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Abstract

Pathfinder is an expert system that assists surgical pathologists with the diagnosis of
lymph-node diseases. The program is one of a growing number of normative expert
systems that use probability and decision theory to acquire, represent, manipulate, and
explain uncertain medical knowledge. In this article, we describe Pathfinder and our
research in uncertain-reasoning paradigms that was stimulated by the development of
the program. We discuss limitations with early decision-theoretic methods for reason-
ing under uncertainty and our initial attempts to use non-decision-theoretic methods.
Then, we describe experimental and theoretical results that directed us to return to
reasoning methods based in probability and decision theory.

Keywords: expert systems, decision making, diagnosis, probability theory, decision
theory, artificial intelligence, pathology
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1 Introduction
Decision-theoretic or normative expert systems have the potential to provide better decision
support than do traditional expert systems in problem areas or domains where the accurate
management of uncertainty is important. This potential for improvement arises because
people, including experts, make mistakes when they make decisions under uncertainty. That
is, people often deviate from the rules of decision theory, which provides a set of compelling
principles or desiderata for how people should behave when reasoning or making decisions
under uncertainty. Decision theory includes the rules of probability and the principle that a
person should always choose the alternative that maximizes his expected utility.

Traditional expert systems provide decision support by mimicking the recommendations
of experts. They do so by managing uncertainty with non-decision-theoretic methods. Such
systems are valuable, because they provide important information to a nonexpert who is
confronted with a confusing decision, and because they offer reminders to users who may be
stressed or fatigued. Nonetheless, they tend to duplicate the errors made by experts.

In contrast, normative expert systems use decision theory to manage uncertainty. The
word “normative” comes from decision analysts and cognitive psychologists who emphasize
the importance of distinguishing between normative behavior, which is what we do when
we follow the desiderata of decision theory, and descriptive behavior, which is what we do
when unaided by these desiderata. By encoding expert knowledge in a decision-theoretic
framework, we can reduce errors in reasoning, and thereby build expert systems that offer
recommendations of higher quality.

In this article, we describe Pathfinder, a normative expert system that assists surgical
pathologists with the diagnosis of lymph-node diseases [1, 2]. The Pathfinder project began
in 1983 as a joint project among researchers at Stanford University (David Heckerman, Eric
Horvitz, and Larry Fagan) and the University of Southern California (Bharat Nathwani—the
primary pathology expert—and Keung-Chi Ng) [3]. Currently, a commercial derivative of
Pathfinder, called Intellipath, is being used by practicing pathologists and by pathologists
in training as an educational tool [4].

Also in this article, we discuss the importance of the proper management of uncertainty
for diagnosis of lymph-node diseases; and we discuss our research in uncertain-reasoning
paradigms that was stimulated by the development of Pathfinder. In particular, we examine
practical limitations with early decision-theoretic methods for reasoning under uncertainty
and our initial attempts to overcome these limitations through the use of non-decision-
theoretic reasoning paradigms. Then, we describe experiments with these non-decision-
theoretic approaches as well as theoretical analyses that directed us to return to a method-
ology based in probability and decision theory. In the companion to this article, we describe
the decision-theoretic representations that we developed to make practical the construction
of a normative version of Pathfinder.

2 Diagnosis in Surgical Pathology and Pathfinder
Surgical pathologists perform diagnosis primarily by examining sections of tissue microscop-
ically. Sometimes, pathologists also incorporate clinical, radiology, and laboratory informa-
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tion, and examine tissue with expensive tests derived from immunology, microbiology, and
cell-kinetics research. Based on this information, the pathologist provides a diagnosis to the
surgeons and oncologists who participate in the patient’s treatment. That is, the pathologist
tells these physicians, “the patient has disease x.”

The well-being of patients depends strongly on the accuracy of the pathologist’s diag-
nosis. In the case of lymph-node diagnosis, for example, let us suppose that the patient
has Hodgkin’s disease, a malignant disease, but that the pathologist makes a diagnosis of
mononucleosis, a benign disease that can resemble Hodgkin’s disease. In this situation, the
patient’s chance of death is significantly greater than it would have been had the diagno-
sis been correct, because he does not receive immediate treatment for his malignancy. In
contrast, let us suppose that the patient has mononucleosis, and that the pathologist makes
a diagnosis of Hodgkin’s disease. In this case, the patient likely will undergo expensive,
painful, and debilitating treatment, to be “cured,” only because he never had the malignant
disease in the first place.

A general pathologist performs diagnosis on tissue sections from all parts of the body.
When a general pathologist has difficulty with diagnosis, he frequently refers the case to a
subspecialist, who has expertise in the diagnosis of a particular tissue type. This referral
process usually incurs both a delay in diagnosis and an extra cost. Sometimes, the delay
in diagnosis is unacceptable, and the pathologist cannot refer the case to a subspecialist.
For example, surgeons often rely on pathologists for the timely diagnosis of disease in frozen
tissue taken from patients under anesthesia [5, 6].

The subspecialty of lymph-node diagnosis is one of the most difficult areas in surgical
pathology [7, 8, 9, 10]. For example, one multisite oncology study analyzed almost 9000
cases of malignant lymphoma. The study found that although experts show agreement
with one another, the diagnoses rendered by general pathologists for certain diseases had
to be changed by expert lymph-node pathologists in as many as 65 percent of the cases
[10]. Our goal in building Pathfinder is to close the wide gap between the quality of lymph-
node diagnoses made by general pathologists and those made by subspecialists. We hope to
increase the accuracy of in-house pathology diagnoses, to reduce the frequency of referrals,
and to assist pathologists with intraoperative diagnosis when there is insufficient time for
expert consultation.

Pathologists have difficulty with diagnosis for two reasons. First, they may misrecognize
or fail to recognize microscopic features. Second, they may combine evidence inaccurately
to form a diagnosis. The second problem arises because the pathologist must consider an
enormous number of features and diseases, and because the relationships among diseases
and features are uncertain. Most of Pathfinder research has concentrated on the evidence-
combination problem. That is, we have worked to develop an expert system that can help
pathologists cope with the many uncertain relationships in the diagnosis of lymph-node
pathology. Indeed, Pathfinder reasons about more than 60 diseases that can invade the
lymph node (25 benign diseases, 9 Hodgkin’s lymphomas, 18 non-Hodgkin’s lymphomas, and
10 metastatic diseases), using more than 130 microscopic, clinical, laboratory, immunologic,
and molecular-biologic features. Similarly, in this article, we concentrate on the problem of
managing uncertainty in large domains. Nevertheless, as we mention in Section 9, we also
have addressed the feature-recognition problem.
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3 A Pathfinder Dialog
In rendering a diagnosis, a pathologist (1) identifies and quantifies features; (2) constructs a
differential diagnosis, a set of diseases consistent with the observations; and (3) decides what
additional features to evaluate and what costly tests to employ to narrow the differential
diagnosis. He repeats these steps until he has observed all useful features. This procedure is
called the hypothetico-deductive approach [11, 12, 13, 14]. Cognitive psychologists have found
that physicians frequently employ this approach in performing clinical diagnosis [12, 14].

Pathfinder uses this same method, summarized in Figure 1, to assist pathologists with
their task of diagnosis. Associated with each feature are two or more mutually exclusive and
exhaustive instances. For example, the feature NECROSIS is associated with the instances
ABSENT, PRESENT, and PROMINENT. The Pathfinder system allows a user to report instances
for one or more salient features of a lymph-node section. Given these feature–instance pairs,
the system displays a differential diagnosis ordered by likelihood of diseases. In response
to a query from the user, Pathfinder recommends a set of features that are the most cost
effective for narrowing the differential diagnosis. The pathologist can answer one or more
of the recommended questions. This process continues until the differential diagnosis is a
single disease, there are no additional tests or questions, or a pathologist determines that
the informational benefits are not worth the costs of further observations or tests.

