this system as a running example to illustrate

1http://cocodataset.org/#captions-challenge2015
2https://www.microsoft.com/en-us/seeing-ai/



the functionalities of Pandora. Figure 2 shows the system
architecture, consisting of three machine learning compo-
nents. The first and third components use convolutional neu-
ral networks, while the second one is a maximum-entropy
language model (Berger, Pietra, and Pietra 1996).
Visual Detector. The first component takes an image as an
input and detects a list of words associated with recognition
scores. The detector recognizes only a restricted vocabulary
of the 1000 most common words in the training captions.
The vocabulary contains different parts of speech (e.g. verbs,
nouns etc.) possibly relevant to the image.
Language Model. This component is a statistical model
trained on the human captions for the training images. It
generates likely word sequences as captions, based on the
words recognized from the Visual Detector, without having
access to the input image. The set of the 500 most likely im-
age captions and the respective log-likelihood scores are for-
warded to the Caption Reranker. Notice that since the Lan-
guage Model does not see the image, the log-likelihood cap-
tures the linguistic likelihood of the sequence but does not
have a notion of how adequate the sentence is for the image.
Caption Reranker. The task of the component is to rerank
the captions generated from the Language Model and to se-
lect the best match for the image. The Reranker uses multi-
ple features including the similarity between the vector rep-
resentations of both images and captions, the log-likelihood
of the sentence from the Language Model, and the length of
the sequence. The caption with the highest ranking score is
selected as the final best caption.
Dataset. All components are individually trained on the
MSCOCO dataset (Lin et al. 2014), a case library of cap-
tioned photos, constructed to define the image captioning
challenge. The database contains 160,000 images as well
as five human-generated captions for all images. We use
images randomly sampled from the validation part of the
dataset to evaluate our approach.

Pandora
Problem
We seek to develop tools that provide more transparent
views on performance for system designers. The tools
should help designers to understand when and how machine-
learned classifiers make mistakes. The approach assumes
that the system is composed by a set of modules or com-
ponents and that the inputs and outputs of the components
and the system are interpretable by people. Interpretability
facilitates analyses of content via human computation. For
interpretable, component-based systems, performance views
serve as analytical summaries of system quality that answer
the following questions:
Q1: When does the system fail? - For a system with a rich in-
put domain or a highly dimensional feature space, evaluation
metrics like accuracy, AUC or multi-class confusion matri-
ces do not depict a complete view of system performance.
Often, relying only on these generic metrics can hide serious
underlying quality issues, especially for data partitions with
low representation. Hence, recognizing the input character-
istics that are more prominently related to failure, is essential

to engineering accountable systems.
Q2: How does the system fail? - When a system is composed
or makes use of different machine learning services, errors
can originate from different parts of the system. It is also
not uncommon that failure is caused as a combinatorial state
of multiple smaller and hidden errors in the composing com-
ponents. Although blame assignment is challenging for such
systems (Sculley et al. 2015; Nushi et al. 2017), it is never-
theless important to know how internal component failures
and uncertainties are related to the overall system failure.

Performance views
Pandora uses two types of data to answer the above ques-
tions. Content-based views use content features to describe
when the system fails, while component-based views use
component state features to explain in depth how the system
fails. Content and component feature data can be collected
from two different data sources: human feedback in the form
of crowdsourcing tasks (ground-truth data) or internal sys-
tem data flows (noisy system signals). Table 1 shows in a
grid style a summary of the two dimensions (data type and
data source) along with the features being used from each
view for the image captioning system. Below, we explain
in detail the meaning of these features. In the last part of
the section, we also briefly describe how this process would
look for another multi-modal interactive system.
Content-based views create a mapping between the input
and the overall system failure. For the image captioning sys-
tem, each input instance is represented by a list of objects
and activities. For views created from crowdsourcing data,
this list consists of words (verbs or nouns) that crowdsourc-
ing workers think should be mentioned in the final caption.
This gives a ground truth perspective to the view and helps
system designers to understand the types of input content
that the system handles well (or not). Such perspective can
also be helpful for reporting performance to customers and
end users.

