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Although many investigators affirm a desire to build reasoning systems that 
behave consistently with the axiomatic basis defined by probability theory and uttlity 
theory, limited resources for engineering and computation can make a complete 
normative analysis impossible. We attempt to move discussion beyond the debate 
over the scope of the problems that can be handled effectively to cases where i t  is  
clear that there is insufficient computational or engineering resource to perform an 
analysis deemed to be complete. Under these conditions-, we stress the importance of 
considering the expected costs and benefits of applying alternative approximation 
procedures and heuristics for computation and knowledge-acquisition. We discuss 

-bow knowledge about the structure of user utility can be used to control value 
uadeoffs for tailoring inference to alternative contexts. We finally address the 
notion of real-time rationality, focusing on the application of knowledge about the 
expected timewise-refinement abilities of reasoning strategies to balance the benefits 
of additional computation with the costs of acting with a partial result. 

I. Introduction 
Enthusiasm about the use of computation for decision support and auwmated control within 

high-stakes domains like medicine has stimulated interest in the construcuon of systems that 
behave consistently with a coherent theory of rational beliefs and actions. A number of 
investigators interested in the automation of uncertain reasoning have con verged on the 
theoretical adequacy of the decision-theoretic basis for rational action. [10. 2, 13]. Recent 
discussions about computational approaches to reasoning with uncertainty have focused on the 
degree to which probability and utility thedry can handle inference problems of realistic 
complexity. Investigators have answered criticism about the inadequate express1 veness of 
probability theory by pointing out that the normative basis focuses only on the consistent 
inference of belief and value, not on the formulation of the problems [14]. Others have 
shown that probability theory and utility theory are logically equivalent to the satisfactton of a 
small set of intuitive properties [28, 14]. Still others have responded to complaints of 
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intractability by demonstrating techniques that can solve relatively complex real-world 
problems [23, 12]. 

In this paper, we move beyond discussions of the degree to which the theories of probability 
and utility are able to solve real-world problems. We focus on situations where it IS clear that 
msufficient resources prohibit the use of the normative basis for a complete analysis. That is, 
we are interested in studying cases where normative reasoning is clearly inadequate because of 
pressing resource limitations. We are concerned with rational strategies for handling such 
resource breaking points. We have been examining resource constraints at the knowledge 
assessment, computation, and explanation phases of automated reasoning systems. 

We will focus here primarily on the example of real-time decision making. Resource 
constraint issues can be especially salient in the context of real-time requirements. In the real 
world, delaying an action is often costly. Thus, computation about belief and action often 
incurs mference-related costs. The time required by a reasoning system for inference varies 
depending on the complexity of the problem at band. Likewise, the-costs associated with 
delayed action vary depending on the stakes and urgency of the decision context The real­
time problem is additionally complicated by the existence of uncertainty in the cost functions 
associated with delayed action. We are searching for uncertain reasoning strategies thaL can 
respond flexibly to wide variations in the availability of resources. The intent of our research 
is to develop coherent approaches to generating and selecting the most promising strategy for 
particular problem-solving challenges. 

II. Components of Uncertain Reasoning 

We have found it useful to decompose uncertain reasoning into three components: problem 
formulation, belief entailment, and decision making. Problem formulation is the task of 
modeling or constructing the reasoning problem. This task often involves enumeration of all 
hypotheses and dependencies among hypotheses. There are no formal theories for problem 
formulation: in many reasoning system projects, engineers charge domain experts With the task 
of enumerating all relevant propositions. Belief entailment or inference refers to the process 
of updating measures of truth assigned to alternative hypotheses as new evidence is uncovered. 
In most schemes, the degree of truth or belief in the presence of a hypothesis can range 
continuously between complete truth and complete falsity. Finally, decision making is the 
process of selecting the best action to take. A decision or action is an irrevocable allocation 
of valuable resource. 

The classical decision-theoretic basis defines rational beliefs and actions wtth the axioms of 
probability theory and utility theory. Probability theory dictates that the asstgnment and 
entailment of beliefs in the truth of propositions should be consistent w1th a set of axioms. 
The logical equivalence of these axioms with a small set of mtui tive properties desired in a 
measure of belief has been demonstrated [6, J4]. Utility theory [29] dictates the consistent 
assignment and updating of the value of alternative actions given the value of alternative 
outcomes and the degrees of belief in the outcomes. Measures of value consistent with the 
axioms of utility theory are called utilities. Von Neumann and Morgenstern, the authors of 
utility theory, proved that agents making decisions consistent with the axiOms of utility would 
behave as if they associate uttlity values with alternative outcomes and act to max1mize their 
expected utility [29]. 

The application of probability theory for belief assignment and utility theory for decision 
making defines a normative basis for reasoning under uncertainty. The term normat1ve refers 
to the notion that probability theory and utility theory have been accepted in several 
disciplines as a consistent axiomatic basis for inference that is considered optimaL That is. for 
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many, the normative framework defines a rational theory for belief and actton. 