The operation of the latest version of Pathfinder is illustrated by the set of screen photos
in Figure 2. Figure 2(a) shows the initial Pathfinder screen. The FEATURE CATEGORY
window displays the categories of features that are known to the system, the OBSERVED
FEATURES window displays feature–instance pairs that will be observed by the pathologist,
and the DIFFERENTIAL DIAGNOSIS window displays the list of possible diseases and their
probabilities. The probabilities in Figure 2(a) are the prior probabilities of disease—the
probabilities for disease given only that a patient’s lymph node has been removed and is
being examined.

If the user selects (double-clicks) the feature category SPHERICAL FEATURES, then
Pathfinder displays a list of features for that category. To enter a particular feature, the
user double-clicks on that feature, and then selects one of the mutually exclusive and ex-
haustive instances for that feature. For example, Figure 2(b) shows what happens when the
user selects the feature F % AREA (percent area of the lymph-node section that is occupied
by follicles). In the figure, a third window appears that lists the instances for this feature:
NA (not applicable), 1–10%, 11–50%, 51–75%, 76–90%, and >90%. Figure 2(c) shows the result
of selecting the last instance for this feature. In particular, the feature–instance F % AREA:
>90% appears in the middle column, and the differential diagnosis is revised, based on this
observation.

As we mentioned, the user can continue to enter any number of features of his own
selection. Figure 2(d) shows the Pathfinder screen after the user has reported that follicles
are in a back-to-back arrangement and show prominent polarity. Alternatively, the user
can ask the program to recommend additional features for observation. Figure 2(e) shows
that the most cost-effective feature to evaluate, given the current differential diagnosis, is
monocytoid cells. If the user observes that monocytoid cells are prominent, then we obtain
the differential diagnosis in Figure 2(f). In this case, the four features in the middle column
have narrowed the differential diagnosis to a single disease: the early phase of AIDS.
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Evidence-Gathering
Decisions

Salient Features

Diagnosis Continue?

Differential
Diagnosis

Figure 1: Hypothetico-deductive reasoning in Pathfinder. First, the pathologist reports
instances of salient features to the system. The system then constructs a differential
diagnosis—a list of hypotheses that are consistent with the observations, and an assignment
of likelihood to each such hypothesis. Next, the system analyzes the current differential di-
agnosis to identify the most useful features for the pathologist to observe. The process cycles
until the differential diagnosis is narrowed to a single disease, there are no additional tests
or questions, or the pathologist determines that the informational benefits are not worth the
costs of further observations or tests.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: A Pathfinder consultation. (a) Initially, Pathfinder displays (from left to right)
the categories of features, an empty window that will contain feature-instance pairs reported
by the user, and the prior probabilities of disease. (b) Double-clicking on the category
SPHERICAL STRUCTURES and then on the feature F % AREA, the pathologist prepares to
report to Pathfinder the percent area occupied by follicles. (c) Double-clicking on the instance
>90%, the pathologist reports that more than 90% of the lymph-node is occupied by follicles.
In response, the program produces a differential diagnosis in the right-hand window. (d) The
pathologist now reports that follicles are in a back-to-back arrangement and show polarity.
Pathfinder revises the differential diagnosis. (e) The pathologist has asked Pathfinder to
display features that are useful for narrowing the differential diagnosis. The program displays
the four most cost-effective features for the user to observe next. The most useful feature is
monocytoid cells. (f) The user now reports that monocytoid cells are prominent. Pathfinder
determines that only a single disease—AIDS EARLY (the early phase of AIDS)—is consistent
with the four observations. (Adapted with permission from D. Heckerman, Probabilistic
Similarity Networks, MIT Press, Cambridge, MA, 1991.)7



Figure 3: A graphical justification for the recommendation of MONOCYTOID CELLS. For
each instance of the feature, the length and direction of a bar reflects the change in the
probability of AIDS EARLY relative to that of FLORID FOLLIC HYPERP, given the observation
of that feature–instance pair. The justification also includes the monetary cost of observing
the feature. (Taken with permission from D. Heckerman, Probabilistic Similarity Networks,
MIT Press, Cambridge, MA, 1991.)

Pathfinder explains graphically its recommendations for additional observations. A
bitmap of Pathfinder’s graphical justification of the diagnostic utility of the feature mono-
cytoid cells is displayed in Figure 3. In this explanation, Pathfinder displays the change in
probability of the two most likely hypotheses given the observation of each possible instance
of the feature. The graph indicates that if monocytoid cells are absent, then the probability
of FLORID FOLLIC HYPERP relative to that of AIDS EARLY increases slightly; if monocytoid
cells are present or prominent, then the probability of FLORID FOLLIC HYPERP relative to
that of AIDS EARLY decreases greatly; and if monocytoid cells show confluence, then the
probability of FLORID FOLLIC HYPERP relative to that of AIDS EARLY remains unchanged.
By glancing at this graph, we can see that this feature is useful for discriminating these two
diseases. The window also displays the monetary cost of evaluating the feature, which is
negligible in this case.
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4 Decision-Theoretic Computations in Pathfinder
Both an early version and the latest version of Pathfinder employ decision-theoretic compu-
tations to assist pathologists with diagnosis. In this section, we examine these computations.
In particular, we examine how Pathfinder (1) uses probabilistic inference to generate a dif-
ferential diagnosis, (2) uses decision theory to recommend a diagnosis, and (3) uses decision
theory to recommend features for observation. First, however, let us discuss some funda-
mentals of probability and decision theory.

4.1 Probability Theory
Probability theory has roots, more than 3 centuries ago, in the work of Bernoulli, Laplace,
Fermat, and Pascal [15]. The theory describes how to infer the probability of one event from
the probability of related events. The prevalent conception of the probability of some event
x is that it is a measure of the frequency with which x occurs, when we repeat many times
an experiment that has x as a possible outcome. A more general notion, however, is that
the probability of x represents the degree of belief held by a person that the event x will
occur in a single experiment. If a person assigns a probability of 1 to x, then he believes
with certainty that x will occur. If he assigns a probability of 0 to x, then he believes with
certainty that x will not happen. If he assigns a probability of between 0 and 1 to x, then
he is to some degree unsure about whether or not x will occur.

The interpretation of a probability as a frequency in a series of repeated experiments
traditionally is referred to as the objective or frequentist interpretation. In contrast, the
interpretation of a probability as a degree of belief is called the subjective or Bayesian in-
terpretation, in honor of the Reverend Thomas Bayes, a scientist from the mid-1700s who
helped to pioneer the theory of probabilistic inference [16, 15]. Both interpretations follow
the same set of mathematical rules.

In the Bayesian interpretation, a probability or belief will always depend on the state
of knowledge of the person who provides that probability. For example, if we were to give
someone a coin, he would likely assign a probability of 1/2 to the event that the coin would
show heads on the next toss. If, however, we convinced that person that the coin was
weighted in favor of heads, he would assign a higher probability to the event. Thus, we write
the probability of x as p (x|ξ), which is read as the probability of x given ξ. The symbol ξ
represents the state of knowledge or background knowledge of the person who provides the
probability.

The conception of probability as a measure of personal belief is central to research on
the use of probability and decision theory for representing and reasoning with expert knowl-
edge in computer-based reasoning systems. There is usually no alternative to acquiring from
experts the bulk of probabilistic information used in an expert system. For example, there
are more than 14 thousand probabilities in the latest version of Pathfinder; and some of
these probabilities are on the order of 10−6. Thus, performing the experiments necessary
to determine objective probabilities for Pathfinder would entail much time and great ex-
pense. Fortunately, when experimental data is available, the Bayesian approach provides a
mechanism for expert systems to update their probabilities, given this data [17, 18, 19].
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4.2 Decision Theory and Utility Assessment
Decision theory extends the Bayesian interpretation of probability theory, and prescribes how
a decision maker should choose among a set of alternatives or actions, given his utility or pref-
erence for each possible outcome and his belief that each outcome will occur. In particular,
decision theory includes the rules of probability theory and the maximum-expected-utility
(MEU) principle, which states that a decision maker should always choose the alternative
that maximizes his expected utility [20].