For views created from system data, the list of objects and
activities is the list of words recognized from the Visual De-
tector as shown in Figure 2. Since automatic detection is not
always correct, this perspective provides information on how
the system’s self-knowledge relates to its output state. For
example, by using this analysis, one can identify detections
that are commonly linked to system failure.
Component-based views model how internal component
dynamics lead to errors. Depending on the data source, fea-
tures here can express: i) the component output quality as
judged by crowdsourcing workers, or ii) the component out-
put confidence as perceived by the component itself. The
component output quality is evaluated as follows. For ev-
ery image in the evaluation dataset, we expose the output
of each component to workers and ask them to correct the
output, taking into consideration the task of the component
and the system as a whole. This feedback simulates the per-
formance of the system with ground-truth output for com-
ponents, which can then be used to compute quality per-
formance metrics. For instance, workers can flag sentences
generated by the Language Model that have bad language
or no commonsense (see Table 1). The number of such



Crowd Data
(What should an ideal system know?)

System Data
(What does the system know?)

Content View
(When does the system fail?)

ground truth objects list detected objects list
ground truth activities list detected activities list
ground truth count OBJECTS detected count OBJECTS

ground truth count ACTIVITIES detected count ACTIVITIES

Component View
(How does the system fail?)

precision,recall (objects VISUAL DETECTOR) avg,std,max,min(confidence VISUAL DETECTOR)
precision,recall (activities VISUAL DETECTOR) avg,std,max,min(confidence LANGUAGE MODEL)

language,commonsense (sentences LANGUAGE MODEL) avg,std,max,min(confidence CAPTION RERANKER)
satisfaction (top10 captions CAPTION RERANKER) confidence BEST CAPTION → VISUAL DETECTOR

confidence BEST CAPTION → LANGUAGE MODEL

Table 1: Performance views generated by Pandora for the image captioning system and the respective data used as predictive
features. Crowd data refers to features that can be acquired only with human input, and system data refers to features that can
be extracted from the internal data flowing in the system.

sentences per image can then be used as a predictive and
descriptive feature for output failure. The views built using
output quality data show the sensitivity of the system to in-
ternal errors.

The component view that models the relationship between
component confidence scores and system errors makes use
of a number of handcrafted features, computed as fol-
lows: For every image, we aggregate the confidence of the
component as the average, standard deviation,
maximum, and the minimum of all output scores. In partic-
ular, the maximum(confidence CAPTION RERANKER) feature rep-
resents the final confidence score of the Caption Reranker
for the best caption. Besides the individual component
scores, the feature set also includes scores linked to the best
caption with respect to previous components in the pipeline.
For example, if the final caption for an image is ”A man
flying through the air on a snowboard”, we aggregate the
Visual Detector confidence scores for the composing words
(man, flying, air, snowboard). These features are reflected
in features confidence BEST CAPTION → VISUAL DETECTOR. Sim-
ilarly, the feature confidence BEST CAPTION → LANGUAGE MODEL

contains the log-likelihood of the best caption according to
the Language Model.

View creation and reports
Now, we describe the process of creating performance views
in Pandora and the specific reports associated with each
view. The end-to-end process is focused on a sample eval-
uation dataset chosen by the system designer. The sample
might come from the training or test dataset depending on
the use case, depending on the goal of explaining the current
system behavior on the training data versus debugging errors
arising when challenged with a previously unseen test set.
Pandora can create generic as well as clustered reports for a
given performance view. Generic reports analyze the evalu-
ation dataset as a whole, while clustered reports decompose
the analysis according to distinct semantic clusters. As we
show in the experimental evaluation, although there is value
in extracting generic failure information, clustered reports
are more predictive for system performance and they dis-
cover cluster-specific errors, which cannot be identified via
generic views.

View generation is a two-step process: 1) clustering the
evaluation dataset based on content signals, and 2) detailed
reporting globally and per cluster. The process generalizes
to all views created in Pandora.
Evaluation dataset clustering. To decompose performance
evaluation, Pandora initially clusters the evaluation dataset
into topical clusters. Each image is represented as a docu-
ment of objects. Depending on which data source the sys-
tem designer wants to use (crowd data or system data), the
list of objects comes either from the object terms reported by
crowdsourcing workers or recognized by the Visual Detec-
tor. Note that this list is necessary for any type of clustered
performance views (both content and component-based) be-
fore generating any report.