III. On the Limited Scope of the Normative Basis 

Artificial intelligence research has highlighted the problems that lurk beyond the axiomattc 
framework defined by probability and utility theory. The real-world problems examined by 
machine intelligence investigators are ofte!'l more complex than problems previously tackled 
with decision theory. In applying the normative basis to many real-world problems, the limited 
domain of discourse of the theory becomes apparent. 

lt is dear that significant aspects of problem modeling and inference rn the real world are 
absent from the language and axioms of the normative basis. The normative theory's sole 
focus on the consistent assignment and inference of measures of belief and preference IS 
dwarfed by the complex task of constructing and solving the uncertainty problem. For 
example, the axtoms have nothing to say about the modeling process. They do not address 
issues surrounding the most appropriate propositions to represent, the level-of abstraction to 
select. nor the degree of completeness or detail of interdependencies to represent. 

The normative basis a1so does not address issues surrounding the most appropnate inference 
technique for reasoning problems under specific computational resource constraints. The 
classical nouon of normative rationality implicitly assumes sufficient computational resources 
for reasoning about an opttmal action; the basis does not explicitly address issues surrounding 
the value of alternative approaches to incomplete inference in reasoning systems that might be 
dominated by varying limitations in computational or engineering resources. 

There is much research to be done on the reformulation of problems and inference strategies 
deemed optimal m a world with infinite resources to perform in resource-limited 
environments. In tlus regard. we see promtse in the development of techniques for examming 
alternative models and inference strategies as the objects of design-time and real-time 
metalevel-analysis. This task involves determining, in a tractable fashion, the most promising 
expenditure of engineering or computational resource. Our research has highlighted the notion 
that a system with the ability to reason under uncertainty on complex real-world problems 
often requires extensive knowledge about the domain at hand as well as knowledge about the 
expected behavior of alternative inference strategies. 

IV. The Complexity of Rationality 

Let us pause briefly to consider tbe complexity of normative rationality Recent research has 
focused on the computational complexity of probabilistic reasomng. The research has been 
based upon analyses of uncenain-reasoning problems represented with graphs. The most 
popular representation uses directed graphs to explicitly represent condittonal dependencies and 
independencies among beliefs in propositions. [22, 4, 19] Many researchers have ascnbed a 
common semantics to the directed graphs. A common term for the represenlation is belief 
networks. 

In a belief network, an arc between a node representing proposition A and one representing 
proposition B expresses knowledge that the probability distribution over the values of B depend 
on the specific values of proposition A. Tf there is no arc from A to B. the probability 
distribution for B is not directly dependent on the values of A. Less expressive representatiOns 
commonly employed in artificial intelligence research have not allowed specific independenctes 



to be represented efficiently [11].2 

Belief networks are special cases of more general graphical representations that allow actions 
and the value of alternative outcomes to be represented in addition to beliefs [16, 23]. These 
graphs have been calleq influence diagrams and decision networks. An example of a simple 
decision network for medical diagnosis is shown in Figure 1. Note that the observed 
symptoms (Tr) are dependent on the disease present, and that the value (V) of the decision to 
assume a specific diagnosis depends on the disease assumed (Dx) and the actual disease present 
(D). The possibility of doing additional testing is represented by decision T. 

Figure 1: A decision network for diagnosis. 

Although the directed-graph representations allow the expression of mference problems that 
can be solved efficiently, many topologies have resisted tractable algorithmic solution. An 
example of a difficult problem category is called the multiply-connected network [19]. Such 
inference problems belong to a class of difficult problems which have been proven to have 
NP-hard time complexity in the worst case [5]. Problems in complex areas like medicine 
often require representation with multiply-�onnected networks. Thus. rational beliefs and 
actions may frequently demand intractable computation. 

It is clear that many uncertain reasoning problems require more computation time than may 
be available before a commitment to action is required. What can be done when the cost of 
inference becomes intolerable? As a first step, investigators might search for special-case 
inference techniques designed for the efficient solution of specific problem types (e.g. specific 
belief network topologies or belief distributions). However. proofs such as the one 

2
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demonstrating the worst-case intractability of multiply-connected networks. put little hope in 
the discovery of special methods that will solve some important classes of problems. For many 

situations, we will need to develop intelligent approximation procedures and heunsucs3 that 
focus the expenditure of resources on the most relevant aspects of the uncertain reasoning 

problem at hand. 

The pressures of complex decision making in real-time force Bayesian theoreticians and 
engineers to consider alternatives to normative reasoning: under time consuaints (or other 
resource constraint like knowledge-acquisition cost), approximations and more poorly­

characterized heuristic techniques can have higher expected value than complete normative 

reasoning. The delay associated with inference might be so costly that an alternative 

approximation or heuristic strategy would have a greater expected value. in sptte of assured 
suboptimalicy or uncertainty in the performance of the strategy. Thus, constraints in resource 

can transform a non-normative technique into the "preferred choice" of devout Bayesians and 
convert the strictest formalists into admirers of heuristics. 