Utility assessment is nontrivial and is the subject of many debates. In this article, we
mention only a few important points concerning utility assessment for Pathfinder. The
interested reader should consult more general discussions by Keeney and Raiffa [21], McNeil
et al. [22], and Howard [23].

For each disease pair (dj, dk) in Pathfinder, we encode the utility u(dj, dk), which sum-
marizes the preferences of the decision maker for the situation in which a patient has disease
dj, but is diagnosed as having disease dk. Factors that influence such preferences include
the length of the patient’s expected life, the pain associated with treatment and with the
disease itself, the psychological trauma to the patient and his family, and the monetary cost
associated with treatment and with disability.

An important consideration in the assessment of these (and any other) utilities is: Who
is the decision maker? From our perspective, a pathologist is only a provider of information.
Thus, the u(dj, dk) in the utility model of a computer-based diagnostic system should reflect
the patient’s preferences. For example, consider the situation where a pathologist believes,
after reviewing a case, that the probability of the benign infection mononucleosis is 0.9,
and that the probability of Hodgkin’s disease is 0.1. Should the patient be treated for
Hodgkin’s disease now, or should he wait for more definitive diagnostic signs to develop?
As we discussed, delaying treatment of Hodgkin’s disease decreases the chances of long-term
survival if the patient has this condition. On the other hand, the treatment for Hodgkin’s
disease is highly invasive. The decision about therapy will depend on how the patient
feels about the alternative outcomes. Different patients may have dramatically different
preferences.

As we discuss in Sections 4.4 and 4.5, differences in patient preferences can in principle
affect recommendations made by an expert system for diagnosis. Thus, utility assessment
poses a fundamental problem to any researcher who wants to develop such expert systems.
Specifically, whenever a patient case is processed by an expert system, the system or a
decision analyst should assess the utilities of that patient and provide these utilities to the
system. Such utility assessment would be extremely time consuming and expensive. As
we see in Sections 4.4 and 4.5, however, only Pathfinder’s diagnostic recommendations and
not its recommendations for evidence gathering are sensitive to patient utilities. Thus,
by allowing Pathfinder to make only evidence-gathering recommendations, we render the
program’s recommendations insensitive to patient utilities. We can therefore encode in
Pathfinder the utilities u(dj, dk) from one representative patient.

To construct Pathfinder’s utility model, we assessed the utilities of Bharat Nathwani,
the primary Pathfinder expert. We found it relatively easy to assess his utilities, because he
was familiar with the ramifications of many specific correct and incorrect diagnoses.

Another important consideration in utility assessment is the wide range of severities as-

10



sociated with outcomes. For example, if a patient has a viral infection and is incorrectly
diagnosed as having cat-scratch disease—a disease caused by an organism that is killed with
antibiotics—the consequences are not severe. In fact, the only non-negligible consequence
is that the patient will take antibiotics unnecessarily for several weeks. If a patient has
Hodgkin’s disease and is incorrectly diagnosed as having mononucleosis, however, the con-
sequences are often lethal.

It is important for us to measure preferences across such a wide range, because sometimes
we must balance a large chance of a small loss with a small chance of a large loss. For
example, even though the probability that a patient has syphilis is small—say, 0.001—
treatment with antibiotics may be appropriate, because the patient may prefer the harmful
effects of antibiotics to the small chance of the harmful effects of untreated disease.

Early attempts to assess preferences for both minor and major outcomes in the same unit
of measurement were fraught with paradoxes. For example, in a linear willingness-to-pay
approach, a decision maker might be asked, “How much would you have to be paid to accept
a one in ten-thousand chance of death?” If the decision maker answered, say, $1000, then
the approach would dictate absurdly that he would be willing to be killed for $10 million.

Howard (1980) constructed an approach that avoids many of the paradoxes of earlier
models. Like several of its predecessors, the model determines what an individual is willing
to pay to avoid a given chance of death, and what he is willing to be paid to assume a given
chance of death. Also, like many of its predecessors, Howard’s model shows that, for small
risks of death (typically, p < 0.001), the amount someone is willing to pay to avoid, or is
willing to be paid to assume, such a risk is linear in p. That is, for small risks of death,
an individual acts as would an expected-value decision maker with a finite value of life,
called the small-risk value of life. For significant risks of death, however, the model deviates
strongly from linearity. For example, the model shows that there is a maximum probability
of death, beyond which an individual will accept no amount of money to risk that chance of
death. Most people find this result to be intuitive.1

To use this model, we first determined Bharat Nathwani’s small-risk value of life. When
asked what dollar amount he would be willing to pay to avoid chances of death ranging from
1 in 20 to 1 in 1000, he was consistent with the linear model to within a factor of 2, with a
median small-risk value of life equal to $20 million (in 1988 dollars). To make the application
of the model more convenient, we used Howard’s definition of a micromort: one–in–1-million
chance of death [24]. In these units, the Pathfinder expert’s small-risk value of life was $20
per micromort.2

Given this small-risk value of life, we could then measure his preferences for major and
minor outcomes in a common unit: 1 minus the probability of immediate, painless death that
he was willing to accept to avoid a given outcome and to be once again healthy. In particular,
we assessed his preferences for minor outcomes with willingness-to-pay questions, such as
“How much would you be willing to pay to avoid taking antibiotics for two weeks?” We then
translated these answers, via the linearity result of Howard’s model, to units of probability

1The result makes several assumptions, such as the decision maker is not suicidal and is not concerned
about how his legacy will affect other people.

2In general, the micromort is a useful unit of measurement, because it helps to emphasize that the linear
relationship between risk of death and willingness to pay holds for only small probabilities of death.
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of death. For example, an answer of $100 translated to a utility of

1− 5 micromorts = 1− 0.000005 = 0.999995

We assessed his preferences for major outcomes directly in units of probability of death. For
example, he imagined that he had—say—Hodgkin’s disease, and that he had been misdiag-
nosed as having mononucleosis. He then imagined that there was a magic pill that would rid
him of this disease with probability 1 − p, but would kill him, immediately and painlessly,
with probability p. He then provided the value of p that made him indifferent between his
current situation and the situation in which he takes the pill. The utility of this outcome is
1− p.

4.3 Construction of a Differential Diagnosis
First, let us examine the problem of differential diagnosis in general. Let m and n denote the
number of diseases and features in a medical domain, respectively. Also, let d1, d2, . . . , dm

denote the disease entities. For the moment, let us suppose that each disease dj may be
present or absent. Let Dk denote some instance of diseases. That is, Dk denotes some
assignment of present or absent to each of the diseases d1, d2, . . . , dm. Further, let f1, f2,
. . . , fn denote the features in the domain, and let ij denote the observed instance for the
jth feature.

Now imagine that a user of a probabilistic expert system for this domain has observed
instances for q features. To simplify the notation, let us renumber the n features so that the
user has observed instances for the first q features. Typically, the user will want to know
the probability of each disease instance, given the observations f1i1, f2i2, . . . , fqiq. This
quantity for disease instance Dk is known as the posterior probability of Dk, and is denoted

p(Dk|f1i1, f2i2, . . . , fqiq, ξ) (1)

Thus, the number of probabilities of interest is exponential both in the number of observed
features and in the number of diseases.

