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ABSTRACT 

Online services rely on unique identifiers of machines to tailor of-

ferings to their users. An implicit assumption is made that each ma-

chine identifier maps to an individual. However, shared machines 

are common, leading to interwoven search histories and noisy sig-

nals for applications such as personalized search and advertising. 

We present methods for attributing search activity to individual 

searchers. Using ground truth data for a sample of almost four mil-

lion U.S. Web searchers—containing both machine identifiers and 

person identifiers—we show that over half of the machine identifi-

ers comprise the queries of multiple people. We characterize varia-

tions in features of topic, time, and other aspects such as the com-

plexity of the information sought per the number of searchers on a 

machine, and show significant differences in all measures. Based 

on these insights, we develop models to accurately estimate when 

multiple people contribute to the logs ascribed to a single machine 

identifier. We also develop models to cluster search behavior on a 

machine, allowing us to attribute historical data accurately and au-

tomatically assign new search activity to the correct searcher. The 

findings have implications for the design of applications such as 

personalized search and advertising that rely heavily on machine 

identifiers to custom-tailor their services. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval—search process; selection process. 

Keywords 

Search activity attribution; Multi-user settings. 

1. INTRODUCTION 
User identifiers are central to a range of applications on the Web, 

including behavioral analysis [40], personalized search [36], and 

online advertising [7]. These machine identifiers are assigned to the 

machine via mechanisms such as browser cookies or toolbars. With 

single identifiers tied to a machine, applications and services oper-

ate under the implicit assumption that identifiers refer to users. 

However, for shared machines in homes and workplaces this is of-

ten an erroneous assumption. Although recent estimates suggest 

that 75% of U.S. households have a computer, in most households 

machines are shared between multiple people [20]. Different peo-

ple may use the shared machine at different times, but to a remote 

observer all activity is associated with a single identifier, and peo-

ple’s search behaviors will be intertwined in search logs. This cre-

ates a noisy behavioral signal, and importantly, a challenge for an-

alyzing search behavior, especially long-term behavior that has 

utility in many applications, such as search personalization [37]. 

Let us consider some real-world data gathered from a panel of mil-

lions of Web searchers recruited by comScore (comscore.com), an 

Internet analytics company. In addition to a machine identifier, 

similar to that obtainable via Web browser cookies and other appli-

cations, panelists have a person identifier and are required to sign-

in prior to use to indicate that they are searching on the machine at 

a particular time. Since we have both machine identifiers and per-

son identifiers, we can compute the frequency with which multiple 

people are observed searching on a particular machine, as well as 

other characterizations of searching and searcher interests reported 

later. We can also use these data as ground truth in developing mod-

els to estimate the number of searchers within a machine identifier, 

and in attributing search activity observed historically to specific 

searchers. Figure 1 shows the fraction of machine identifiers in the 

dataset that are comprised of different numbers of searchers.  

It is striking from the figure that 56.5% of machine identifiers com-

prise the search activity of more than one person. Although we re-

port statistics from only one data source, the data are purposely 

gathered from a representative sample of United States households 

[21]. The mean and median number of searchers per machine ob-

served in the data are 2.39 and 2 respectively, aligning well with 

U.S. census estimates on the size of households (mean=2.55, cen-

sus.gov/hhes/families). We note that the comScore data used in our 

study are not proprietary; other researchers can purchase the logs 

from comScore, and can replicate and extend our findings. 

We envisage that the performance of personalization and ad-match-

ing would likely be enhanced if user-centric signals and analyses 

were used. We also see privacy benefits of being able to accurately 

segregate searcher activity within a machine. Providing a means to 

preventing the unintended sharing of sensitive information between 

the searchers on the same machine and help ensure that only nec-

essary information is shared with search providers [25][26]. De-

spite the importance of accurately attributing search activity, to our 

knowledge, we know of no prior research on this topic beyond the 

level of machine identifiers. We address this shortcoming in this 

paper by characterizing variations in search behaviors within ma-

chines and developing predictive models to assign observed search 

activity to the correct individual. In doing so, we can capitalize on 

well-documented aspects of human behavior such as the bursty na-

ture in which human events typically occur [4]. 

Figure 1. Percentages of machine identifiers in our dataset  

comprised of each number of searchers (�), from 1 to 10+. 
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We make the following research contributions with our work: 

• Introduce the challenge of search activity attribution and 

through empirical analysis demonstrate its potential signifi-

cance for research and practice in Web search engines; 

• Characterize key variations in behavioral, temporal, and topi-

cal signals associated with differences in the number of indi-

vidual searchers associated with a particular machine; 

• Develop models to accurately predict the presence of multiple 

searchers associated with a machine identifier using a range of 

signals, and using regression to quantify the likely number of 

searchers associated with an identifier. This inference alone 

could help decide which identifiers contain noise, inform de-

cisions about when long-term histories can be trusted, and 

when more computationally-expensive methods, such as clus-

tering of search histories, need to be applied, and; 

• Leverage the estimated number of searchers from the previous 

step, we cluster search activity based on a range of similar fea-

tures and show that we can accurately assign new search ac-

tivity to the correct searcher. The estimated searcher count 

from the regression alone is insufficient since we do not have 

a representation of those searchers’ activity, and need such a 

representation to handle the assignment of new queries. 

We focus on the Web search domain given the nature of the data 

available and its importance, but the activity attribution challenge 

applies to a number of other domains including online advertising, 

audio signal processing, and fraud detection. 

The remainder of this paper is structured as follows. Section 2 de-

scribes related work in areas such as behavioral analysis and per-

sonalization. Section 3 provides an overview of the data used in the 

study. Section 4 presents a characterization of the data. Section 5 

describes the prediction of whether multiple searchers comprise a 

machine identifier (classification task) and estimating the number 

of searchers that contribute to the search activity associated with a 

machine identifier (regression task). Section 6 uses the output of 

the regression and through clustering, addresses the challenge of 

assigning activity from a particular machine identifier to the correct 

searcher. We discuss our findings and their implications for the de-

sign of online services in Section 7, and conclude in Section 8. 

2. RELATED WORK 
Related work on this topic falls into a few key areas: (1) log-based 

analysis of search activity, (2) individual differences in search be-

havior (which could help differentiate searchers in logs), (3) per-

sonalization of Web search and advertising (capitalizing on differ-

ences in searcher interests), and (4) related application domains 

(namely Website access analysis, fraud detection, and blind signal 

separation). We discuss each of these research areas in turn. 

Logs of search behavior have been analyzed extensively in the Web 

search and data mining communities to better understand how peo-

ple search [40], predict their next online actions [16][27], predict 

their future interests [18], improve search engines [23][35], and un-

derstand in-world activities from long-term search log data [30]. 

The longer-term analysis of behavior in particular has leveraged 

machine identifiers assigned based on Web browser cookies or add-

ins to attribute actions from a single identifier to the same searcher 

to study variations in behavior and interests over time [30][35][40]. 

However, as shown in Figure 1, the machine identifiers used in log 

analysis may not be always reflect a single searcher’s behavior. 

Information scientists have studied individual differences in search 

strategies, tactics, and performance, and other factors such as cog-

nitive styles and domain expertise [2][6][31][38] that can influence 

search behavior and task outcomes. These studies provided detailed 

modeling of search behavior, often coupled with surveys to under-

stand motivations, but have small numbers of searchers and tasks.  