We use agglomerative hierarchical clustering (Jain and
Dubes 1988) and the Euclidean distance as a similarity mea-
sure. While other clustering algorithms may also be relevant,
the hierarchical clustering representation brings important
usability advantages as it gives freedom to users to reduce
the number of clusters by easily merging together similar
clusters whose performance they want to explain and evalu-
ate jointly. For example, the crowd data clusters in our anal-
ysis contain both snowboarding and skiing separately,
but it may also be useful to merge and analyze them together
as they share the same parent in the cluster hierarchy.
Reports. The content of failure analysis reports (generic and
clustered) consists of:
1- Evaluation metrics are computed from human satisfac-
tion provided by crowd workers. Clustered variants aggre-
gate satisfaction over selected clusters, highlighting the top-
ical strengths and the weaknesses of the system.
2- Decision-tree performance predictors are trained as
generic or separate decision tree classifiers per cluster us-
ing the features part of the performance view. The choice of
decision trees was motivated by the interpretability proper-
ties of these classifiers. For example, a branch of a decision
tree from the component-based views for the image caption-
ing system may summarize failure prediction as: ”If the pre-
cision of the Visual Detector is less then 0.8 and there are
less than five satisfactory captions for humans in the Cap-
tion Reranker, the system fails in 95% of the cases.”. More-
over, system designers can zoom into the decision tree and



explore the concrete instances classified in each leaf. This
functionality makes decision trees for performance predic-
tion a tool for fine-grained debugging, error reproducibility,
and, perhaps most importantly, a tool for humans to decide
when to complement and override the system.

Finally, it is important to note that such decision tree clas-
sifiers are not unique. As the process of training decision
trees tends to find a minimal set of features as splitting con-
ditions, the tree frequently omits features that are correlated
with the parents. For more extensive explorations, the sys-
tem designer can intentionally leave a feature out of the tree
to investigate other failure conditions in depth or generate
feature rankings, as described next.
3- Feature rankings identify the most informative features
in the view for predicting system failure. We compute the
mutual information between the feature and system perfor-
mance (i.e. human satisfaction) as the ranking criterion. The
same criterion is used for splitting nodes in the decision
trees. Mutual information not only captures the correlation
between two variables but also other statistical dependencies
that can be useful for failure prediction. Knowing the most
important features is beneficial to having a full view of all
the failure conditions in the system.

Applications to other systems
Pandora is designed for component-based machine learn-
ing systems with human-interpretable input and output for
components and for the performance of the system as a
whole. We use image captioning as a case study. However,
the methodology generalizes to other composable machine
learning systems. As an example, consider a multimodal as-
sistant that helps users through single-turn dialog interac-
tions. This hypothetical system combines computer vision
for recognizing users as well as speech recognition and di-
alog systems to understand and communicate with users.
The input data is the combination of face images with sound
files for human speech. The output is the system response to
the human user. This system satisfies the conditions above;
the input instances with images and speech are human in-
terpretable as humans can analyze whether the image con-
tains a human face, or transcribe speech. The output of each
component (face recognizer, speech recognizer and dialog
manager) is human interpretable. Finally, humans can also
evaluate the overall system behavior for satisfaction.

Once these properties are verified, adapting Pandora to a
new system requires customizing the data collection steps to
the system at hand. These customization steps include de-
signing human computation tasks for analyzing the input
data content (labeling images and transcribing sound), for
correcting the output of each component (face recognition,
speech recognition and dialog manager) and for evaluation
(analyzing final user satisfaction). In addition to the details
of acquiring human effort, customization may also include
generating additional features describing system execution
to enhance the features given in Table 1 on demand. The an-
alytical process of Pandora would operate in the same way,
but on revised features (as per Table 1) developed for the
new system to adequately summarize the content, compo-
nent execution, and final satisfaction.