In principle, an expert could assess directly these posterior probabilities. Aside from
the intractable nature of this task, however, most physicians are more comfortable assessing
probabilities in the opposite direction. That is, they are more comfortable assessing the
probabilities that the set of observations f1i1, f2i2, . . . , fqiq will appear given a particular
disease instance Dk, denoted

p(f1i1, f2i2, . . . , fqiq|Dk, ξ) (2)

Using Bayes’ theorem, the expert system can compute from these probabilities and the prior
probability of disease instances p(Dk|ξ) the desired posterior probabilities

p(Dk|f1i1, f2i2, . . . , fqiq, ξ) =
p(f1i1, f2i2, . . . , fqiq|Dk, ξ) p(Dk|ξ)

P
Dl

p(f1i1, f2i2, . . . , fqiq|Dl, ξ) p(Dl|ξ)
(3)

where the sum over Dl runs over all disease instances. Unfortunately, this approach to the
problem is also intractable, because the number of probabilities of the form
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p(f1i1, f2i2, . . . , fqiq|Dk, ξ) is exponential both in the number of diseases and in the number
of features.

To manage the complexity of the general case, researchers who built the first proba-
bilistic expert systems made two assumptions. First, they supposed that all findings were
conditionally independent, given any disease instance. That is, they assumed that, if the
true disease state of the patient was known, then the likelihood of seeing any observation
fkik did not depend on observations made about any other features. Thus,

p(fjij|Dk, f1i1, . . . , fj−1ij−1, fj+1ij+1, . . . , fqiq, ξ) = p(fjij|Dk, ξ) (4)

Given this assumption, it follows from the rules of probability [25] that

p(f1i1, f2i2, . . . , fqiq|Dk, ξ) = p(f1i1|Dk, ξ) p(f2i2|Dk, ξ) · · · p(fqiq|Dk, ξ) (5)

Second, these researchers supposed that the traditional disease entities were mutually ex-
clusive and exhaustive. That is, they assumed that each disease instance corresponded to a
situation where only one disease was present.

Given these two assumptions, the expert system can compute the posterior probabilities
of disease from the tractable computation

p(dk|f1i1, f2i2, . . . , fqiq, ξ) =
p(f1i1|dj, ξ) p(f2i2|dk, ξ) · · · p(fqiq|dk, ξ) p(dk|ξ)

P
dl

p(f1i1|dl, ξ) p(f2i2|dl, ξ) · · · p(fqiq|dl, ξ) p(dl|ξ)
(6)

where dk represents the disease instance in which only disease dk is present. Thus, only the
conditional probabilities p(fjij|dk, ξ) and the prior probabilities p(dk|ξ) are required for the
computation. We call any model that employs these two assumptions a simple-Bayes model.
Ledley and Lusted proposed this model for medical diagnosis in 1959 [26].

In the domain of lymph-node pathology, the assumption that diseases are mutually ex-
clusive is appropriate, because co-occurring diseases almost always appear in different lymph
nodes or in different regions of the same lymph node. Also, the large scope of Pathfinder
makes reasonable the assumption that the set of diseases is exhaustive. The assumption of
global conditional independence, however, is inaccurate. For example, given certain diseases,
finding that follicles are abundant in the tissue section increases greatly the chances that
sinuses in the interfollicular areas will be partially or completely destroyed. Nonetheless, to
simplify our task, we used the simple-Bayes model to construct the first probabilistic version
of Pathfinder. Later, after developing several graphical representation languages that we
describe in the companion to this article, we encoded successfully the conditional noninde-
pendence or conditional dependence among the features in the domain. We shall return to
this discussion in Section 8.

4.4 Recommendation of a Diagnosis
As we mentioned, a diagnosis is a statement of the form: “The patient has disease x.”
Sometimes, as we saw in the patient case in Section 3, the posterior probability of one
disease will equal 1 and the posterior probability of all other diseases will equal 0. In this
case, making a diagnosis is not a decision. Rather, the diagnosis is a consequence of the
rules of logic. In most cases, however, observations usually do not narrow the differential
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diagnosis to a single disease. In these situations, making a diagnosis is a decision: an
irrevocable allocation of resources under uncertainty.

Using the MEU principle, the system can determine a diagnosis from the probabilities
of disease and the utilities u(dj, dk). Let φ denote the set of feature–instance pairs f1i1, f2i2,
. . . , fqiq that we have observed thus far. First, for each diagnosis dk, the system computes
eu(dk|φ), the expected utility of that diagnosis given observations φ, using the formula

eu(dk|φ) =
X

dj

p(dj|φ) u(dj, dk) (7)

To complete the determination, the system selects the optimal diagnosis, denoted dx(φ),
using the equation

dx(φ) = argmaxdk
[eu(dk|φ)] (8)

where the function argmaxdk
[·] returns the disease that maximizes its argument.

We do not allow Pathfinder to recommend diagnoses, because we have observed that such
recommendations are somewhat sensitive to the utility model. That is, when we change the
utilities in the model from values appropriate for one patient to values appropriate for another
patient, the program’s recommendations can change significantly. By preventing Pathfinder
from recommending diagnoses, we hope to encourage a change in the way pathologists and
care-providing physicians communicate. In the short term, we hope that pathologists will
begin to express clearly—in the language of probability—uncertainty associated with their
observations. In the long term, we hope that each physician who is associated with the care
of a patient—including the primary physician, the pathologist, the radiologist, the surgeon,
the oncologist, and the radiotherapist—and the patient himself will communicate in decision-
theoretic terms to determine the best treatment for that patient. Such communication could
take place via a shared decision model embodied in an expanded version of Pathfinder.

4.5 Recommendation of Features to Narrow a Differential Diag-
nosis

Let us now consider how an expert system can use decision theory to recommend features
for observation to narrow a differential diagnosis. First, the system enumerates all possible
observation strategies. An example of an observation strategy is

Observe f3. If f3 is present, then observe f2; otherwise, make no further obser-
vations and make the diagnosis. If f3 and f2 are present, then observe f7, and
make the diagnosis. If f3 is present and f2 is absent, then make the diagnosis.

Next, the system computes the decision maker’s expected utility of all strategies, including
the strategy in which the user observes no additional features. Finally, the system chooses
the strategy that maximizes the decision maker’s expected utility.

In practice, this approach is unfeasible, because there are more than 2n strategies for
n unobserved features. To make computations tractable, both the old and new versions of
Pathfinder employ the myopic approximation, introduced by Gorry and Barnett in 1968 [27].
In this approximation, a system identifies the best single feature to observe, by maximizing
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the expected utility of the decision maker under the assumption that a diagnosis will be
made after the user observes only one feature. Once the user observes the feature, the system
repeats the myopic analysis, and may recommend additional features for observation.