Individual behavioral differences may help distinguish searchers. 

Large-scale log analyses examined the relationship between search 

and domain expertise and behavior [39][42]. White et al. [42] found 

that domain experts are more successful than novices (when search-

ing in the domain of their expertise) and achieve this success via 

different vocabulary, sites, and broader search strategies. White and 

Drucker [40] identified navigators (consistent search and browsing 

patterns) and explorers (varied search and browsing patterns). Re-

cent studies have examined differences in how people inspect result 

pages via eye-gaze tracking [17] and mouse cursor tracking [8]. 

Search preferences are personal and research on personalizing re-

trieval [33][36] has found that implicitly-gathered information such 

as browser history, query history, and desktop information, can be 

used to improve result relevance. These methods rely on accurate 

attribution of search activity to individual searchers. Short-term be-

havior from within the current search session has been used for re-

sult ranking [44] or predicting future search interests [41][43]. 

Teevan et al. [36] showed that personalization improves as more 

data was available about the current searcher. Long-term behavior 

has been used to personalize search [34], including using previous 

queries associated with the pursuit of similar information needs 

[35]. Models can use different sources, ranging from specific 

query-URL pairs which have high precision but low coverage [37] 

to more general methods using topical representations of searcher 

interests [29][34]. Similar methods have been applied in the adver-

tising domain, where behavioral data associated with an identifier 

are used to tailor advertisements accordingly [11][45]. Rather than 

storing an individual’s profile information on the server, other 

methods propos personalized advertising using client-side storage 

of profile information to address privacy concerns [7]. In all of 

these applications, models use long-term search behaviors for iden-

tifiers assumed to be associated with the same individual. However, 

searcher interests can differ greatly between individuals and failing 

to consider these variations can lead to noisy models and sub-opti-

mal personalization performance. Research has studied the reliabil-

ity of user identifiers but primarily tracking users across identifiers 

(ameliorating cookie churn) [14] and not on the segregation of ob-

served search activity within a machine identifier as we target here. 

Our research shares challenges with other research areas, such as 

clustering Web site visits, fraud detection, and signal processing. 

Website designers are interested in the interests and intentions of 

those who visit their sites. Cadez et al. [9] proposed model-based 

clustering of visits by topical interest. Moving beyond information-

seeking, the goal in fraud detection is to identify suspicious changes 

in a person’s behavior, where observed activity may not be repre-

sentative of their typical actions. This involves building a profile 

over time and looking for anomalous behaviors [19], a goal that 

does not match with the objectives of our work. In signal pro-

cessing, blind signal separation (BSS) [1][10] (and instantiations 

such as independent component analysis [13]) involves separating 

source signals from observed mixtures, typically the output of an 

array of sensors. BSS been successfully applied in domains such as 

communications [3] and medicine [28]. However, the applicability 

of these methods to our scenario is less clear. We employ methods 

widely adopted in the search and data mining communities. 

The methods presented in this paper extends previous work in a 

number of ways. The search activity attribution challenge is an im-

portant problem for search providers that, to our knowledge, has 

not been addressed previously. Second, we present a detailed char-

acterization of within-machine variance in search behavior that 



motivates the development of predictive models. Third, we develop 

models to attribute search activity to people and tackle the within-

device segmentation and assignment challenge. Finally, rather than 

searching for anomalous activity or isolating source signals as in 

related research, we focus on the accurate attribution of new search 

activity to a particular person and discuss the implications of this 

for Web search, advertising, and other online services. 

3. DATASET 
The data that we used for our study was provided under contract by 

the Internet analytics company comScore. comScore recruited an 

opt-in consumer panel that has been validated to be representative 

of the online population and projectable to the United States popu-

lation [21]. Millions of panelists provide comScore with explicit 

permission to passively measure all of their online activities using 

monitoring software installed on their computers. In exchange for 

joining the panel and providing search data, participants are offered 

a variety of benefits, including computer security software, Internet 

data storage, virus scanning, and chances to win cash or prizes. 

The data comprised unfiltered search queries on major Web search 

engines such as Google, Bing, and Yahoo, collected over a two-

year period from mid-2011 to mid-2013. The logs contained the 

text of queries, search result clicks, and the time that the events oc-

curred (in searcher’s local time). Importantly for our study, the logs 

also contained a machine identifier (assigned to the machine) and a 

person identifier (assigned to each person who used the machine). 

An application is installed on the machine to record search activity 

and searchers are required to indicate to the logging software that 

they are searching at any given time. Machine-based identifiers are 

used in a range of online applications, either through Web browser 

cookies or other mechanisms such as search-provider toolbars; so 

their use in this study reflects reality. To remove variability caused 

by cultural and linguistic variation in search behavior, we only in-

clude log entries from the English-speaking United States locale. 

Figure 1 in the previous section summarizes the number of people 

associated with each machine identifier. Table 1 shows some basic 

data statistics including the average duration in days, defined as the 

time between the first and last observed query on each machine. 

Using the data described above, we can compute and examine be-

havioral and temporal features. However, there are other features 

that may vary based on the number of searchers on a machine, in-

cluding the topic of the content viewed and the complexity of that 

information (e.g., perhaps reflecting age differences in searchers – 

suggesting the presence of more than one individual). To enable a 

richer analysis and of different feature sets we employed classifiers 

to assign topical labels to the clicks using the hierarchy from the 

Open Directory Project (ODP, dmoz.org) [5] and the complexity of 

the queries/results, based on estimates of their U.S. school grade 

level (on a 1-12 scale) [12]. We describe the behavioral, topical, 

temporal, and other features in more detail later in the paper. 

4. MULTI-USER SEARCH BEHAVIOR 
In this section, we seek to understand if and how search behavior 

ascribed to a single machine identifier changes with the number of 

searchers associated with that identifier (available via the person 

identifier in the comScore logs). More specifically, we examine 

several characteristics of machines with different number of search-

ers focusing on behavioral, temporal, topical, and content dimen-

sions. Our features are computed per day or per week (depending 

on the feature) to reduce the effects of differences in the search his-

tory length. We begin with the behavioral characteristics. 

4.1 Behavioral Characteristics 
At the outset of our analysis, we examined a number of different 

measures characterizing the search activity of searchers on single- 

and multi-searcher machines. In particular, we examine: (1) the 

number of queries per day, (2) the number of clicks per day, (3) the 

number of unique query terms per day, (4) the number of unique 

clicked URLs per day, and (5) the number of search sessions per 

day. To calculate the number of query terms, we convert all queries 

to lowercase, replace contiguous whitespace with a single space, 

and segment the query into terms using space as a separator. To 

segment queries into sessions, we introduce a session break if the 

searcher was idle for more than 30 minutes. Similar criteria have 

been used to demarcate search sessions, e.g., [16][40]. 

We notice that the average search activity from multi-searcher ma-

chines is significantly (� < 0.01) larger than the average search ac-

tivity from single-searcher machines, across all measures studied in 

the rest of this section, including temporal and topical-content fea-

tures. We report percentage gain for the different measures in Fig-

ure 2. All differences we report in this section are statistically sig-

nificant at � < 0.01 using two-tailed �-tests unless otherwise stated.  