Crowdsourced Data Collection
In addition to the data flowing between the system compo-
nents, Pandora makes significant use of data from crowd-
sourced micro-tasks. These tasks are used for three pur-
poses: 1) system evaluation (for all views), 2) content data
(for clustering and for all views using crowd assessments
of ground-truth), and 3) component quality features (for
component-based views with crowd data). For these pur-
poses, we leverage the task design and dataset we collected
in prior work for troubleshooting the image captioning sys-
tem (Nushi et al. 2017). The dataset had been collected
mainly for simulating component fixes with crowdsourcing.
We adapted the fix data by generating features that directly
express the ground truth input content and the original qual-
ity of each component.
System evaluation. There are multiple evaluation metrics
for image captioning, including BLEU(1-4) (Papineni et al.
2002), CIDEr (Vedantam, Zitnick, and Parikh 2015) and
METEOR (Banerjee and Lavie 2005). These metrics are
largely adopted from the machine translation domain. They
compare the automatic caption to five image captions re-
trieved from crowdsourcing workers that are made available
as part of the MSCOCO dataset. While this evaluation is
generally less expensive than directly asking people to re-
port their satisfaction, it does not always correlate well with
human satisfaction (Anderson et al. 2016). Hence, we center
this study around direct assessments of human satisfaction
with the system output. For this task, we show workers an
(image, caption) pair and ask them whether they find the
caption satisfactory ı̈f the caption was used to describe the
image to a visually impaired user.̈
Content data collection. As we describe each input with a
list of recognized words, the task for ground-truth content
data collection corresponds to the task of evaluating the Vi-
sual Detector. Here, workers correct the list of objects and
activities generated by the Visual Detector by adding or re-
moving items from the list. Workers are instructed to include
in the list only words relevant to be mentioned in the caption.
The resulting list after majority vote aggregation is consid-
ered as the input content for the image. The content is used
for i) building ground truth clusters from objects, and for ii)
generating content feature data where the presence of each
word constitutes a separate binary feature.
Component quality feature data collection. Component
views with crowd data work on the same clustering as the
content views. They build features that express the quality
of components. For the dataset on fixes acquired in prior
work (Nushi et al. 2017), crowd workers introduced repairs
to the component outputs. For the current study, we leverage
these fixes to evaluate the original quality state of the com-
ponents. For instance, by contrasting the output of the Vi-
sual Detector before and after the crowd intervention, we can
measure both its precision and recall. Similarly, by knowing
how many sentences are not commonsense or with bad lan-
guage from the Language Model, it is possible to find out
the percentage of good (or bad) sentences generated by the
component. Finally, for the Caption Reranker, workers are
allowed to select up to three good captions from the top 10
captions. Based on these signals, we compute features that



Description Top 5 objects Satisfactory
baseball baseball:field:bat:game:ball 0.800
kitchen kitchen:counter:cabinets:stove:oven 0.586
waterfront water:ocean:beach:man:boat 0.604
snowboard snow:snowboard:slope:hill:mountain 0.750
man man:phone:cell:tie:hat 0.455
tennis tennis:court:racket:player:game 0.656
trains train:tracks:station:platform:engine 0.774
city scene street:city:traffic:road:people 0.667
vegetables vegetables:broccoli:food:plate:table 1.000
desk desk:keyboard:laptop:table:computer 0.724
all clusters 0.578

Table 2: System evaluation - Crowd data content clusters.

Cluster Human
agreement

Content
view

Component
view

baseball 0.860 0.900 0.850
kitchen 0.807 0.767 0.700
waterfront 0.871 0.670 0.750
snowboard 0.863 0.950 0.850
man 0.867 0.675 0.842
tennis 0.863 0.825 0.775
trains 0.884 0.775 0.833
city scene 0.813 0.710 0.700
vegetables 0.832 1.000 1.000
desk 0.786 0.867 0.733
all clusters 0.841 0.756 0.747
generic model 0.597 0.711

Table 3: Failure prediction - Crowd data content clusters.

tell us whether (and how often) the best Reranker caption is
selected from workers and whether workers have found any
caption in the top 10 set that could be satisfactory.
Quality control. For all crowdsourcing tasks we applied the
following techniques for quality control: 1) worker training
via examples and online feedback, 2) low-quality work de-
tection based on worker disagreement, and 3) small batching
to avoid worker exhaustion and bias reinforcement.

Experimental Evaluation
We now report on the main findings obtained with applying
our approach to the image captioning system. The study is
based on an evaluation dataset of 1000 images selected
randomly from the validation dataset in MSCOCO (Lin et al.
2014). The evaluation reports that we present here are con-
crete examples of reports that can be generated with Pandora
for various performance views.

System evaluation
As part of system evaluation, Tables 2 and 4 summarize
clusters that were discovered with ground-truth crowd data
and system data respectively, and report system performance
for each cluster. Each row shows the top five most frequent
words for the cluster and the fraction of instances for which
crowd workers found the image caption satisfactory. Due to
space restrictions, we present results for 10 (out of 30) rep-
resentative clusters.