Let us examine formally the computation in Pathfinder. First, the system computes
eu(dx(φ)|φ), the expected utility of the optimal diagnosis when the user observes no addi-
tional features. From Equations 7 and 8, we have

eu(dx(φ)|φ) =
X

dj

p(dj|φ) u(dj, dx(φ)) (9)

Now the system imagines that the user observes an additional feature fnew. Let φ
0
denote

the union of the original set of observations and the observation for fnew. Pathfinder now
identifies the optimal diagnosis, given the new set of observations:

dx(φ
0
) = argmaxdk




X

dj

p(dj|φ
0
) u(dj, dk)



 (10)

The expected utility of this diagnosis, denoted eu(dx(φ
0
)|φ0

), is given by

eu(dx(φ
0
)|φ0

) =
X

dj

p(dj|φ
0
) u(dj, dx(φ

0
)) (11)

In contrast, the expected utility of the original diagnosis, given observations φ
0
, is given by

eu(dx(φ)|φ0
) =

X

dj

p(dj|φ
0
) u(dj, dx(φ)) (12)

The quantity eu(dx(φ)|φ0
) is never greater than the measure eu(dx(φ

0
)|φ0

), because, by
definition, the diagnosis dx(φ

0
) maximizes expected utility, given the observations φ

0
. The

system now computes the value of information of observing fnew, denoted vi(fnew|φ), which
is the difference between eu(dx(φ

0
)|φ0

) and eu(dx(φ)|φ0
) averaged over the instances inew of

the feature fnew.3 That is,

vi(fnew|φ) =
X

inew

p(φ
0|φ)

h
eu(dx(φ

0
)|φ0

)− eu(dx(φ)|φ0
)
i

(13)

The value of information of observing fnew represents the largest amount that the decision
maker would be willing to pay to observe fnew. This quantity is always greater than or equal
to 0. Next, the system computes the net value of information of observing fnew, denoted
nvi(fnew|φ), by subtracting the cost4 of observing fnew from the value of information of
observing fnew. That is,

nvi(fnew|φ) = vi(fnew|φ)− cost(fnew). (14)

Finally, if there is at least one feature that has a net value of information greater than
0, Pathfinder recommends the feature for observation that has the highest net value of

3This definition and the definition of net value of information are appropriate for expected-value decision
makers. Howard discusses the general case [28, 29].

4We measured costs in dollars and then converted these costs to units of probability via Howard’s model.
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information. Otherwise, the system suggests that the user should gather no additional
evidence and make a diagnosis.

In principle, the myopic approximation could affect the diagnostic accuracy of an expert
system. For example, suppose that two features remain unobserved. In this case, the net
value of information for the feature pair could exceed 0, and thus the user should observe
the features. A value-of-information analysis on each feature alone, however, may indicate
that neither feature is cost effective for observation. Consequently, the user would fail to
observe these features, and thereby possibly make an incorrect diagnosis. Nonetheless, there
is evidence that the myopic approximation does not often cause this problem in practice.
For example, Gorry and Barnett have demonstrated that the approximation does not dimin-
ish significantly the diagnostic accuracy of their program that assists physicians with the
diagnosis of congenital heart disease [27]. In addition, although we have not yet conducted
a similar experiment with Pathfinder, our expert almost always has been impressed by the
questions generated by the myopic approximation.

As we mentioned in previous sections, Pathfinder’s diagnostic recommendations are sen-
sitive to the utility model, and we therefore do not allow Pathfinder to make such recom-
mendations. Fortunately, however, we have found in an informal study that Pathfinder’s
recommendations for evidence gathering are insensitive to the model. In particular, we have
found that Pathfinder’s recommendations often are similar to those made by a second version
of the program in which u(dj, dk) is equal to 1 when both dj and dk are benign diseases,
u(dj, dk) is equal to 1 when both dj and dk are malignant diseases, and u(dj, dk) is equal
to 0 otherwise. Consequently, we allow Pathfinder to make recommendations for evidence
gathering.

The observation that recommendations for evidence gathering are less sensitive to the
utility model than are diagnostic recommendations may be due to the fact that more factors
contribute to the computation of net value of information than to the computation of the
diagnosis. That is, only the probabilities of diseases and the utilities u(dj, dk) contribute to
the computation of the diagnosis, whereas these factors, the information content of a feature,
and the cost of a feature contribute to the computation of net value of information.

5 Alternative Reasoning Methodologies
The first medical expert systems employed computations based in probability theory. In
particular, throughout the 1960s and early 1970s, medical expert systems used the simple-
Bayes model to construct differential diagnoses. These systems included Warner’s system
for the diagnosis of heart disease [30], Gorry’s program for the management of acute renal
failure, and deDombal’s system for the diagnosis of acute abdominal pain [31].

Evaluations of most of these early systems showed that the programs performed well.
In fact, the diagnoses rendered by several of them were more accurate than were those
made by experienced physicians [31]. Nonetheless, in the early 1970s, researchers began to
criticize these systems. They noted that the domains of these programs were small and did
not reflect realistic clinical situations. Furthermore, researchers argued that errors due to
the erroneous assumptions of the simple-Bayes model would become unacceptable as the
domains of these systems were expanded [32, 33]. One group of investigators showed that
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the diagnostic accuracy of an expert system based on the simple-Bayes model deteriorated
significantly as the number of features in the system increased. These investigators traced
the degradation in performance to violations of the conditional-independence assumptions
in the simple-Bayes model [34]. Another group of researchers showed that the assumption
of global conditional independence could be unrealistic in small domains as well [35].

In the early 1970s, perceptions of the inadequacy of the early decision-theoretic systems
led to the development of alternative methods for reasoning under uncertainty [36, 37, 32].
Many of these developments occurred in the field of Artificial Intelligence in Medicine. Some
of the alternative methods were ad hoc mechanisms, designed as custom-tailored techniques
for particular domains or systems. These approaches included the MYCIN certainty-factor
model and the QMR scoring scheme. Other methods were developed as alternative theoret-
ical formalisms, such as the Dempster–Shafer theory of evidence and fuzzy decision theory.

In the first year of Pathfinder research, we appreciated the limitations of the simple-Bayes
model, and believed that the use of this model would significantly impair the performance
of Pathfinder. Consequently, we examined several alternative reasoning methodologies. In
this section, we introduce these approaches. In the following two sections, we describe our
empirical and theoretical analyses of these methodologies in the context of Pathfinder.

A well-known ad hoc method for managing uncertainty is the certainty-factor (CF)
model [38]. Shortliffe and Buchanan designed the model to augment the rule-based approach
to reasoning for MYCIN, a program for the diagnosis and treatment of bacteremias and
meningitis [33]. In using the model, an expert attaches a certainty factor to each if–then
rule. The certainty factor represents the expert’s change of the belief in the consequent of
the rule, given the antecedent of the rule. In particular, a CF between 0 and 1 means that
the expert’s belief in a consequent increases if the antecedent is true, whereas a CF between
-1 and 0 means that the expert’s belief decreases. In a rule base, the consequent of one
rule may serve as the antecedent of another rule. In addition, two or more rules may share
the same antecedent or consequent. As a result, a rule base forms an inference network: a
directed graph in which an arc from proposition a to proposition b corresponds to the rule
“if a then b.” The CF model prescribes a method for propagating certainty factors through
such a network. That is, given an observation of an antecedent in the network, we can
use CF-model formulas to compute the effective certainty factor for any consequent in the
network that is a descendent of that antecedent. Although the CF model was designed for
MYCIN, the model has found many applications in other domains. Today, the model is the
most popular method for managing uncertainty in rule-based systems.

Quick Medical Reference or QMR (formerly Internist-1) uses another ad hoc method for
managing uncertainty [39, 40]. The QMR project, now in its eighteenth year, assists internists
with the diagnosis of more than 600 diseases, through the consideration of approximately
4000 manifestations or features of disease. In QMR, each feature has two instances; in
particular, a feature is either absent or present. More important, each disease can be either
absent or present. Thus, QMR can address cases in which more than one disease is present.
The ad hoc scoring scheme employs two measures to represent the degree of association
between a feature and a disease: an evoking strength and a frequency. The evoking strength
for a given feature–disease pair represents the degree to which the presence of the disease
causes that feature to be present. The frequency for a given feature–disease pair represents
how often that feature is present in patients who have the disease. In addition, the scheme
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represents the import of each feature, which is inversely proportional to the likelihood that
an insignificant disease (such as the common cold) can cause the feature to be present. Given
an assignment of present and absent to a subset of features, QMR uses evoking strengths,
frequencies, and imports to assign a score to each disease. QMR then displays diseases in
order of descending score. Like early decision-theoretic systems, QMR uses a hypothetico-
deductive approach to reasoning. In particular, the system contains ad hoc algorithms for
generating useful recommendations for additional evidence gathering based on the current
differential diagnosis and on evoking strengths, frequencies, and imports.