4.2 Temporal Characteristics 
In addition to exploring properties of search activity on single- and 

multi-searcher machines, we also examine the temporal usage be-

havioral patterns as the number of searchers per machine increases.  

Day Entropy: One interesting characteristic of the temporal behav-

ior patterns may be the distribution of search queries across days. 

We might expect multi-searcher machines to have search activity 

that is more disparate across days (given different time constraints 

from work, schooling, etc.). To validate this hypothesis, we divided 

the observed queries into seven buckets corresponding to days of 

the week. We then compute the normalized entropy of the query 

distribution across days as: 

� = −∑ �(	
) log(�(	
))�
��
log(�)  (1) 

where � is the total number of outcomes (the seven days). A value 

of zero would suggest that there is no uncertainty in the daily dis-

tribution of queries (i.e., all queries occur on the same day of the 

week). While a value of one would suggest maximum uncertainty 

(i.e., queries are evenly distributed across all seven days). 

The day entropy of the identifiers is shown in Figure 3 for machines 

with 1–5 searchers using a box-and-whisker plot. The horizontal 

segments inside the boxes represent the median entropy, the top and 

Table 1. General statistics of the dataset used in our study. 

Statistic Value 

Total number of queries 576,470,390 

Total number of machines 1,748,425 

Total number of searchers 3,836,037 

Average queries / machine 328.89 (stdev=1279.80) 

Average duration (in days) / machine 126.07 (stdev=171.29) 

 

Figure 2. Percentage increase in search activity from  

multi-searcher machines vs. single searcher machines. 
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bottom of the box denotes the first and third quartiles, and the 

whiskers denote the maximum and minimum. We also added the 

mean as a circle. For simplicity, we ignored machines with more 

than five searchers since they account for less than 5% of the ma-

chines (see Figure 1). Figure 3 shows that as the number of search-

ers per machine grows, the entropy increases suggesting that ma-

chines with multiple searchers have more diverse daily usage pat-

terns and that this diversity grows as the searcher count increases.  

Time Entropy: We now consider another aspect of the temporal 

usage patterns concerning the time of the day at which the search 

activity occurs. We divide search queries into six different equally-

sized time buckets corresponding to following time ranges: morn-

ing (6am-10am), midday (10am-2pm), afternoon (2pm-6pm), 

evening (6pm-10pm), late night (10pm-2am) and overnight (2am-

6am). We compute the normalized entropy of the time buckets as 

described earlier. The results are shown in Figure 4. In a similar 

way to day entropy, we can observe is a clear trend of entropy in-

creasing as the number of searchers increases. One explanation is 

that searchers may have fixed time preference for when they search. 

4.3 Topic and Content Characteristics 
Topical and content information has been used extensively to 

model search behavior and to capture intent [34][43]. We wanted 

to understand the relationship between topic/content and the num-

ber of searchers per machine. This may help us understand whether 

topical profiles of single-searcher machines differ from those of 

multi-searcher machines (which could be useful for the prediction 

tasks described later). We examine three different aspects of topics 

and the nature of the content that searchers seek: (1) topic entropy, 

(2) readability level entropy, and (3) between-topic associations. 

Topic Entropy: We assigned a topic to each search query based on 

the plurality label of the topics assigned to its clicked URLs in his-

toric log data. To do this, we used the content-based classifier de-

scribed and evaluated in [5]. The classifier assigned ODP category 

labels to URLs. ODP is an open Web directory maintained by a 

community of volunteer editors. It uses a hierarchical scheme for 

organizing URLs into categories and subcategories. Many previous 

studies of Web search behavior have used ODP to assign topics to 

URLs, e.g., [32]. Queries that received no clicks were ignored. 

After assigning topics to queries, we calculate topic entropy as we 

described previously and we show the results in Figure 5. The fig-

ure shows that topic diversity increases as the number of searchers 

increases even though the difference are smaller than the variations 

in the temporal entropies, the differences between the means are 

still statistically significant at � < 0.05 using a two-tailed �-test. 

Readability Entropy: Another aspect that may be correlated with 

topicality is the readability level of the text of the queries. We might 

expect that the population of searchers sharing the same machine 

have different ages and this affects the sophistication of their search 

queries. We are likely to see low variance in readability level in 

single-searcher machines, but on multi-searcher machines the vari-

ance may be high, especially if the searchers are of different ages.  

Previous work has studied the problem of automatically assigning 

readability level to text [12]. The readability level of any text frag-

ment can be assessed by assigning a value on a 12-point scale cor-

responding to U.S. school grade levels. The reading level predictor 

adopts a language modeling approach using a multinomial Naïve 

Bayes classifier [12]. The entropy over the reading levels for ma-

chines with different number of searchers is shown in Figure 6. The 

figure shows that the variance in readability level clearly increases 

with searcher count suggesting it could help predict that count. We 

show in our findings later in the paper that this is indeed the case. 

Topic Association: Many search applications such as personaliza-

tion, query suggestion, targeted advertising are interested in an-

swering the following question: If a person searches for topic �, are 

they also likely to be interested in topic �? In order to understand 

whether there is a difference between such associations on single-

searcher machines and multi-searcher machines, we conducted the 

following experiment. We derived the association between all pairs 

of topics using queries from single-searcher machines. We refer to 

these the “true” associations. We also derive them from machines 

with multiple searchers assuming that behavior is not dependent on 

Figure 3. Box-and-whisker plot for day entropy for machines 

with diff. # searchers. Mean is dot. Median is horizontal line. 

Figure 4. Box-and-whisker plot for time entropy for machines 

with diff. # searchers. Mean is dot. Median is horizontal line. 
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Figure 5. Box-and-whisker plot for topic entropy for machines 

with diff. # searchers. Mean is dot. Median is horizontal line. 

Figure 6. Box-and-whisker plot for readability entropy with 

diff. # searchers. Mean is dot. Median is horizontal line. 
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the searcher count. If this assumption were correct, we would ex-

pect to observe no difference between the two ways of computing 

the associations. If that assumption is incorrect (i.e., we observe co-

occurring topics on multi-searcher machines that do not typically 

occur on single searcher machines), then we would expect to see 

differences between the outcomes of the two methods for compu-

ting associations. 

To compute topic associations, we assume that two topics �
 and �� 
co-occur if we observe two queries �
 and �� in the same time 

bucket (we use the same time buckets defined earlier in this section) 

such that the topic of �
 is �
 and the topic of �� is ��. Given this 

co-occurrence definition, we assess topic association by computing 

the normalized point wise mutual information between them: 

������
 , ��� = −log ���
 , ���
�(�
)�����

−log ���
 , ����  (2) 

To compare topic associations, we plot the distribution of all topic 

associations derived from single searcher machines versus multi-

searcher machines in Figure 7. We see from the figure that the as-

sociations from multi-searcher machines are over-estimating the 

true associations. This is also shown in Figure 8, which shows the 

percentage change in association between all topic pairs when com-

puted from multi-searcher machines as compared the true topic as-

sociations (90% of the pairs had a positive change). These findings 

show that when we observe topics co-occurring on the same ma-

chine that typically have low association, we may be able to reliably 

estimate that there are in fact multiple searchers on that machine. 