Description Top 5 objects Satisfactory
baseball baseball:player:man:ball:field 0.628
kitchen sink:kitchen:stove:refrigerator:cabinets 0.609
tennis court:man:player:tennis:ball 0.523
vegetables plate:table:vegetables:broccoli:food 0.889
animals dog:cat:man:bear:bed 0.321
animals giraffe:zebra:field:giraffes:zebras 0.800
trains train:tracks:street:man:bus 0.613
skateboard man:skateboard:skate:trick:person 0.700
surfing surfboard:board:wave:water:man 0.900
desk computer:table:desk:laptop:keyboard 0.556
all clusters 0.578

Table 4: System evaluation - System data content clusters.

Cluster Human
agreement

Content
view

Component
view

baseball 0.851 0.890 0.790
kitchen 0.817 0.683 0.783
tennis 0.864 0.770 0.790
vegetables 0.852 0.950 0.967
animals 0.845 0.813 0.777
animals 0.890 0.800 0.925
trains 0.907 0.850 1.000
skateboard 0.870 0.950 0.750
surfing 0.940 0.900 0.900
desk 0.775 0.650 0.800
all clusters 0.841 0.786 0.780
generic model 0.628 0.678

Table 5: Failure prediction - System data content clusters.

Result 1: System performance is non-uniform and varies
significantly across topical clusters. The tables highlight
with green clusters where the system has a high human sat-
isfaction rate (≥ 0.75) and with red for those with low hu-
man satisfaction rate (≤ 0.65). For example, we see that the
captioning system has a much better performance in crowd
data clusters talking about baseball than in clusters about
kitchen. Decomposing system performance in this form,
provides system designers with insights about the topical
strengths and weaknesses of their system.
Result 2: Reports generated for crowd and system data clus-
ters reveal different insights about the system. By contrast-
ing results in both tables, we see that the baseball cluster
constructed by crowd annotations has a higher satisfactory
rate than the same cluster built with annotations detected by
the Visual Detector: 0.8 versus 0.628. This demonstrates that
although the system does well for images that indeed contain
baseball, it performs poorly for images where the Visual De-
tector recognizes words related to baseball. This observation
provides hints that the Visual Detector has a high recall but
low precision for words relevant to the baseball topic.

Performance prediction
Next, we evaluate the performance prediction accuracy of
decision trees generated by Pandora, as shown in Table 3
and 5. The accuracy here expresses the fraction of instances
for which the decision tree can predict whether the final im-
age caption is going to be satisfactory to crowd workers.



Generic model
Crowd data

tennis
Crowd data

Generic model
System data

tennis
System data

cluster OBJ. count OBJ. cluster OBJ. people
cluster ACT. cluster ACT. cat racquet
vegetables grass cluster ACT. count OBJ.
count OBJ. people sitting swinging
riding net bench grass
zoo swinging man riding
sitting man count OBJ. women
broccoli holding bear skate
snowboarder crowd dog sign
rice swing broccoli sitting

Table 6: Feature rankings for content views built from a sin-
gle model and cluster-specific models (tennis).

Since this is a highly subjective task and people may have
slightly different expectations, we include human agreement
as a point of reference, i.e., how many workers agree with
the majority vote aggregation. The tables highlight in red
clusters with the lowest agreement. The main observation
with respect to human agreement is that workers have low
agreement for images that contain a high number of possi-
bly relevant objects (e.g., kitchen, desk).

The prediction accuracy per cluster is averaged over five
folds of cross validation within the cluster data. The last two
rows of each table show i) the overall accuracy of decision
trees for each view per cluster (i.e., all clusters), and ii) the
accuracy of views if they would use a single generic decision
tree trained on non-clustered data (i.e., generic model).
Result 3: Cluster-specific models are more accurate in pre-
dicting system performance due to the non-uniform distri-
bution of errors and as we show in the next reports, the fea-
ture set most predictive for failure is also cluster specific.
The discrepancy between generic models and cluster mod-
els is lower for component views. This shows that condition
rules expressing either the components’ quality or their con-
fidence generalize better than rules about content.
Result 4: Content views and component views are comple-
mentary to each other in terms of describing and predicting
failure. Although, we do not observe overall differences in
the prediction accuracy, for particular clusters one type of
view can be better than the other as they describe different
failure conditions. For instance, for images where it is cru-
cial to mention specific terms (e.g., snowboard, tennis),
content views are more accurate.
Result 5: Performance views trained on system data are at
least as accurate as views trained from crowd data. This
confirms that features expressing the internal operations
of the system can indeed be informative. Although they
provide observational evidence versus ground-truth assess-
ments, they contain useful information regarding system
confusion. This result highlights the promise of building sys-
tems that can predict system failure in real time.