We have been investigating the problem of reasoning under specified constraintc; within the 

PROTON project. A focus of research centers on intelligent control strategies for selecting 
among alternative problem-formulation and inference strategies. We are studying decision­

theoretic approaches to control. We believe that the representation of explicit knowledge about 
the costs associated with computation such as time-delay will be useful in complex uncertatn 
reasoning problems. Although we hope to discover approximate inference techniques that show 
clear dominance. we believe that it may often be important to reason about inference tradeoffs 

under uncertainty at the metalevel. 

V. Inference Under Resource Constraints 
Simple normative reasoning systems have been based on a single model constructed as a static 

basis and- acted upon by a single inference strategy. We are interested in techniques for 
reformulating a basts problem into one that will be of greater value than a complete analysis 
under computational resource constraints. A reasoning system with knowledge about the 
behavior of alternative approximation and heuristic strategies and about the costs associated 
with inference-based delay rn1ght provide valuable computation under resource constraints that 
would render a complete normative analysis to be a worthless or costly enterprise. 

We will now raise several issues about strategies that can focus computational attention on 
the most relevant portions of uncertain reasoning problems. Challenging components of this 
research include the development of approximation procedures and heuristics that are 

insensitive to small variations tn resource availability, the representation of knowledge about 
the value structure of the problem, and the development of comptled and real-time control 
strategies that can recognize problems, understand the problem-solving context, and select the 

most valuable inference strategy. 

Integrating Knowledge About Inference-Related Costs 

It is clear that theoretical models of rationality should include the costs associated wtth 

rational inference itself. Previous research has touched on the mtegration of the costs of 

3
we use approxtmalion lo refer to a strategy that produces a result w1th a well-defined murg111 of error; we usc: Lhe 

term heuristic to refer to strategies which have uncertain performanct. A Slrategy may b�: v1ew�:d as heunsiiC 111 ltrms 

of spectfic aspects of 1ts behnvtor. According to thts perspecttve, �nvesugation leading to new �haracu:rization of a 

strategy can transform a "heuristic method" tnto an approximation strategy. 



reasoning into decision making inference [8, 24, 17]. Within the realm of automated 
reasoning, representing inference costs can be valuable in the control of inference. A crucial 

aspect of integrating knowledge about real-world costs, benefits, and tradeoffs into a reasoning 
system is the acquisition of knowledge about the value of important attributes of computer 

performance to the users of computer systems. 

We have found it useful to decompose the value associated with computational inference into 
several components. We assert that the application of an inference strategy is associated with 
some net benefit or cost to an agent such as a system user, a robot. or a computational 

subsystem. relying on computation for decision making. We use the term comprehensive value 
(Vc) to refer to the net expected utility associated with the application of a computational 
strategy. We will see that this value is a function of the strategy, of the problem, and of the 
problem-solving context We have found it useful, in studying inference tradeoffs under 
pressing resource limitations, to view the comprehensive value as having two components: the 

object-related value and inference-related value. 

The object-related value (Y0) is the expected utility associated with computation-based 

incieases in mfor mation about the objects of problem solving. For example, the obJect-related 
value associated wtth the use of an expert system for assistance with a complex medical 
diagnosis problem refers to the costs and benefits associated solely with the change in 
information about the entities in the medical problem such as alternative treatments, 
likelihoods of possible outcomes, and costs of recommended tests. 

The inference-related value {Vi) is the expected disutility intrinsically assoctated with 
computation, such as the cost a physician mtght attribute to the delay of a decision because of 
the time required by an expert system to generate a recommendation, or the cost associated 
with his inability to understand the rationale behind a decision recommendation. We will later 
describe an example that shows how representing the cost of computation m different contexts 
can be crucial. 

We have decomposed the expected utility of a computational process into two components 
for presenting issues about inference-related cost. fn general, we may have to consider 
important the dependencies between the object- and inference-related value. We assume the 
existence of a function F that relates Yc to Y0, Vi and additional background information 

about the problem-specific dependencies that may exist between lhe two components of valut!. 
That is. 

Vc = F(V0• V;, ;) 

where tP captures problem-specific background information about possible dependencies 
between object- and inference-related value. 

Knowledge about costs and benefits of computation can be mtegrated into the dectSJOn 
network representation. A more comprehensive representation of our simple diagnosis problem 
is portrayed in Figure 2. Note the new arcs and nodes that capture autoeptstemic knowledge 
about the costs associated with computation. as well as the new decision node reflectmg 
rnetalevel reasoning costs and metalevel decision makmg about the form of the object-level 
problem. The metalevel reasonmg problem is to optimize the comprehensive value (V c). 