A more theoretical alternative to probabilistic reasoning was developed by Dempster
and extended by Shafer [41, 42]. The approach, now called the Dempster–Shafer theory of
evidence, was motivated by theoretical objections to the decision-theoretic approach [43].
Nonetheless, many artificial-intelligence (AI) researchers adopted special cases of the ap-
proach to avoid the perceived computational intractability of decision theory [44, 45]. Cur-
rently, the theory has many interpretations [42, 46, 47, 48]. One of the most popular inter-
pretations is that given in Shafer’s original text. In this interpretation, an expert assesses
the degree of support that a piece of evidence lends to hypotheses in the frame of discern-
ment: a set of mutually exclusive and exhaustive hypotheses. He does so for every piece of
evidence that may be observed. A combination rule can then be used to compute the degree
of support that multiple pieces of evidence lend to hypotheses in the frame of discernment.
In the interpretation, an expert assesses degrees of support for a single piece of evidence by
constructing a basic probability assignment over the frame. That is, he assigns a mass, rang-
ing from 0 to 1, to each subset of hypotheses in the frame. The mass for a particular piece
of evidence and a subset of hypotheses represents the degree of support that the evidence
lends to the subset. Like the CF model and the QMR scoring scheme, the Dempster–Shafer
theory manipulates measures of change in belief. In Section 7.1, we examine the relationship
among these methodologies.

Another theoretical approach for managing uncertainty is fuzzy decision theory [49].
The theory addresses the presence of ambiguous terms such as “large” and “tall” in the
specification of decision problems. Fuzzy decision theorists do not object to the use of
probability theory or decision theory when events are defined precisely. They argue, however,
that it is desirable to reason in situations where there is imprecision in the definition of events
in addition to uncertainty about their occurrence. An example of a fuzzy decision problem
is as follows:

An urn contains many balls of various sizes, of which several are large. To draw
a ball, you must pay a small sum of money. If you draw a large ball, however,
you will win a valuable prize. Should you draw the ball?

6 Empirical Study of Reasoning Methods
During the first year of Pathfinder research, we experimented with the reasoning method-
ologies described in the previous section. In this section, we examine the results of those
experiments.
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6.1 Rule-Based Reasoning
The first version of Pathfinder was a rule-based system that employed propositional logic
for reasoning. After informally evaluating the system, we discovered two related problems.
First, the program did not take into account the uncertainty associated with the relationships
between observations and diseases. This deficiency of the program became apparent to us
almost immediately. Indeed, as we have mentioned, proper management of uncertainty
is crucial to accurate diagnosis in the domain of lymph-node pathology. We might have
addressed this concern with the use of the CF model. We found, however, another problem
with the rule-based approach, which forced us to abandon the methodology. In particular,
our expert was frustrated by the system, because it asked many questions that were irrelevant
to discriminating the diseases on the current differential diagnosis. This behavior was a
result of the fact that the rule-based methodology generated recommendations for additional
observations based on a fixed traversal through the rule base.

As a result of our informal evaluations, we searched for a more flexible approach to the
overall control of diagnostic reasoning. We discovered literature describing the hypothetico-
deductive approach and systems such as QMR and Gorry’s diagnostic program that im-
plemented the approach. We decided to construct a new version of Pathfinder modeled
after QMR. Nonetheless, we were not satisfied with the scoring scheme of QMR because it
had no theoretical foundation; and we searched for a more principled method for managing
uncertainty.

6.2 Fuzzy Reasoning
We considered fuzzy decision theory as a possible reasoning methodology for Pathfinder,
but quickly rejected its use. We did so, because we found that neither general pathologists
nor experts in hematopathology agreed on the meanings of fuzzy descriptions of feature–
instance pairs such as “mild capsule thickening,” “rare Sternberg-Reed cells,” or “prominent
necrosis.” For example, one expert stated that Sternberg-Reed cells were “rare” when there
were one to five of these cells in any 4-square-centimeter section of a lymph node. Another
expert stated that these cells were “rare” when there were one to ten of these cells in
any 4-square-centimeter section. We did not believe that fuzzy decision theory—a scheme
devised by researchers who were unfamiliar with the domain of lymph-node pathology—nor
any other mechanism would provide meaningful inferences, if we continued to employ these
fuzzy feature-instance descriptions.

Instead, we asked the four hematopathology experts—Drs. Costan Berard, Jerome
Burke, Ronald Dorfman, and Bharat Nathwani—to clarify the meanings of the descrip-
tions that they were using. Although, as we have just discussed, the experts’ interpretations
did not coincide initially, the experts did not find it difficult to construct unambiguous inter-
pretations for each feature instance. The experts handled disagreements in a manner similar
to that used by coauthors of a manuscript who are faced with a disagreement. That is, when
their initial interpretations of a feature instance did not coincide, each pathologist put forth
an argument for the merits of his interpretation of that feature instance. Then, in most
cases, the four experts accepted unanimously one interpretation. When the experts could
not agree, the primary author of the system (Bharat Nathwani) selected the interpretation.
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6.3 The Dempster–Shafer Theory of Evidence
Next, we examined the Dempster–Shafer theory of evidence. We discovered that the theory
could be interpreted as a methodology for combining measures of change in belief, as could
the CF model and QMR scoring scheme. We were attracted to the methodology, however,
because it appeared to be a more principled approach to uncertainty management. Conse-
quently, we constructed the second version of Pathfinder, using the Dempster–Shafer theory.
In particular, we implemented a special case of the theory described by Barnett [44]. In this
approach, the expert assigned nonzero masses only to (1) singleton subsets of the frame of
discernment and (2) the entire frame of discernment. We refer to this simplified approach
as the Dempster–Shafer–Barnett model.

We then evaluated informally this version of Pathfinder by allowing the expert to exercise
the system with real and imaginary cases. The expert was satisfied with the diagnostic
accuracy of the system.

At this time, probability theory was low on our list as a method for combining evi-
dence to build a differential diagnosis, because of the limitations of the simple-Bayes model.
Nevertheless, we were interested in experimenting with probabilistic reasoning, given the pio-
neering work of Ledley, Lusted, Gorry, Barnett, and others. We re-examined the measures of
uncertainty that we had assessed from our expert, and realized that these measures could be
interpreted in probabilistic terms. We implemented the simple-Bayes model in Pathfinder,
without assessing additional measures of uncertainty.5

We then compared the performance of the Dempster–Shafer–Barnett and simple-Bayes
versions of Pathfinder. Without informing the expert, we switched the scoring scheme of
Pathfinder from the Dempster–Shafer–Barnett approach to the simple-Bayes model. To our
surprise, after running several cases with the probabilistic scheme, the expert exclaimed
excitedly that the diagnostic accuracy of the program had improved significantly.

Several years later, in a formal study, we compared the diagnostic accuracy of the
Dempster–Shafer–Barnett, simple-Bayes, and CF models in the domain of lymph-node pathol-
ogy. We verified our informal observation that the simple-Bayes model provided greater
diagnostic accuracy (i.e., greater agreement with the expert) than did the Dempster–Shafer–
Barnett model. We also found that the simple-Bayes model provided greater diagnostic
accuracy than did the CF model [50].

7 Theoretical Study of Reasoning Methods
Surprised with the dominance of the simple-Bayes model over the alternative methods, we
investigated the relationship between probability theory and alternative reasoning strategies
over the next two years. We also studied the theoretical justifications for probabilistic and
decision-theoretic reasoning.