4.4 Summary 
In this section, we have characterized some key aspects of search 

behavior in single- and multi-searcher machines. We have shown 

that there are significant differences in terms of search activity vol-

ume and temporal usage patterns. We have also shown that, alt-

hough there are limited differences in topical variance across ma-

chines with different searchers, there are significant differences in 

terms of readability level (which may provide insight on searcher 

age) and topical associations. In the next sections, we describe 

models that leverage similar features to estimate the number of 

searchers per machine, cluster search behavior on a machine, and 

attribute historical search activity and correctly assign new activity. 

5. PREDICTING MULTI-USER SEARCH 
Important tasks in the attribution scenario are to be able to (a) esti-

mate whether a machine identifier comprises multiple searchers 

(binary classification), and (b) estimate the number of searchers 

whose search activity comprises that identifier (regression). Using 

features such as those described in Section 4 we developed predic-

tive models to perform these tasks. The true number of searchers 

on a machine ( ) is available from the comScore data. The esti-

mated number of searchers on a machine can be used to guide the 

application of clustering methods, such as  -means clustering [28], 

that we employ in Section 6. The binary classification task is less 

challenging than predicting the number of searchers, but could still 

have utility for a search engine. For example, the inference can help 

gate the application of more sophisticated, and computationally ex-

pensive, analysis of the search history from a particular machine 

identifier (such as clustering), or it can help decide whether person-

alization methods should be employed for an identifier even with-

out clustering. In this section, we report the performance on each 

task, beginning with the experimental setting and features used.  

5.1 Experimental Setting 
Using the data described Section 3, we extracted features of the his-

toric behavior from each of the 1.75M machine identifiers in a sim-

ilar way to the characterization in the previous section. The specific 

features are described in the next subsection, but they were in-

formed by the characterizations described thus far. As before, since 

there were varying history lengths in our data, and in longer histo-

ries we may be more likely to observe multiple searchers, we com-

puted all features normalized per day or the case of the few weekly 

features (e.g., day entropy as in Figure 3) normalized per week. The 

presence of variable history lengths closely resembles how the clas-

sifier would likely be used in practice: at some point it would be 

applied to historic logs, containing potentially different amounts of 

search history for each machine identifier in our logs. 

We used Multiple Additive Regression Trees (MART) [23] for 

both the classification and regression tasks. MART uses gradient 

tree boosting methods for regression and classification. Advantages 

of employing MART include model interpretability (e.g., a ranked 

list of important features is generated), facility for rapid training 

and testing, and robustness against noisy labels and missing values. 

We also experimented with filters on the total number of days re-

quired to include identifiers in the analysis (e.g., filtering to only 

those identifiers with at least seven days between the first and last 

observed query), and they had little effect on the performance of 

the predictive models learned. Therefore, we did not use such filters 

so as cover all identifiers and remove the need for a threshold. 

Ten-fold cross validation was employed across ten experimental 

runs and the performance numbers are reported as averages across 

those runs. Since the unit in the experiments was machine identifier 

and predictions are made at the identifier level, during the experi-

ment an identifier was either in training set or the testing set, but 

not both. Evaluating between machine identifiers in this way im-

proves the robustness and generalizability of our findings since the 

predictors could therefore scale to new, unseen machine identifiers. 

5.2 Features 
We devised around 70 features of the search behavior observed 

from the machine identifier. Table 2 presents a description of the 

specific features from each of the five classes that are used in our 

Figure 7. Distribution of topic pairs association from single- 

searcher machines (true dist.) and multi-searcher machines. 

Figure 8. % change (error) in topic association for multi-

searcher vs. single-searcher (truth). Positive change shows 

multi-searcher machines overestimate truth for 90% of pairs. 
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prediction experiments. Many of these were informed directly by 

the characterization performed in the previous section. The five 

classes and their features are summarized as follows. 

Temporal: These features describe the time at which the query is 

issued, in terms of time of day (in four-hour time buckets) and day 

of week, as well as variations in these features per number of unique 

time ranges and the entropy of those distributions defined as earlier. 

The rationale behind including the temporal features is that people 

may be likely to only access the machine at certain times given time 

constraints from commitments such as employment and schooling, 

as well as sleeping and eating. We include the entropy of searching 

for adult material since that is a sensitive subject area and uncon-

strained searching for pornography may be suggestive of fewer 

temporal limitations. We also include the timespan between queries 

and sessions as features, with the expectation that search activity 

may be sparser given fewer searchers associated with the machine. 

Topical: Since searchers may have different topical interests, we 

encoded a number of aspects of the topicality of the queries issued 

and the results selected. To do this, we employed two classifiers: 

(1) a content-based classifier that assigns topical categories from 

the top-two levels of the ODP (e.g., “Arts/Television”) to URLs as 

described earlier and in [5], and (2) a proprietary classier provided 

by the Microsoft Bing search engine that assigns topical categories 

to queries (e.g., images, movies, health); these are referred to here-

after as query categories. We compute a number of measures of the 

variation in the topic for the clicked URLs for the full category la-

bel, the top level only, and the first category accessed in the session, 

since that may more accurately reflect searcher intentions [9]. We 

also featurize changes in topics during query transitions to help rep-

resent the dynamics of the search interests. Finally, we focus on a 

number of specific classes which may be indicative of the number 

residents in the household and the number of searchers on the ma-

chine (e.g., the fraction of queries about shopping for child products 

(suggesting more searchers) or the fraction of queries on nightlife 

(suggesting fewer searchers)). We also compute the average dis-

tance (steps) in ODP, between pairs of topics accessed by searchers 

in sequence featurizing aspects of the topical focus. Finally, we fea-

turize the topical association that is shown as useful in Section 4.3. 

Behavioral: Motivated by the results of the behavioral characteri-

zation presented earlier in the paper (Figure 2), this captures aspects 

of the search behavior on the machine, and includes features such 

as the number of sessions, the number of queries, and average query 

length. The rationale is that significant variations in search behavior 

on machine may be attributable to multiple searchers. We also cap-

ture variations in the average click rank and the entropy of the 

clicks (how diverse those are on average, as in [15]). We also in-

clude the average historic frequency of queries from the Microsoft 

Bing search engine query logs (from a time period preceding the 

comScore logs used in this study) since this may provide insight 

into the nature of searchers’ information needs independent of 

query topic (e.g., less popular queries suggest specific needs). 

Content: These features capture variations in the nature of the in-

formation that searchers of the machine seek and access. The ra-

tionale is that with more searchers on a machine, there is likely to 

be more variation in the types of content accessed. This class in-

cludes information on the resources visited (URLs and Web do-

mains), and top-level domains such as .com and .org, shown to re-

flect searcher differences (in expertise) in previous work [41]. Note 

that this includes the readability level estimates for both the queries 

and the pages visited (using the classifier described in [12]), and 

variations in those estimates across queries and clicks in the search 

history. If there were multiple searchers, especially a mixture of 

Table 2. Prediction features. “P” denotes time-of-day class.  