Assigning utility to multiple attributes of inference 

The components of value described above can be ascertained through assess1ng important 
attributes of computational performance through .1 subjective assessment of the value of 



Figure 2: A decision network for a more comprehensive 
repesemation of the problem of diagnosis. 

alternative performance scenarios to a system user or through the construction of a function 
capturing the relationships among attributes of computational value in important contexts. The 
value assigned to alternative computational behaviors can often be described by a qualitative or 
more detailed function that represents the relationships among important components of 
perceived costs and benefits associated with alternative outcomes. Such value functions asstgn 
a single value measure to computation based on the status of an n-tuple of attributes. For 
example, the value associated with the use of a medical expert system in a particular context 
might be a function of a number of attributes. including speed of computation, accuracy of 
recommendation, and clarity of explanation. We qave been working with expen physictans tn 

the intensive-care and tissue pathology domains to ascertain value models relating measures of 
utility to multiple attributes of computation. 

We are not the first to explore the formal use of utility theory in the control of reasoning. 
Concurrent research has focused on the usefulness of assigning utilities to alternative strategies 
in the control of logical reasoning [25, 27]. The research presented here differs from the 

other work in its focus on representing multiple components of value and on the integration 
of context-specific knowledge concerning human preferences about computattonal tradeoffs. 

Inference Tradeoffs 



Computation in a world of bounded resources often is associated with cost/benefit tradeoffs. 
Workmg with expert physicians on the development of expert systems has highlighted the 
importance of developing computational techniques that can explicttly control tradeoffs. With a 
computational tradeoff, the benefit associated with an increase in the quantity of one or more 
desired attributes of computational value is intrinsically linked to costs incurred through 
changes imposed on other attributes. More specifically, we define a tradeoff as a relationship 
among two attributes, such as the immediacy and precision of a computational result, each 
having a positive influence on the perceived total value of computer performance, such that 
they are each constrained to be a monotonically decreasing function of the other over some 
relevant range. In the case of our sample tradeoff, 

PRECISION = F (IMMEDIACY) , t0 :S IMMEDIACY :S tn ( 1) 

where F is some monotonically decreasing function over the range bounded by compulational 
time delays t0 and tn This definition can be generalized to the case w'!ere the value assigned 
to tuples of a subset of relevant attributes is a monotonically decreasing function of tuples 
composed of other attributes. The tradeoff between the immediacy and the precision or 
aocuracy of a solution is particularly explicit in methods that incrementally refine a 
computational result with time. 

Most reasoning systems have been designed with implicit assumptions about the handling of 
inference tradeoffs. We have sought to develop tools that enable systems to tailor inference to 
a range of problems and contexts. 

Toward a Timewise-Refinement Paradigm 

Let us now focus on the properties of approximate and heunstic mference that would be 
useful under varying resource constraints. Classical approaches to normative inference have 
focused on the determination of point probabilities. In fact. the complexity proof described 
above is based on the assumption that point probabilities are required. The classical tnterest 
in calculating final answers permeates computer science. Complexi ty theorists have focused 
almost exclusively on proving results about the time and space resources that must be expended 
to run algorithms to termination [7, 1, 18]. In the real world, str1ct limitations and variations 
on the time available for problem solving suggest that the focus on time complexity for 
algorithmic termination is limited; analyses centering on how good a solution can be found in 
the time available for computatiOn are of importance. 

The major rationale for the focus on the time complexity of algonthmic terminatton seems 
to reside in the simplifying notion in algonthms research that a computer-generated result can 
be assigned only one of two measures of utility: either a solution is found and ts of value. or a 
solution is not found and is therefore valueless. However. It is often possible to enumerate 
representations and inference techniques that can provide partial soluLions of varymg degrees 
of value. 

An approach to developing techniques for optimiztng the value of uncertam reasonrng under 
ranging resource limitations is the development of problem reformulation and mference 
schemes that allow the generation and efficient manipulation of partial results We are 
interested in representation and reasoning methods that allow a result to be refwed with 
increasing amounts of computation. In analyzing the timewise-refinemenL behavior of 
algorithms, it is crucial to consider knowledge about the value structure of partial results. We 
believe that a metalevel formalization of the costs and benefits, and the cost-beneftt tradeoffs, 
associated with inference in differing contexts will be beneficial in the development of Insights 
about useful approximations and heuristics. 



Describing Resource Limitations 

We would like to enumerate properties of inference strategies that can be of value under 

conditions of incomplete resources. Before we enumerate several desirable properties, we must 

focus more closely on issues surrounding resource availability. 