Feature rankings
We also make available feature rankings according to their
mutual information with human satisfaction. We note that
not all the highly ranked features are present in the final

Generic model — Crowd data
satisfaction(top10 captions CAPTION RERANKER)
precision(objects VISUAL DETECTOR)
cluster OBJECTS

recall(objects VISUAL DETECTOR)
commonsense(sentences LANGUAGE MODEL)
Generic model — System data
max(confidence BEST CAPTION → VISUAL DETECTOR)
max(confidence VISUAL DETECTOR)
avg(confidence VISUAL DETECTOR)
cluster OBJECTS

avg(confidence BEST CAPTION → VISUAL DETECTOR)

Table 7: Feature rankings for component views.

decision tree. This is because the training algorithm adap-
tively selects as next splitting conditions those features that
are most informative after the parent feature has been ob-
served. Thus, feature rankings are still necessary for com-
pletely understanding failure conditions.

Table 6 shows the 10 best features extracted from con-
tent data for the tennis cluster and for the whole
evaluation dataset (generic model). The table highlights
in gray the features observed in both generic and cluster
models.
Result 6: The sets of best features for single models and
cluster-specific models have low intersection. Features in
the intersection are generic features (e.g., clusterings and
counts. However, as we show in our previous results, these
features are not sufficient for making instance-based deci-
sions that hold for specialized clusters.
Result 7: Best content features from crowd data can identify
terms that indicate whether the system will perform either
very well or very poorly. For example, the system has good
satisfactory rate for images that contain broccoli. Best
features from system-generated content data have a similar
function but they are automatically detected terms. From our
observations, many of these features are misrecognitions. A
prominent example is the feature cat. The Visual Detector
detects a cat for 20% of the images, while only 3.8% of the
images contain a cat. This result shows that some system
execution signals (e.g.,, cat detection) can identify system
confusion and these signals can be discovered by Pandora.

Table 7 shows the best features for component views from
both crowd and system-generated data. By comparing these
sets with those for particular clusters, we note that the inter-
section is larger for component views. Nevertheless, we no-
tice visible differences in the exact rankings and in the way
how these features are used to construct splitting conditions
for the decision trees.
Result 8: Component data views reveal concrete facts about
system failure such as the respective importance of precision
and recall of the Visual Detector, and the confidence of the
Visual Detector on the terms included in the final caption.

Decision tree examples
To illustrate the failure conditions learned by decision trees
in Pandora, we show tree examples for different types of



Figure 3: Content view with crowd data for kitchen.

views. The leaf nodes represent a set of (image,caption) in-
stances, which the decision tree classifies as of the same per-
formance (i.e., green for satisfactory captions and red oth-
erwise). The images displayed below leaf nodes are repre-
sentative examples for the set. The samples tuple shows the
number of instances with non-satisfactory captions in its first
element and the number of instances with satisfactory cap-
tions in the second. The ratio between the two defines how
discriminative a leaf node is. This information is available
to system designers who can interactively explore failure
leaves.

Figure 3 visualizes the decision tree for a content view
from crowd data for the cluster kitchen. An example of
a condition failure that this tree expresses is that the system
has a high failure rate for images where someone is stand-
ing. After investigating the images in this leaf and compar-
ing outputs with human-generated captions, we find that the
standing activity is too generic and that people rate more
highly captions referring to more specific kitchen-related ac-
tivities (e.g., cook, prepare).

Figure 4 shows a content view built with system data
for the cluster baseball. Interestingly, from analyzing
the right tree branch (kite=1), one can notice that these
are images for which the Visual Detector recognizes both
baseball and kite scenes. In fact, the caption is wrong
most of the time when the Detector recognizes a kite in this
cluster. The system on the other hand performs very well for
images in which it does not detect a kite and it detects less
than 12 objects.