Feature Feature Description 

Temporal class 
FractionWeekday % of queries on a weekday 

FractionWeekend % of queries on a weekend 

FractionQueries_MorningP % of queries at 6am–10am 
FractionQueries_MiddayP % of queries at 10am–2pm 

FractionQueries_AfternoonP % of queries at 2pm–6pm 

FractionQueries_EveningP % of queries at 6pm–10pm 
FractionQueries_LateNightP % of queries at 10pm–2am 

FractionQueries_OvernightP % of queries at 2am–6am 

NumTimeBucketsP # of time buckets per day 
NumDays # of days per week 

TimeEntropyP �(Time bucket distribution) per day 
DayEntropy �(Day bucket distribution) per week 
TimeBetweenQueriesAverage Average time between queries 

TimeBetweenQueriesVariance Variance in time between queries 

TimeBetweenSessionsAverage Average time between sessions 
TimeBetweenSessionsVariance Variance in time between sessions 

AdultTimeEntropy �(Adult time bucket distribution) per day 

Topical class 
TopicEntropy �(ODP category assigned to clicks) 
FirstTopicEntropy First ODP category in session entropy 
TopTopicEntropy Top-level ODP category entropy 

QueryCategoryEntropy �(Query category) 
FractionUniqueTopics % of ODP topics unique 

FractionUniqueQueryCategories % of query categories unique 

TopicDistance Average inter-topic distance in ODP 
TopicDistanceVariance Variance inter-topic distance in ODP 

NumUniqueTopics # of unique ODP categories 

NumUniqueQueryCategories # of unique query categories 
FractionTransitionsTopicShift % of query transitions with ODP change 

NumUniqueTopLevelTopics # unique top-level ODP categories 

FractionUniqueTopLevelTopics % unique top-level ODP categories 
FractionQueries_Adult % queries on Adult query category 

FractionQueries_Cooking % queries on ODP “Cooking” 
FractionQueries_Family % queries on ODP “Family” 

FractionQueries_KidsAndTeens % queries on ODP “Kids & Teens” 

FractionQueries_Nightlife % queries on ODP “Nightlife” 
FractionQueries_ShoppingChild % queries on ODP “Shopping/Children” 

FractionQueries_VideoGames % queries on ODP “Video Games” 

TopicAssociation Average topic association per day 

Behavioral class 
NumSessions # search sessions 

NumQueries # search engine queries 
NumUniqueQueries # unique queries 

NumUniqueQueryTerms # unique query terms 

FractionUniqueQueries % query terms that are unique 
QueryLength Average query length (in characters) 

QueryLengthVariance Variance in query length 

NumClicks # result clicks 
AvgClickRank Average rank position of result clicks 

ClickEntropy �(Search result clicks), defined as in [15] 
HistoricQueryPopularity Historical query popularity in Bing logs  

Content class 
DomainEntropy �(Web domains visited), from clicks 

QueryReadingLevel Average query reading level (1-12) [12] 
QueryReadingLevelVariance Variance in query reading level 

QueryReadingLevelEntropy �(Query reading level) 
PageReadingLevel Average landing-page reading level 

PageReadingLevelVariance Variance in landing-page reading level 
PageReadingLevelEntropy �(Landing page reading level) 
NumUniqueTopLevelDomain # unique top-level domains (e.g., .com) 

FractionUniqueDomains % of unique top-level domains 

FractionUniqueURLs % of unique URLs 
NumUniqueURLs # of unique URLs 

NumUniqueDomains # of unique Web domains 

FractionUniqueQueryURLs   % unique query-URL pairs 

Referential class 
FractionReferenceFamily % queries containing term “family” 

FractionReferenceHousemate % queries with reference to housemate  

 



adults and children, then we would expect to observe variations in 

the reading level. There were some indications of this in Figure 6. 

Referential: The last class of features that we considered involved 

references to other people, specifically the use of the word “family” 

or people who were likely to share accommodation with the current 

searcher (e.g., husband, child, roommate, spouse). 

5.3 Prediction Results 
We now present the findings of our experiments on both of the pre-

diction tasks, beginning with the classification results.  

5.3.1 Classification 
The classification task involves the binary prediction of whether a 

machine identifier comprises multiple searchers. For the baseline 

in this task we use the marginal, which assumes that we always 

predict that a machine identifier is composed of multiple searchers 

(given the distribution reported in Figure 1). We report on the av-

erage accuracy, precision, recall, and area under the receiver oper-

ating characteristic curve (AUC) across all experimental runs. Ta-

ble 3 shows the performance measures for the full model (labeled 

as “All”), each of the five classes, and the marginal baseline.  

The table shows that the performance of the classifier trained on all 

features was strong. The accuracy was 0.8635 and the AUC was 

0.9366, significantly higher than the marginal classifier according 

using two-tailed �-tests (� < 0.001) paired on the folds. Table 3 also 

shows the performance of classifiers for each of the five feature 

classes separately. The table shows that many of the feature classes 

perform well in isolation (all classifiers significantly outperformed 

the marginal at � < 0.001), although not as well as the complete 

combination of features in the All model. These findings concur 

with the characterizations presented in Section 4, which clearly 

showed that there are many ways in which multi-searcher search 

activity within a single machine identifier can be detected. 

Figure 9 shows the ROC for the top-performing All model and, for 

reference, a single point denoting the performance of the marginal 

classifier. Since some of our features rely on search providers run-

ning sophisticated classifiers on queries and visited content to com-

pute measures such as topicality or reading level, it is important to 

quantify prediction performance with only a minimal set of fea-

tures. Since the Temporal class performed particularly well in the 

analysis presented above, were also curious about how well we 

could perform for a pruned set of temporal features where we only 

featurize the time of the day on which search was performed on the 

machine. The eight features used for this pruned time-of-day only 

model are marked in Table 2 with superscript “P.” We show that 

this model performs well, with accuracy of 0.8272 (AUC=0.8953), 

even though only a small subset of our features were used. To un-

derstand the performance of this classifier across the range of its 

discrimination threshold, we also plot its ROC curve in Figure 9. 

The most useful features in the pruned temporal classifier were 

TimeEntropy (the variation in the times of day at which searches 

are performed on the machine) and NumTimeBuckets (the number 

of distinct four-hour time windows with search activity). Both fea-

tures are likely to capture the dispersion of queries across the course 

of a day; which may be indicative of multiple searchers, especially 

given that people cannot search on the machine simultaneously. 

5.3.2 Regression 
In addition to predicting whether an identifier is composed of mul-

tiple searchers, we can also estimate the number of searchers com-

prising the logs of that identifier (the  -value described earlier). We 

focus on   in the range [1,10], folding the rare cases where   > 10 

(0.05% of the data) into the   = 10 bucket. We frame this problem 

as a regression task and once again use MART, although this time 

to perform regression rather than classification. We report the mean 

absolute error (MAE) and the normalized root mean squared error 

(NRMSE) (defined as !"�# ( $%& −  $
�)⁄ ) for the full feature 

set (All) and each of the five feature classes defined in Table 2. In 

addition, we employed two baselines: (1) predict   at random, and 

(2) predict   using its marginal distribution. The latter is a stronger 

baseline since it considers the real distribution of searcher counts 

in our data. Table 4 (overleaf) reports the performance of the re-

gressor across all experimental runs for all features, the five feature 

classes, and the two experimental baselines. 