A resource is some costly commodity required for inference; we have been focusing on 
computational time. We define the minimum amount of computational resource needed to 
solve what has been deemed a complete description of the object-related problem as the 
complete resources (Rc). It is clear that all models are incomplete to some extent: we use 
complete to refer to an object-related model perceived to be an adequate representation of a 

problem by a system user or expert 

The complete resource level is a function of the complete problem description at hand. We 
refer to the complete resources more specifically as Rc(I,P), where 1 is an inference strategy 

and P refers to a problem defined by a model and a context We define -the object-related 
value associated with the application of a normative inference strategy in the context of 
complete resources as the optimal object-related value, written [V 0]. We call the resource 

actually apphed to problem solving the allocated resources (Ra) and the call the ratio of the 

allocated and complete resources the resource fraction, Rf(I,P). Rf(I,P) has been a useful 

metr1c for communicating about computation under bounded resources. 

We can use the defined notions of resource fraction, comprehensive value, object-related 

value, and inference-related value to express properties desired of inference strategies 
applicable in environments dominated by varying resource limitations. 

Desiderata of Bounded-Resource Computation 

We are interested in representation and control strategies that can configure knowledge and 
processing- in a manner that malc:e effective use of information about the uncertainty in the 
amount of computational resource available for computation in alternative contexts. For 

example, we wish to implement representation and inference methodologies that allow the most 
relevant updating to occur early on. Also, as many real-world applications may involve 
reasoning under large variations in the time available for inference, it is desirable to design 

inference strategies that are insensitive to small ranges in resource fraction. 

We now enumerate desiderata desired of computational inference. under resource limitations. 
The desiderata address the usefulness of a graceful response to diminishing resource Levels. 

Desired properties of bounded-resource computation are as follows: 

1. Value dominance. We seek problem-solving strategies with value-dominant intervals over 
available quantities of resource. We define value-dominant intervals as ranges of resource 
fraction over which the gain in the comprehensive value of computation is a monolOmc­
increasing function of resource. 

2. Value continuity. We desire the comprehensive value, the object-related value. and 

inference-related value to be continuous functions of the resource fraction as it ranges from 

zero to one. That is, 

lim Vc(I, P, Rr) = Vc(I• P. Rf') 
Rr - Rr' 

where Vc(l• P, Rr) is the expected value of computation associated with applymg inference 



strategy I to problem P, with resource fraction Rr. We refer to the continuous decrease of 
object-related value with decreasing allocation of resource over value-dominant resource ranges 
as graceful aegradation. 

Although continuity in the components of value is desirable in providing a continuum of 
options under pressing resource constraints, it often is difficult to generate such continuity 
within tbe discretized realm of computation. Thus, value continuity may be generalized to 
bounded discontinuity, where a desired upper bound on an t change in Vc is specified for some 
6 change in Rf over ranges of resource. We have found it useful to represent lcnowledge about 

an inference strategy's behavior in terms of constraints on 6 and E. The statement of such 
constraints or of a probability distribution over such constraints for particular contexts can be 
used as a partial characterization of heuristic strategies for important aspects of performance. 

3. Bounded optimality. The third desideratum is a meta-analytic property describing inference 
choice. We desire a reasoning system to select an inference strategy or-sequence of strategies 
from the set of strategies available to it such that the comprehensive value of computation ts a 
maximum given a problem, resource fraction, and metalevel resource allocation. That is, a 
strategy or tuple of strategies (l1 . .In) should be selected from the set {1} e of all available 

strategies that maximizes the expected utility value: 

(11 • •  In} : Max Vc{I}{ 

A system satisfying the bounded optimality property captures notions of rationality under 
resource constraints. Such a system attempts to optimize the expected value of its computation 
regardless of the method lymg at the foundations of its inference. 

Finally, we note that the value continuity and bounded optimafity properties imply that the 
objec_!-related value will demonstrate endpoint convergence to the optimal object-related value 
as the resource fraction approaches one. That is, a reasoning system will revert to object-level 
rationality with complete resources. 

1 im 
R-r - 1 

VI. Bounded-Resource Reasoning Strategies 

Several classes of approximation methods and heuristics are promising sources of useful 
strategies for bounded-resource computation. We enumerate several approaches below. 
Although we group the methods into approximation and heuristic categories, it is clear that 
analysis of specific instances of the heuristic approaches could lead to cnsp approximation 
procedures. 

Approximation Methods 

Bound calculation and propagation. There has been ongoing interest in the calculation of 
upper and lower bounds on point probabilities of interest [4]. Probabilistic bounding 
techniques determine bounds on probabilities through a logical analysis of constramts acquired 
from a partial analysis. Such techniques can be configured to focus attention on the most 
relevant aspects of the uncertainty problem. Bounds become tighter as addttional constraints 
are brought into consideration. Cooper [ 4] has applied a best-first search algorithm to 
calculate bounds on hypotheses. 