5We assumed that the prior probability of each disease was equal.
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7.1 Probabilistic Interpretations of Alternative Reasoning Meth-
ods

Heckerman and other researchers examined the relationship of the CF, QMR, and Dempster–
Shafer–Barnett models with a simple probabilistic model for manipulating measures of
change in belief called the odds–likelihood updating scheme. To understand the probabilistic
model, let us suppose that we have a single disease d that can be true (d+) or false (d−).
Further, suppose that we have n features f1, . . . , fn, where each feature can be present or
absent. Let us apply the simple-Bayes model to this situation. That is, let us assume that
all features are conditionally independent, given d+ and given d−. Thus, as in Section 4.3,
we can use Bayes’ theorem to compute the posterior probability of d+; we obtain

p(d+|f1, . . . , fn, ξ) =
p(f1|d+, ξ) · · · p(fn|d+, ξ) p(d+|ξ)

p(f1|d+, ξ) · · · p(fn|d+, ξ) p(d+|ξ) + p(f1|d−, ξ) · · · p(fn|d−, ξ) p(d−|ξ)
(15)

where any fi can be present or absent. In addition, we can apply Bayes’ theorem to compute
the posterior probability of d−; we get

p(d−|f1, . . . , fn, ξ) =
p(f1|d−, ξ) · · · p(fn|d−, ξ) p(d−|ξ)

p(f1|d+, ξ) · · · p(fn|d+, ξ) p(d+|ξ) + p(f1|d−, ξ) · · · p(fn|d−, ξ) p(d−|ξ)
(16)

When we divide Equation 15 by Equation 16, we obtain

p(d+|f1, . . . , fn, ξ)

p(d−|f1, . . . , fn, ξ)
=

p(f1|d+, ξ)

p(f1|d−, ξ)
· · · p(fn|d+, ξ)

p(fn|d−, ξ)

p(d+|ξ)
p(d−|ξ) (17)

We can rewrite Equation 17 as

O(d+|f1, . . . , fn, ξ) = λ(f1, d+|ξ) · · · λ(fn, d+|ξ) O(d+|ξ) (18)

where
O(d+|ξ) = p(d+|ξ)

p(d−|ξ) and O(d+|f1, . . . , fn, ξ) = p(d+|f1,...,fn,ξ)
p(d−|f1,...,fn,ξ) (19)

are the prior and posterior odds of d+, respectively, and

λ(fi, d+|ξ) =
p(f1|d+, ξ)

p(f1|d−, ξ)
(20)

is the likelihood ratio for d+, given fi. Equation 18 is the odds–likelihood updating scheme.
Heckerman showed that we can interpret the certainty factor for the rule “if fi then

d+,” denoted CF (fi → d+|ξ) as a monotonically increasing function of the likelihood ratio
λ(fi, d+|ξ). In particular, he showed that, if we make the identification

CF (fi → d+|ξ) =






λ(fi,d+|ξ)−1
λ(fi,d+|ξ) λ(fi, d+|ξ) ≥ 1

λ(fi, d+|ξ)− 1 λ(fi, d+|ξ) < 1
(21)

then the odds–likelihood updating scheme is identical to the formula in the CF model for
combining certainty factors that is applied when a set of rules share the same consequent.
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In addition, Heckerman showed that with the identification in Equation 21, the remaining
formulas in the CF model are a close approximation to the rules of probability [51].

Grosof then showed that the Dempster–Shafer–Barnett model was isomorphic to the
odds–likelihood updating scheme [52] via a different transformation of the likelihood ratio.
In addition, Heckerman and Miller demonstrated that QMR’s ad hoc scoring scheme was
isomorphic to the odds–likelihood updating scheme [53].6

These theoretical results helped us to understand the dominance of the simple-Bayes
model over the nonprobabilistic alternatives. In particular, the other approaches did not
avoid the assumptions of conditional independence of the simple-Bayes model; they merely
obscured the assumptions. In fact, these approaches assumed that evidence was conditionally
independent, given each disease and given the negation of each disease. When there are
more than two mutually exclusive and exhaustive diseases in a domain, theses conditional
independence assumptions are stronger than are the assumptions in the simple-Bayes model
[58, 51].

We can understand the limitations of the alternative scoring schemes at a more intuitive
level. Let us consider rule-based inference, in particular. The first rule-based inference
schemes used the rules of logic. As a result, these schemes enjoyed a property known as
modularity. That is, given the logical rule “if a then b,” and given that a is true, we can
assert that b is true no matter how we established that a is true, and no matter what else
we know to be true. For example, given the rule

if l1 and l2 are parallel lines then l1 and l2 do not intersect

we can assert that l1 and l2 do not intersect once we know that l1 and l2 are parallel lines.
This assertion satisfies the property of modularity: The assertion depends on neither how
we came to know that l1 and l2 are parallel, nor what else we know.

The CF model is an extension of the rules of logic that imposes this same principle of
modularity on inferences. For example, given the rule

if PERITONITIS then APPENDICITIS, CF = 0.7

and given that a patient has peritonitis, the CF model allows us to increase the likelihood
that the patient has appendicitis by the amount corresponding to a CF of 0.7, no matter how
we establish that peritonitis is present. Given the correspondences described in the first part
of this section, we see that the odds–likelihood updating scheme, the QMR scoring scheme,
and the Dempster–Shafer–Barnett model also incorporate the property of modularity. We
shall refer to these methods collectively as modular belief updating schemes.

Unfortunately, these schemes in reality do not satisfy the property of modularity. Contin-
uing our example, suppose the patient has vaginal bleeding. This fact increases the likelihood
that she has a ruptured ectopic pregnancy, and thus increases the likelihood that she has
peritonitis. The chances that the patient has an appendicitis decreases, however, because the
presence of a ruptured ectopic pregnancy can account for the presence of peritonitis. Overall,
we have that the likelihood of peritonitis increases, whereas the likelihood of appendicitis
decreases. The modular rule linking peritonitis with appendicitis is inconsistent with these
relationships.

6This work led to the construction of a probabilistic version of QMR, called QMR-DT [54, 55, 56, 57].
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In general, logical relationships represent complete models of interaction. In contrast,
uncertain relationships encode invisible interactions. We summarize these hidden interac-
tions with numerical measures, such as a certainty factor or likelihood ratio. In the process of
such a summarization, we lose information about the detailed categorical interaction. There-
fore, when we try to combine uncertain information, unexpected (nonmodular) interactions
may occur. We should not expect that any modular belief updating scheme will be able to
handle such subtle interactions.

7.2 A Practical Problem with Nonprobabilistic Methods
In continuing to explore the difference between probabilistic and nonprobabilistic alterna-
tives, we encountered a practical limitation associated with the use of modular belief updat-
ing schemes. Specifically, these schemes require that we assess the strength of an uncertain
relationship in the direction in which it is used. That is, we must specify the change in belief
of an unobservable hypothesis, given an observable piece of evidence. Unfortunately, experts
often are more comfortable quantifying uncertain relationships in the direction opposite to
that in which they are used [59].

In particular, Kahneman and Tversky have shown that people usually are more comfort-
able when they assess the likelihood of an effect given a cause rather than when they assess
the likelihood of a cause given an effect. For example, expert physicians prefer to assess
the likelihood of a finding, given a disease, rather than the likelihood (or belief update) of
a disease, given a finding [60]. Henrion attributes this phenomenon to the nature of causal-
ity. In particular, he notes that a predictive probability (the likelihood of a finding, given a
disease) reflects a stable property of that disease. In contrast, a diagnostic probability (the
likelihood of a disease, given a finding) depends on the incidence rates of that disease and of
other diseases that may cause the finding. Thus, predictive probabilities are a more useful
and parsimonious way to represent uncertain relationships—at least in medical domains (see
[61], pages 252–3). The developers of QMR make a similar observation [39].

Unfortunately, effects are usually the observable pieces of evidence, and causes are the
sought-after hypotheses. Thus, in using a modular belief updating scheme, we force experts
to provide judgments of uncertainty in a direction that is more cognitively challenging. We
thereby promote errors in assessment. In contrast, when we use probability theory to manage
uncertainty, we can assess the strength of an uncertain relationship in one direction, and then
reverse the relationship using Bayes’ theorem, when the need arises.