We can see from Table 4 that all of the regressors outperform the 

two baselines (all differences significant with �-tests, � < 0.001). In 

addition, the regressor based that uses all features outperforms 

those regressors based on each class separately, although the per-

formance of some of the individual classes is still fairly strong. 

Note that the time-of-day features were less effective for this task 

than they were for the binary classification (pruned temporal model 

MAE=0.8598, NRMSE=0.1300). Once multiple searchers use the 

machine, their times may be too intermixed to determine the num-

ber of searchers from time alone. Overall, Topical features were 

found to be most useful in predicting the value of   for a machine 

identifier. To help better understand this result, we explored the 

feature weights in the predictive models in more detail. 

5.4 Feature Weights 
One of the advantages of using MART is that we can obtain a list 

of features learned by the model, ordered by evidential weight. In 

Table 4 we report the top five most important features from each of 

the prediction tasks, along with their assigned feature class, and 

Table 3. Classification performance for each classifier, ordered 

by classification accuracy. All differences significant using  

(-tests at p < 0.001 for accuracy and AUC for each  

classifier versus marginal and versus All. 

Features Accuracy 
Pos. 

Prec. 

Pos. 

Recall 

Neg. 

Prec. 

Neg. 

Recall 
AUC 

All 0.8635 0.8662 0.8973 0.8597 0.8196 0.9366 

Temporal 0.8552 0.8531 0.8986 0.8582 0.7986 0.9267 

Topical 0.8324 0.8399 0.8694 0.8218 0.7824 0.9105 
Content 0.8271 0.8351 0.8651 0.8157 0.7776 0.9055 

Behavioral 0.8096 0.8027 0.8795 0.8208 0.7185 0.8827 

Referential 0.6450 0.8751 0.4342 0.5552 0.9193 0.6871 

Marginal 0.5651 0.5651 1.0000 0.0000 0.0000 0.5000 

 

 

Figure 9. ROC curve for all features versus time-of-day only. 

Marginal is also shown at TPR=0.5651, FPR=0.4349. 
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their weight relative to the most important features: NumTimeBuck-

ets (classification) and FractionQueries_KidsAndTeens (regres-

sion). In addition, to better understand the directionality of the fea-

tures, we also report in Pearson product moment correlation ()), 

and the point-biserial correlation in the case of the classifier, be-

tween the feature values and the ground truth labels in our dataset. 

As we can see in Table 5, the most influential features span many 

classes, although for the classification task there appears to be more 

emphasis on Temporal features (as also evidenced by the strong 

performance of the time-of-day features, shown in Figure 9). How-

ever, for the regression task the Topical features are dominant, es-

pecially those suggesting the presence of others in the household, 

in particular children. Indeed, from analyzing the metadata associ-

ated with the comScore logs used in our data, we see that the pres-

ence of a child in the household is often associated with multiple 

individuals using the machine. Overall, on 82.1% of machines 

where a child is in the household we observe multiple searchers, 

and the phi correlation ()*) between child present (1/0) and multi-

searcher usage of a machine (1/0) is 0.47 (p < 0.001). It seems rea-

sonable that if there is a family linked with the machine then shared 

usage is more likely. Devising more features associated with family 

activities (e.g., family vacations, homework searching) may yield 

even better prediction performance. Topic information may also 

capture the diversity of interests at more granularity than possible 

with temporal bucketing (even simply because topics are more nu-

merous), enabling more accurate estimates of searcher counts. 

5.5 Summary 
We have shown in this section that we can accurately estimate 

whether a machine identifier comprises multiple searchers and es-

timate the number of searchers. We convert the output of the re-

gressor to an integral value  ′ using standard rounding, serving as 

an estimate of  , the true number of searchers on machine. As stated 

earlier, being able to estimate the number of searchers from their 

search behavior is necessary but not sufficient for other tasks such 

as assigning incoming search activity to individuals. For that task 

we must build a representation of the search activity for each 

searcher. To do this, we use a clustering method, where the number 

of clusters is guided by the output ( ′) from the regressor in this 

section. We now describe the application of this estimate to cluster 

search activity from machine identifiers and attribute new search 

activity associated with the machine identifier to the correct person. 

6. ATTRIBUTING ACTIVITY TO USERS 
Given the prediction of multiple searchers on a machine, we tackle 

following two tasks of attributing observed search activity to indi-

viduals: (a) clustering historic search activity guided by the number 

of estimated searchers  ,from the prediction task, (b) automatically 

assigning new search activity to the most likely individual from his-

toric logs. We now describe each task and model performance.  

6.1 Experimental Setting 
We used search sessions of individual searchers (defined as in Sec-

tion 4) for clustering and user history segregation. We can also do 

this at the level of single queries, but sessions enable the design of 

richer feature sets. We assume that in practice, the predictors would 

be chained so that the methods described in this section would only 

be applied to machine identifiers where the presence of multiple 

searchers was predicted using the binary classifier from Section 5. 

For  =1 and  ′=1 our performance metrics always equal the base-

line (covered later), independent of any attribution technique. As 

such, in our study we focus on multi-searcher machines ( > 1) 
where our classifier also predicts multi-searcher activity ( ′ > 1). 

For measuring the performance of our methods, we use a default 

baseline which assumes a unique mapping of machine identifier to 

individual, as that accurately reflects the state of the art methodol-

ogy for leveraging machine identifiers. When  ,is incorrectly pre-

dicted to be one for a multi-searcher machine, our attribution tech-

niques would simply fall back to this baseline. Since these attribu-

tion tasks require a computationally-expensive clustering of the his-

toric search activity on each machine (and is one of the main moti-

vations for developing the classifier in Section 5), we used a ran-

domly-sampled 5% of machine identifiers (around 90k identifiers) 

for testing purposes. Further, we split the data for each machine in 

the test set into historic logs (which corresponds to first 90% of 

sessions from a machine identifier) and newly arriving queries (cor-

responding to the latest 10% of the activity). Since our approach is 

session-based, but we wanted to explore effectiveness for query-

based assignment we performed assignment for the first query in 

the session. Operating at the query level closely resembles how the 

task of assignment would likely be done in practice in applications 

such as personalization. Inspecting the person identifier suggests 

that 97% of search sessions were performed by a single person (the 

remaining 3% were labeling noise associated with the 30-minute 

timeout for session demarcation). Accurate assignment for the first 

query enables personalization for the entire session thereafter.  

A key components for the attribution task is measuring “similarity” 

between two search activities – this measure is critical for both clus-

tering and assignment. Next, we describe the setup for learning this 

function between two search activities and the set of features used. 

6.2 Similarity of Two Search Activities 
We begin by representing each of the search activities to be com-

pared as a set of features, informed by the characterization and pre-

diction results in previous sections. We also build a vector repre-

sentation of the issued query terms, clicked Web domains, search 

of the activity. Given two search activities denoted by their repre-

sentative features, we designed around 20 features which capture 

Table 4. Regression performance for each of the feature  

classes, ordered by MAE. All differences significant using  

(-tests at p < 0.001 for MAE and RMSE for each  

classifier versus baselines and versus All. 