Stochastic simulation. Simulation techniques are approximation strategies that report a mean 
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and variance over the probabilities of interest through a process of weighted random 
sampling [12, 20]. fn many cases, the distnbution over the probabilities is approximated by 
the binomial distribution. The variance with which the mean converges with additional 
computation depends on the topology and the nature of the probabilistic dependencies within 
the network. Recent work [3] has shown current simulation algorithms to have intolerably slow 
convergence rates in many realistic cases. Stochastic simulation is nevenheless a promising 
category of inference for the derivation of useful bounded-resource computation strategies. 

Heuristic Methods 

Completeness modulation. Completeness-modulation strategies focus on techniques for 
reasoning about aspects of the uncertain reasoning model to include tn an analysis. 
Completeness modulation may be used to simplify the topology of a belief network through 
deleting classes of dependencies. In one form of completeness modulation, arcs in the graph 
are prioritized by heuristic measures of context-dependent "importance" that capture the 
benefits of including the dependencies in alternative contexts. Such heuristic-measures may be 
encoded during knowledge acquisition. The measures allow a reasoning system to dynamically 
construct a model that will be subjected to some inference procedure (e.g. bounding, simula£ion, 
complete normative analysis). Under time constraints, a completeness modulation approach can 
allow components of the problem viewed as most important to be included early on m 'ln 
analysis. We have worked with experts to acquire measures of importance on probabilistic 
dependency a medical domain.4 

Abstraction modulation. In many cases, it may be more useful to do normative inference on 
a model that is deemed to be complete at a particular level of abstraction than to do an 
approximate or heuristic analysis of a model that is too large to be analyzed under specific 
resource constraints. It may be prove useful to store several belief network representations, 
each containing propositions at different levels of abstraction. In many domains, models at 
higher levels of abstraction are more tractable. As the time available for computation 
decreases, network modules of increasing abstraction could be employed. 

Imposition of global independence. A long-standing heuristic in reasoning under uncertainty 
involves the assumption (or the imposition) of large-scale independence among propositions 
considered by a system. Such an assumption greatly reduces the resources required for 
knowledge assessment and computation. Global conditional independence assumptions have 
been made in many reasomng systems that have been deemed to perform adequately (e.g. the 
MYCTN certainty-factor model [10, 13] and innumerable early "tabular Bayes" diagnostiC 
programs [9, 26]). While it is easy to construct examples where the assumption of conditional 
independence induces severe pathology, the actual costs and benefits of assuming conditional 
independence among evidence in many real-world problems have not been determtned. 

Local reformulation. Local reformulation refers to the modification of specific troublesome 
topologies in a belief network. Approximation methods and heuristics focused on the 
microstructure of belief networks will undoubtedly be useful in the tractable solution of large 
uncertainty reasoning problems. Such strategies might be best applied at knowledge encoding 
time. An example of a potentially-useful local reformulation is the use of tractable 
prototypical dependency structures such as the noisy-OR structure. [21]. The benefits of ustng 
such structures for knowledge acquisition and inference could warrant the use of tractable 

"The use of importance measures may also be useful in d1recting the allocation uf resource:> dunng knowledge 
assessmenl 



prototypical dependencies in situations where they are clearly only an approximation of more 
complex dependencies. 

Default reasoning and compilation. Under severe time pressure, general default beliefs and 
policies may have more expected value than a computed result. Indeed, in some application 
areas, it may be useful to focus a reasoning system's scope of expectation through the 
compilation and efficient indexing of .computed advice for actions of great importance. high­
frequency, or that are frequently needed in time-critical situations. The relative worth of 
storing heuristic default knowledge or compiled policies depends on a number of factors. 
mcluding the tractability of available inference strategies, the nature of the available resour�.:e 
fraction, and the complexity of expected outcomes in the application area. Decisions on 
whether to compute or to store recommendations may also be quite sensitive to the specific 
costs of computer memory and knowledge assessment Careful consideration of the value 
structure of components of computation in real-time and in system-engmeering settings C4n 
help to elucidate specific cases of such tradeoffs. 

The Intel1igent Control of Uncertain Inference 

Techniques for different categories of inference mentioned above could be combined to 
generate useful classes of bounded-resource strategies. Such classes might be constructed and 
taxlored to the categories of ume constraints within a particular application area dunng the 
engineering of a system. For example, multiple representations of a problem, each tailored to 
maximize the value of computation in contexts with differing temporal cost-functions might 
be stored in conjunction with simple application rules. 

Attempting to satisfy the bounded-optimality property mentioned above may involve 
intelligent real-rime metalevel reasoning, requiring the development of techniques for efficient 
real-time problem recognition, problem decomposition, strategy selection, and strategy 
moni.!_oring. Complex real-time metalevel reasoning will also require management of the costs 
and benefits of metalevel inference.5 We are currently studymg the usefulness of metalevel 
reasoners with access to a several base-level strategies and With rich control knowledge about 
the value of the strategies in different problem contexts. 