7.3 Compelling Principles for Uncertainty Management and De-
cision Making

After identifying limitations of non-decision-theoretic approaches for uncertain reasoning,
we explored theoretical advantages of the decision-theoretic approach. Perhaps the most
significant advantage we discovered was the fact that the rules of probability and the MEU
principle follow from compelling principles, and that people often violate these principles
when unaided by decision-theoretic systems.

For example, Ramsey and deFinetti showed that anyone who does not follow the rules
of probability theory would be willing to accept a “Dutch book”: a combination of bets
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leading to a guaranteed loss of money under any circumstances [62, 63, 64]. In contrast,
Cox developed a set of desiderata about fundamental properties of a measure of belief unre-
lated to betting behavior that also imply the rules of probability [65, 25]. In addition, von
Neumann and Morgenstern constructed a remarkable proof of the MEU principle [20]. They
developed five compelling principles or desiderata that every decision maker should follow,
and demonstrated that these desiderata imply the MEU principle. One desideratum is the
principle of transitivity, which states that if a decision maker prefers outcome A to outcome
B, and prefers outcome B to outcome C, then he must prefer outcome A to outcome C. To
see that this desideratum is compelling, let us suppose that a decision maker’s preferences
are not transitive. In particular, suppose he prefers A to B, B to C, and C to A. Because
he prefers C to A, he should be willing to exchange A for C and a small payment. Similarly,
this person should be willing to exchange C for B, and B for A. Thus, we can extract
payments from him, and yet leave him with the same outcome. Repeating this procedure,
called a money pump, we can extract an arbitrarily large payment from this person. Decision
theorists and cognitive psychologists have devised justifications for each of von Neumann and
Morgenstern’s desiderata [20, 66, 67].

Psychological studies have demonstrated that, in the real world, human decision makers
exhibit a set of stereotypical deviations or biases from the desiderata of decision theory
[68, 69]. From the perspective of decision theory, we can view these deviations as mistakes.
For example, people sometimes have nontransitive preferences, and thus are vulnerable to a
money pump. Also, physicians often forget to consider the prior probability of disease when
making a diagnosis. As we mentioned in the introduction, we use the adjectives “normative”
and “descriptive” to emphasize the differences between decision making consistent with the
rules of decision theory and decision making in the real world.

In medicine, descriptive errors in decision making are particularly dangerous, given the
high stakes associated with some decisions. Such errors easily may lead to needless expen-
ditures, pain and suffering, or loss of life. Fortunately, normative expert systems can help
physicians to avoid such errors. For example, systems that encode explicitly the prior proba-
bilities of diseases will likely improve the decisions made by physicians who would otherwise
forget to consider this important information.

Nonetheless, several researchers have argued that we should employ descriptive rather
than normative methods for decision making in expert systems. In particular, investiga-
tors have stated that decision-theoretic methods lack the expressiveness needed to encode
expertise or to describe intelligent behavior [70, 37, 71, 43]. Indeed, several of these inves-
tigators have argued that the CF model, fuzzy decision theory, and the Dempster–Shafer
theory of evidence may be more appropriate than is decision theory for uncertainty man-
agement, because these non-decision-theoretic methods are possibly more descriptive than is
decision theory [71, 43, 72]. To our knowledge, however, there are no psychological studies
that support these assertions. In fact, our experiment comparing the diagnostic accuracy of
the simple-Bayes, CF, and Dempster–Shafer–Barnett models (see Section 6.3) demonstrated
that, among these approaches, the simple-Bayes model is the most descriptive method for
managing uncertainty.
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8 A Return to Decision Theory: Practical Consider-
ations

Once we understood the limitations of non-decision-theoretic methods and the theoretical
benefits of decision theory for managing uncertainty, we still faced the practical limitations of
probability and decision theory. In particular, we were concerned that it would be unfeasible
to relax the conditional independence assumptions of the simple-Bayes model for Pathfinder.
Nonetheless, we speculated that adding the most salient conditional dependencies would not
lead to a combinatorial explosion. Indeed, we conjectured that experts themselves could
not appreciate all the subtle conditional dependencies that may exist among the features
in large medical domains. To manage the complexity of their domain, these experts must
be reasoning under many assumptions of conditional independence. We believed that, if we
could capture these assumptions made by the experts, then we could produce normative
expert systems that perform at least as well as do experts.

Our work to achieve these goals in the domain of lymph-node pathology was successful.
Over the next three years, we developed graphical knowledge representations that allowed
us to capture the important conditional dependencies in this domain in a reasonable amount
of time. In a formal evaluation, we demonstrated that the diagnostic accuracy of the new
version of Pathfinder was at least as good as that of the Pathfinder expert [73]. In the
companion to this article, we describe these new knowledge representations in detail.

9 Pathfinder in Clinical Practice
Several years after the Pathfinder project was initiated, we re-engineered the program on
MS-DOS computers, and made the system available commercially. The system, named
Intellipath, consists of a normative expert system for lymph-node diagnosis and a set of
supportive informational tools including an analog videodisc library of images, text infor-
mation on diseases and microscopic features, references to the literature, and an automated
report-generator.

In 1988, the American Society of Clinical Pathologists began selling the Intellipath pro-
gram to practicing pathologists and pathologists in training in North America. The program
was a commercial success, and we constructed similar systems for other types of human tis-
sue. Currently, approximately 200 pathologists are using the program, and systems for
breast, bone, larynx, skin, small intestine, stomach, thymus, and urinary bladder pathology
and for lung and thyroid cytology are available.

In Section 2, we mentioned that pathologists have difficulty with diagnosis because they
are unable to combine evidence accurately and because they misrecognize or fail to recognize
microscopic features. Most of Pathfinder research addresses the first problem; the videodisc
component of Intellipath, however, addresses the second problem. In particular, when a user
has trouble recognizing a feature, he can ask Intellipath to display images of that feature.
These images illustrate both typical and atypical presentations of the feature.

Recently, we have integrated the latest version of the Pathfinder expert system with the
Intellipath platform, including the videodisc for lymph-node pathology. We will evaluate
this program, called Pathfinder II, in clinical trials funded by the National Cancer Institute.
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In these studies, we shall determine whether pathologists who use the system perform better
than do those pathologists who do not have access to the system. We shall quantify separately
improvements in pathologists’ ability to combine evidence and improvements in their ability
to recognize features. In addition, we shall determine whether pathologists can recognize
situations in which they need assistance from an expert system or human expert.

10 Conclusions
We are not alone in the investigation of probabilistic and decision-theoretic methods for
uncertain reasoning in medical expert systems. Several other recent research projects have
explored normative reasoning in medical expert systems, including the Nestor system for
diagnosis of endocrinology disorders [74], the Glasgow Dyspepsia expert system for assisting
in gastroenterology diagnosis [75], the Neurex system for diagnosis of neurological disorders
[76], the Medas system for assisting physicians in emergency medicine [77], the Munin sys-
tem for diagnosis of muscular disorders [78], and the Sleep Consultant system for diagnosis
of sleep disorders [79]. Furthermore, over the last five years, a dedicated community of re-
searchers addressing the management of uncertainty in reasoning systems has evolved. The
proceedings of the main conference of this group of researchers, the Conference on Uncer-
tainty in Artificial Intelligence, is a collection of the latest theoretical and empirical research
on this topic [80, 81, 82, 83, 84].

We believe that the development of normative expert systems will lead to improvements
in the capture and delivery of expert knowledge. This view is supported by our successes with
Pathfinder. We hope that our experiences will inspire other medical-informatics investigators
to develop normative expert systems for medicine.
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