Features MAE NRMSE 

All 0.6377 0.0917 

Topical 0.6906 0.1055 

Temporal 0.7232 0.1146 

Content 0.7490 0.1150 
Behavioral 0.8054 0.1204 

Referential 0.9784 0.1325 

Marginal 1.4799 0.2150 
Random 3.8078 0.4652 

Table 5. Top five features by evidential weight for the  

classification and the regression tasks. Feature weights and 

correlation coefficients for features vs. labels are also shown. 

Weights are normalized w.r.t. the highest-weighted feature. 

 Feature Class Weight / 

C
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ss
if

ie
r 

NumTimeBuckets Temporal 1.0000 +0.180 
FractionWeekday Temporal 0.6353 +0.444 
FractionQueries_KidsAndTeens Topical 0.6031 +0.159 
TimeEntropy Temporal 0.4306 +0.233 
FractionReferenceOtherPerson Referential 0.3412 +0.149 

R
eg
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o
r 

FractionQueries_KidsAndTeens Topical 1.0000 +0.271 
PageReadability Content 0.6108 +0.395 
FractionQueries_ShoppingChildren Topical 0.5550 +0.209 
FractionReferenceOtherPerson Referential 0.5496 +0.199 
TopicEntropy Topical 0.3797 +0.143 

 



engine domains, ODP and query categories to serve as fingerprint  

pairwise similarity and differences between two activities for dif-

ferent feature classes, as presented in Table 6. For vector-based fea-

tures, e.g., a vector of query terms, we used the Jaccard coefficient 

of two vectors to compute a similarity score, which captures over-

lapping content in the two vectors. Features such as “Sim_Week-

day” or “Sim_Nightlife” represent a binary value denoting whether 

both the search activities share the same attribute. 

We used MART regression for learning a pairwise similarity func-

tion. Since the base prior of two activities belonging to same 

searcher depends heavily on number of searchers associated with a 

machine identifier (e.g., similarity score is always 1 for single-

searcher machines), we learned different regression models for 

each  . To create the training data, we used a random sample of 5% 

of machine identifiers (disjoint from the set used for testing the per-

formance of our attribution tasks) with multiple searchers and split 

them into five groups containing 2, 3, 4, 5, and 6-10 searchers (the 

last group comprised a range to provide sufficient data). Next, we 

learned a regression model for each group separately as follows. 

We considered every pair of sessions for machines in a group, com-

puted the pairwise features between them and labeled it as 1 if they 

belong to same searcher, otherwise 0. This labeled data is then used 

for training the regression model, which learns to predict a real val-

ued number then used as the similarity score between two sessions. 

Table 7 shows the most important features ordered by evidential 

weight. As   increases, we observed that content-based features, 

primarily based on similarity between query terms and clicked do-

mains, become more prominent. This is likely to happen as multiple 

searchers may intertwine their search activity more often, adding 

noise to the temporal signals. Given these regression models, one 

for each different searcher count ( ), we next describe how to use 

them for our clustering and attribution tasks.  

6.3 Clustering Searchers 
We now present the results of task of clustering searchers’ activities 

given a history of logs from a machine identifier. To do this, we 

used the test set of machine identifiers as described in the experi-

mental setup above. We use the output of the regressor from the 

prediction task in Section 5 to estimate  ′ for each of the machines. 

The  ′ guides both the number of clusters to be used as well as the 

choice of regression model to use in the similarity computation. For 

a given machine and predicted  ′, we first compute pairwise simi-

larity for each pair of sessions and then use  -means clustering with 

predicted  ′ as the number of clusters and applying the computed 

similarity scores as distance metric [46]. Given that we know which 

searcher is responsible for each observed session, we can use en-

tropy and purity to measure clustering performance [46]. We com-

puted average entropy of the clustering solution by computing en-

tropy of each cluster separately based on the distribution of differ-

ent searchers in that cluster given truth. Our baseline, as discussed 

earlier, is the default attribution of all the search activity to a single 

searcher, hence equivalent of having a single cluster for the com-

plete historic logs. We additionally compute the purity of the clus-

ters, denoting the fraction of the most representative searcher in a 

given cluster. A more performant clustering method would yield 

lower entropy (ideal=0) and higher purity (ideal=1). 

Table 8 (overleaf) reports the performance of the clustering task 

overall and then broken out by the number of searcher on the ma-

chine. Our clustering shows significant improvements (using �-
tests at � < 0.001) on both entropy and purity. Also, the relative 

improvement increases in magnitude with the true number of 

searchers suggesting a higher relative benefit from our techniques 

in segregating searchers. Next, we tackle the task of assignment, 

i.e., attributing new search activity to one of the searchers who con-
tributed to the search history associated with a machine identifier.  

6.4 Assignment of Search Activity 
The main challenge assignment is that historic logs are unlabeled, 

providing no prior information of which activity belong to which 

searcher. Furthermore, the information about actual number of 

searchers which contributed to the historic logs is unknown. We 

tackle this task in following steps: (1) perform clustering on the 

Table 7. Top features by evidential weight for pairwise simi-

larity of search activity (machines w/ �=2 and �=5 searchers). 

� Feature Class Weight 

2 

Diff_Weeks Temporal 1.0000 

Diff_ HistoricQueryPopularity Behavioral 0.3684 

Diff_TotalDuration Behavioral 0.2997 
Diff_QueryLength Behavioral 0.2739 

Sim_Engines Content 0.2687 
Diff_TimeOfDay Temporal 0.2182 

Diff_NumQueries Behavioral 0.2030 

Sim_QueryCategory Topical 0.2009 
Sim_QueryTerms Content 0.1937 

Diff_NumClicks Behavioral 0.1936 

5 

Diff_Weeks Temporal 1.0000 

Diff_ HistoricQueryPopularity Behavioral 0.4897 
Diff_TotalDuration Behavioral 0.3030 

Diff_QueryLength Behavioral 0.2903 

Sim_QueryTerms Content 0.2738 
Diff_NumClicks Behavioral 0.2395 

Sim_Engines Content 0.2366 

Diff_NumQueries Behavioral 0.2220 
Sim_QueryCategory Topical 0.2126 

Sim_Domains Content 0.1827 

 

Table 6. Features for pairwise similarity of search activity. 