VII. Meta level Reasoning About the Time-Precision Tradeoff 

We will now exercise several of the concepts presented with an example that is representative 
of ongoing research. We focus on the use of knowledge about multiple components of value at 
the metalevel to tailor inference to the appropriate context. The example reflects ongoing 
work on the PROTON system [15] for reasoning about inference tradeoffs. Although the 
results can be derived formally, we will describe the sample problem with a set of qualitative 
curves for clarity. The cutves capture important functional relationships among components of 
computational value in alternative contexts. 

Consider an inference problem from one of our application areas: An automated control 
system is faced with a rapidly evolving set of respiratory symptoms in a patient in an 
intensive-care unit. Assume that our system's action depends on P(C 1 E)--the probabtlity of a 
condition C given the observed symptoms E. In particular, thts probability is tmportant tn 
deciding whether or not the systems will respond with a costly treatment for condition C. 

What kinds of strategies might our autonomous pulmonary decision making system em ploy to 

5Tt IS clear that empirically- or heuristically-determined l1m1ls on metalevel effort will have to be 1mposed: i f  nvt. 

there IS a problem with infinite analytical regress. 



respond rationally under pressing time constraints? Assume that the system has a base model 
deemed by a human expert during knowledge acquisition as an adequately complete model of 
aspects of the world that compose the system's domain of applicability. 

Figure 3(a) demonstrates the knowledge that the medical decision system may have about the 
expected rate of computational refinement of the precision of the requested probability for 
stochastic-simulation strategy, E-1. given this type of problem . 

. , � 

Figure 3: (a) Precision over time! (b) Object-related value. 

Let us now introduce computational value considerations. The particular asstgnment of value 
to results of increased precision depends on the decision context; the value of an imprecise 
probability to a user can range greatly depending on the end use of the probabilistic 
information. A system could be endowed with knowledge about the changes in expected value 
of perfect information with additional inference. 

To encode knowledge about the assignment of object-related value to partial probabilistic 
results of different precisions, we could work with an expert to assess the utility directly, apply 
some preenumerated value function, or formally analyze the decision-making context. Let us 
briefly examine the last option. 

Utility theory dictates that the object-related value, V 0, in tbts Stmple problem, is determined 
by the probabilities and utilities of four possible outcomes: the patient either has or does not 
have the condition, and the system will either treat or not treat for the condition. 

Simple algebraic manipulation can be used to show that the optimal object-related value of 
information depends upon the costs associated with treating a person w1thout the condition, the 
benefits of treating a person with the condition. and the probability of the condition. Thus. 
changes in the information about the actual probability of the disease can be assigned a 
measure of value within the decision-theoretic framework. 

Let us assume that the expert system has actively acquired information about the context m 
which the desired probability will be used and has characterized the object-related value of the 
probability of the condition as a function of the precision of the reported probability. A 
plausible value function for this situation is shown in Figure 3(b). The function demonstrates 
that the rate of refinement of the object-related value can vary greatly with increasing 
precision. 

So far, we have examined only object-related value considerations. In the real world. time 
delay can be quite costly. All the while we have been dwelling on issues regarding the 
refinement of the object-related value, our patient has been gasping for breath. In this case, it 



is clear that, for any fixed measure of object-related value, the comprehensive value of the 
result decreases with the amount of time that a user must wait for it to become available. lt is 
thus important for a medical decision system to have knowledge of the inierence-related utility 
associated with computational inference. 
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Figure 4: (a) Inference-related cost, (b) Comprehensive value of 
computation in a decision context 

Let us assume that a physician with extensive knowledge about the realm of possibility in the 
intensive-care unit had, at an earl!er date, represented context-specific knowledge about the 

rate with which the object-related value should be discounted with the passage of time. That 
is, 1t was determmed, through utility assessment at the time of knowledge engineering, that the 
expert physician's preferences about the cost of delay in such a context could be represented as 
an Independent multJphcauve discounting factor, Dt. ranging in value between one and zero 
with Urne.6 Thts means that the object-related value is multiplied by the inference-relaLed 
utility_discounting factor to generate the net value of an answer as time passes. A function 
demonstrating such a degradation of the object-related value with ttme is shown in Figure 4(a). 

If the information in the three functions are combined. the comprehensive value. Vc· of the 
computational process to a system user as a function of ume can be derived. This result is 
displayed in Figure 4(b). 

Notice that the comprehensive value has a global maximum V c at a particular time, tmax· 
max 

This is the period of time the computer system should apply inference scheme E-1 to 
maximize the value of its reasoning to the patient. A lthough spending additiOnal t1me on the 
problem will further increase the precision, the comprehensive value to the user wtll  begm to 
decrease. Integrating a consideration of the cost and benefits of computation mto an analysis 
of probabilistic inference makes it clear that the cost of computation can render the solut10n 
of the complete problem mappropriate. 