To illustrate more general failure situations, Figure 5 dis-
plays a simplified generic-model tree from a component
view with system data (component confidences). The tree re-
veals interesting condition rules to the system designer. For
example, it conveys that the system is more likely to fail for
instances where the terms mentioned in the final best caption
have a low confidence from the Visual Detector (≤ 0.92).

Related Work
Failure explanation. There has been increasing interest
in the intelligibility of algorithmic decision making in the
private and public sectors (Goodman and Flaxman 2016).

Figure 4: Content view with system data for baseball.

Figure 5: Single-model component view with system data.

The European Union’s General Data Protection Regula-
tion3 (GDPR) contains articles on the right of explanation
for consequential decisions made in an automated man-
ner. DARPA’s project on Explainable AI (Gunning 2017)
is aimed at stimulating research to create a suite of ma-
chine learning techniques that produce more explainable
models, while maintaining a high level of performance.
These interests are closely related to the challenges of trans-
parency and interpretability in machine learning (Caruana
et al. 2015; Ribeiro, Singh, and Guestrin 2016b; 2016a;
Poursabzi-Sangdeh et al. 2017; Lakkaraju et al. 2017).

Previous work in error detection (Zhang et al. 2014;
Bansal, Farhadi, and Parikh 2014) and model explanation
(Baehrens et al. 2010) focused on individual models. Pan-
dora widens the scope with analyses of failures for inte-
grative systems that leverage multiple components. Related
work on component-based systems have been aimed at find-
ing weakest links in learning pipelines (Parikh and Zitnick
2011) and troubleshooting by identifying the best compo-
nents to fix (Nushi et al. 2017). Pandora is complementary
to these approaches by providing rich, detailed explanations
of error conditions. Related work includes efforts on pre-
dicting the behavior of problem-solving systems (Horvitz et
al. 2001; Kautz et al. 2002) via learning jointly from evi-
dence about attributes of input instances and about system
operation. Other works have used decision trees (Chen et al.
2004), support vector machines (Widodo and Yang 2007),

3https://www.eugdpr.org/



and Bayesian networks (Breese and Heckerman 1996) for
diagnosing (non-learning) machine failure.
Human-AI systems. Human computation has traditionally
been an integral part of artificial intelligence systems as a
means of generating labeled training data (Deng et al. 2009;
Lin et al. 2014). Most recently, there is increasing inter-
est in human computation as a framework for enabling hy-
brid intelligence systems (Kamar, Hacker, and Horvitz 2012;
Kamar 2016) as forms of fundamental human-machine col-
laboration. A recent study (Vaughan 2017) on use cases
for crowdsourcing emphasizes potential and current benefits
of seamlessly integrating human computation with machine
learning. Related efforts include research on interactive ma-
chine learning (Amershi et al. 2014; Ware et al. 2001) for
building systems that interactively learn from their users.

In the context of system performance analysis, human in-
put has been leveraged for system evaluation (Steinfeld et
al. 2007; Shinsel et al. 2011) and testing (Groce et al. 2014;
Attenberg, Ipeirotis, and Provost 2011). Other relevant work
on system explanation (Kulesza et al. 2015) introduces the
concept of explanatory debugging, where the system ex-
plains to users the rationale behind predictions of a single
classifier, and users correct erroneous outputs for person-
alizing the system. Our approach extends these efforts by
explaining the behavior of component-based systems rather
than single classifiers.

Conclusion and Future Work
We presented Pandora, a hybrid human-machine approach
to analyzing and explaining failure in component-based ma-
chine learning systems. The methodology can provide ma-
chine learning practitioners with insights about performance
via a set of views that reveal details about failures related to
the system input and its internal execution. We demonstrated
Pandora with an application to an image captioning system.
The results show the power of Pandora as a new kind of lens
on the performance of component-based AI systems that can
reveal details about failures hidden in the aggregate statistics
of traditional metrics.

We see great opportunity ahead for employing the meth-
ods to inspect and refine the operation of inferential
pipelines. Future directions with this work include the con-
ceptualization of views that can jointly cluster different
types of failures and system execution signals and exten-
sions of the methods to provide insights about less inter-
pretable, monolithic learning systems.
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