Feature Feature Description 

Temporal class 
Diff_Weeks Diff. in weeks 

Diff_DayOfWeek Diff. in day of week 
Sim_Weekday Both on a weekday 

Sim_Weekend Both on a weekend 

Diff_TimeOfDay Diff. in time of day 
Diff_TimeBucket Diff. in time bucket of a day 

Topical class 
Sim_Topic Jaccard coeff. of ODP categories (clicks) 
Sim_QueryCategory Jaccard coeff. of query categories 

Sim_AdultQueryTerms Jaccard coeff. of adult query terms 
Sim_Adult Both have queries on Adult query category 

Sim_Cooking Both have queries on ODP “Cooking” 

Sim_Family Both have queries on ODP “Family” 
Sim_KidsAndTeens Both have queries on ODP “Kids & Teens” 

Sim_Nightlife Both have queries on ODP “Nightlife” 

Sim_ShoppingChild Both have queries on ODP “Shopping/Children” 
Sim_VideoGames Both have queries on ODP “Video Games” 

Behavioral class 
Diff_TotalDuration Diff. in length of search activity (for session) 
Diff_NumQueries Diff. in # queries 

Diff_QueryLength Diff. in avg. query length (in characters) 

Diff_NumClicks Diff. in total number of clicks 
Diff_HistQueryPop Diff. in avg. historical query popularity  

Content class 
Sim_Domains Jaccard coeff. of web domains (from clicks) 
Sim_QueryTerms Jaccard coeff. of query terms 

Sim_Engines Jaccard coeff. of engine domains (queries) 

Diff_QReadingLevel Diff. in avg. reading level of queries 

Referential class 
Sim_RefQueryTerms Jaccard coeff. of referential query terms 
Sim_RefQueries Both have referential queries 

 



historic logs as described in previous step to segregate the activity 

of searchers, and (2) assign the newly arrived query or search ac-

tivity to one of the clusters. To guide the process of assigning a 

cluster to a searcher, we use the same regression-based similarity 

function used for clustering (Section 6.3). Based on this function, 

we first find the activity in the historic logs which is most similar 

to the new activity. We then assign the new search activity to either 

(a) the true searcher to which this most similar activity belongs or 

(b) the cluster to which this most similar activity belongs. These 

provide different ways to capture error in our assignment.  

Given that we have the truth labels, we can measure performance 

as follows. For (a), we can measure the accuracy of the assignment 

based on how often we assign to the correct individual. For (b), we 

can measure the purity of the assignment. Purity in this context is 

defined as the proportion of the assigned cluster that comprises the 

true individual. The overall performance of the assignment is af-

fected by the quality of clustering solution and precision of match-

ing it to the best cluster. An ideal methodology will first perfectly 

segregate the historic logs into different searchers (cluster purity = 

1) and assign the new activity corresponding to the correct cluster 

(precision of closest assigned searcher = 1). For both measures, we 

use the same baseline as before, which ignores multi-searcher seg-

regation and assigns the new activity to all historic logs. We note 

that this baseline deviates from simply 1/ ′ because of imbalance 

in the search activities of different searchers on a machine. 

Table 9 reports the performance of the assignment task overall and 

then broken down by each of the five groups. We can assign search 

activity to the correct searcher for over 75% of the newly-arriving 

queries used in testing. The results show significant gains (�-tests 

at � < 0.001) in both measures, compared to the baseline. 

6.5 Summary 
We have demonstrated that our methods significantly improve the 

accuracy of search activity attribution, guided by the regressor from 

Section 5. These results can be used to segregate the activity of dif-

ferent searchers in historic logs. This segregation can help us accu-

rately assign a searcher to new activity in online settings.  

7. DISCUSSION AND IMPLICATIONS 
We have shown in this paper that searching on shared machines 

happens frequently, generating signals that could potentially be 

sub-optimal for applications such as search personalization. We de-

vised methods to accurately label machine identifiers as comprising 

multiple searchers with good accuracy (even with simply using 

time-of-day as a feature) and also accurately estimating the number 

of searchers on a machine. We also showed that we could develop 

methods to attribute search activity to the correct searcher, with ac-

curacy exceeding 70% (for session-level predictions). These find-

ings are promising, but more work is needed to understand model 

utility in contexts such as personalization and advertising. 

While we believe that these applications would benefit from a 

cleaner historical signal derived from what is likely to be a single 

searcher, we need to demonstrate that utility. Beyond personalizing 

online services, there are also other applications such as long-term 

search satisfaction modeling [22], protecting privacy between mul-

tiple searchers on a single machine, and enhancing search logs with 

an estimated person identifier to enable more accurate data mining 

of metrics such as the number of sessions per searcher. However, 

even without demonstrating these applications directly we make 

several significant contributions by being the first to identify and 

characterize the search activity attribution challenge, as well as de-

veloping a series of methods to address it effectively. 

The comScore data used in this study relied on self-identification. 

Further work is required to understand the extent to which there are 

errors in this reporting, its impact on model accuracy, and whether 

there are ways to address that concern, e.g., by mining patterns from 

the temporal sequences of searches from machine identifiers and 

allowing for some degree of noise in the person boundaries. 

As people associate more closely with a particular device, we may 

observe a reduction in shared machine use. Given our findings on 

the current high prevalence of shared-machine search (over 50% of 

machines), our work is still valuable. In addition, searchers often 

sign in to search engines, providing evidence beyond machine iden-

tifiers. More research is needed to study the effect of these factors, 

and learn more about search on shared machines generally.  

Overall, we showed that our methods performed well. Even featur-

izing time-of-day alone was effective in identifying and quantifying 

shared-machine searching. We also observed strong performance 

in clustering and attribution, with strong gains over baselines in 

both tasks. Although we can employ alternative approaches to im-

prove performance in search activity attribution, cost-benefit anal-

yses is required to understand whether any additional complexity is 

justified given the impressive performance of our methods.  

8. CONCLUSIONS 
Accurate attribution of online activity is important for providers of 

online services who seek to personalize their services. We showed 

that many machine identifiers may reflect the activity of multiple 

Web searchers, creating a sub-optimal behavioral stream for appli-

cations relying on a direct mapping between observed search activ-

ity and a single searcher. We showed that there are clues in the long-

term behavior that multiple searchers are responsible for the search 

activity associated to a single machine identifier. Building on this 

finding, we show that we can accurately predict which machine 

identifiers have multiple people and estimate with reasonable accu-

racy the exact number of searchers. This informs the application of 

clustering methods to predict the total number of searchers for a 

machine and handle assignment of new activity. Our findings 

clearly show that we can assign new activity to the correct searchers 

with good accuracy. Future work involves improving that accuracy, 

applying the methods to tasks like personalization and recommen-

dation, and experimenting with alternative methods such as com-

ponent analysis for search activity attribution. 

Table 8. Average entropy and purity of the clusters obtained 

by our method vs. baseline. All differences (i.e., drop in en-

tropy, rise in purity) are significant with (-tests at p < 0.001. 

� 
Avg. Cluster 

Entropy 

Avg. Cluster 

Purity 

Baseline 

Entropy 

Baseline 

Purity 

All (2–10) 0.552 (–44%) 0.786 (+22%) 0.993 0.644 

2 0.551 (–36%) 0.814 (+20%) 0.860 0.676 
3 0.542 (–60%) 0.712 (+29%) 1.367 0.553 

4 0.601 (–65%) 0.617 (+32%) 1.742 0.467 

5 0.635 (–69%) 0.553 (+33%) 2.030 0.415 
6–10 0.631 (–72%) 0.515 (+35%) 2.270 0.382 

 

Table 9. Average accuracy and purity of assignment. Baseline 

assumes unique mapping of machine identifier to searcher. 

All differences significant with (-tests at p < 0.001. 

k Accuracy 
Purity of  

Assignment 
Baseline 

All (2–10) 0.742 (+56%) 0.659 (+39%) 0.475 

2 0.771 (+51%) 0.700 (+37%) 0.512 
3 0.649 (+89%) 0.512 (+50%) 0.343 

4 0.531 (+102%) 0.395 (+50%) 0.263 

5 0.451 (+116%) 0.333 (+60%) 0.208 
6–10 0.361 (+96%) 0.289 (+57%) 0.184 
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