Reasoning About Alternative Strategies 

So far, we have considered characteristics of the computational value of only one reasoning 
strategy. Assume that the system's metalevel reasoner has knowledge aboUL the ex istence of 
another inference strategy, E-2, based on the modulation of problem completeness. Assume 

6we have cons1dered this factor Independent for the SlmplifH.:allon of presentation: such a discount rate m:1� dt:pt:nd 

on the st.atus of the probabilities and outcomes. In th1s example, we h:tve framed tnfen:nct:-relatcd knowled�e 

acquisition at the level of classes of cnltca/uy associated with unresolved pnthophys1ology. 

/, 



further that the expected precision over time of the more heuristic completeness modulation 
strategy is represented by the curve portrayed in Figure 5(a). Finally, assume that the system 
has knowledge that, within this context, the strategy is known to have a higher expected rate of 
refinement of precision early on, but a lower long-range rate of refinement than that of 
stochastic simulation. 

l l  

Figure 5: (a) Another inference strategy, (b) Comparison of the 
comprehensive value of the two inference strategies. 

• ": (E.-I) 

If we apply the same object-value and inference-related functions presented previously to the 
new inference strategy, we can derive a new comprehensive value function. This function is 
shown in comparison to the previously derived comprehensive value function in Figure 5(b). 
Notice that 

Vc ( E - 1 )  ) V
c 

( E-2)  ( 2 )  
ma� max 

Equation 2 shows us that a control strategy applying the bounded-optimalcty property would 
select strategy E-1 given al l  current knowledge about available probabiiJStJc inference strategies 
and the decision context at hand. 

Contraction of the Decision Horizon 

Now, suppose that the decision context has changed in a way that affectS only the inference­
related cost function describing the discounting of object-related value with time. In the new 
context. we have a much sharper discounting of the object-related value with time. as shown 10 
Figure 6(a). Such a decreased decision horizon may be associated with situattons requiring 
rapid response, as might be che case when our patient suddenly begins to show cnttcal s1gns of 
poor oxygenation. 

If we derive the comprehensive value functions f<?r inference strategies E-l and E-2 wnh the 
new object-related value discounting function, we see a new dominance. Figure 6(b) shows 
that: 

Vc ( E - 2 )  ) Vc ( E- 1 )  ( 3 )  
max max 

That is, in contexts of greater extreme time criticality, ·rhe value achieved by strategy E-2 will 
dominate that achieved by E-1 and thus E-2 will be the strategy of choice. 

Defaulting to Default Knowledge 

We have focused so far on strategies that can prov1de parl!al results through computauon. 
Before concluding, we will move beyond uncertain inference to examine default reasoning. 
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Figure 6: (a) A contraction of the decision horizon. (b) A new dominance 
in a more time-critical context. 

The default strategy E-3 is shown in Figure 7(a). As portrayed in the figure. a default rule 
for a particular context often can be made available with relatively l ittle computation. Nottce 
that the object-related value of the default strategy within a problem context does not change 
with time; after being made available, the object-related value of a default strategy tS not 
refined with computation. In this case, we portray the maximum object-related value of the 
default rule that would "fire" i n  the context at hand as betng a fractton of the obJect-related 
valu� attainable through ·computation. 

A compiled policy with a relatively low object-related value could be the strategy of cho1ce 
in situations of exueme time criticality. For example, if our patient's blood pressure were 
suddenly to fall greatly, a theoretically-suboptimal "compiled'' default strategy requiring lmle 
computation might dominate. We depict graphs reflecting this situation tn Figure 7(c) and (d). 

We have described the simple example of diagnosis under conditions of pressing time 
constraints to demonstrate how a reasoning system can apply knowledge about the costs and 
benefits of alternative inference strategies to opumize the value of computauon to a system 
user. The example demonstrates how classic normative reasoning might be modif1ed to respond 
to ranging resource constraints. 

VIII. Summary 

We have reviewed several issues about decision making under resource constraints. We began 
the paper with a discussion of the limited scope of the normative basis for reasoning under 
uncertainty in tbe real world. We then described the applicatiOn of knowledge about mference 
related cost in systems that reason under uncertainty, touching upon the assignment of 
measures of utility to multiple attributes of computation and the notion of computational 
tradeoffs. After enumerating desirable properties of bounded-resource inference, we discussed 
classes of approximation procedures and heuristics that promise to be useful in  reasoning under 
resource constraints. Finally, we described an example that is representative of continutng 
investigation on the costs and benefits of alternative inference strategies in different settings. 
We believe that continuing research on the representauon and control of uncertain reasonwg 
problems under conditions of varying computational and engineenng resources will  be cruc1:1l 
for building systems that cnn act effectively in the real world. 
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figure 7: (a) A default reasoning strategy, (b) The comprehensive 
value of the default strategy, (c) Another shift in the decision 

honzon, (d) Dominance of the default strategy value under more 
severely limited computational resource
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