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Abstract

We present a system that jointly harnesses large-scale elec-
tronic health records data and a concept graph mined from
the medical literature to guide drug repurposing—the process
of applying known drugs in new ways to treat diseases. Our
study is unique in methods and scope, per the scale of the
concept graph and the quantity of data. We harness 10 years
of nation-wide medical records of more than 1.5 million peo-
ple and extract medical knowledge from all of PubMed, the
world’s largest corpus of online biomedical literature. We em-
ploy links on the concept graph to provide causal signals to
prioritize candidate influences between medications and tar-
get diseases. We show results of the system on studies of drug
repurposing for hypertension and diabetes. In both cases, we
present drug families identified by the algorithm which were
previously unknown. We verify the results via clinical expert
opinion and by prospective clinical trials on hypertension.

1 Introduction
The cost of developing a new drug nearly doubles every nine
years (Nosengo 2016). Eroom’s law states that drug discov-
ery is becoming slower and more expensive over time, in
spite of advances in technology. Developing a new medica-
tion requires more than 14 years and 2–3 billion dollars in
cost (Nosengo 2016).

Given the cost and expense of drug development, phar-
maceutical companies have increased investments in drug
repurposing, the process of applying known drugs to treat
new diseases. Successful repurposing can reduce costs and
time to market as medications have already passed stud-
ies of human safety. It has been estimated that drug re-
positioning cuts development time in half and significantly
reduces costs (Nosengo 2016). Numerous successes include
a medication for high blood pressure and angina developed
in 1989 that was found to be a treatment for erectile dys-
function, branded as Viagra in 1998. Repurposing applica-
tions include re-examining failed drugs for successful treat-
ments: Azidothymidine, originally designed as a chemother-
apy drug, was repurposed in the 1980s as a therapy for HIV.
Over the last few years, the process of repurposing drugs
has become more systematic. One such example is a set of
discoveries for treating bipolar disorder (Singh et al. 2013).
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We propose a methodology for candidate generation and
prioritization which uses both medical records and causal
hints from the biomedical literature to identify potential
drugs to be repurposed. The approach brings together princi-
ples and clinical observations to create a better understand-
ing. We obtain access to a unique large database of medical
records containing more than 1.5 million people monitored
for more than 10 years. The data-set contains information
on patients who are routinely treated by doctors. This large,
longitudinal data-set provides an unusual and valuable pic-
ture of long-term patient health that tracks visits to primary-
care physicians, hospitals and pharmacies, and demographic
attributes and their relationships to health outcomes.

We identify correlation between potential drugs and in-
fluences on diseases and mimic the process of conducting
randomized clinical trials on influences. For each potential
drug candidate, we identify a representative control group,
and verify that the candidate has the potential to be repur-
posed to treat a disease. The process alone cannot confirm
valuable repurposing candidates as the identification may
be the result of spurious correlations. For example, when
naively trying to identify drugs that have correlation with
the success of hypertension treatment, we find that the pur-
chase of bandage supplies (gauze, band-aids etc.) are linked
to higher success rate for hypertension treatment (43% suc-
cess rate, chi square results of 34.4 and p = 4.7e−9). It is
highly unlikely that this success is due to the use of ban-
dages. Rather the bandages are likely serving as proxies for
attributes of a subgroup of people, e.g., perhaps a subgroup
that sustains more injuries because they are more physically
active or who have other distinguishing factors.

To deprioritize candidates that may have been selected
solely due to confounding variables, we implement a
methodology that searches for biological processes that
could explain how a medication might affect a target dis-
ease. We employ a graph of causal relationships mined from
PubMed to create feasible causal pathways to explain these
processes. For example, the path that our system identified
for a potential drug group, statins, in consideration for re-
purposing for treating hypertension is:

Statin → Atrial Natriuretic Paptide → Hypertension
Those explanations are used to identify drugs that have po-
tential physiologic relations to the disease and help focus the
researchers on potentials drugs to focus the clinical trials on.



We show results of the system on identifying repurposing
candidates for two diseases: hypertension and diabetes. In
both cases, we present drug families identified by the algo-
rithm which were previously unknown. Clinical opinion by
experts in the field and medical literature reports on those
drug families show evidence for their being repurposed. The
system presented has now been pressed into use by medi-
cal researchers as an interactive tool for exploring drug re-
purposing at Maccabi Health care which is Israel’s second
largest health care provider currently treating over two mil-
lion patients.

2 Medical Community Model
Clinical research is a resource-intensive process. To date,
decisions on medications to pursue for potential repurpos-
ing are based primarily on: (1) expert medical knowledge
and understanding, (2) clinical experience with small groups
of patients, (3) medical intuition, and (4) current medical
trends. We illustrate this process in Algorithm 1. We posit
that the motivation for a repurposing study typically starts
when a medical practitioner notices a correlation between a
response to a medical condition and treatment with a med-
ication that is seemingly unrelated to the condition. Condi-
tion c and drug d are correlated if patients that are prescribed
d show a higher or lower success rate in treatment for con-
dition c. In line 1 in Algorithm 1, corr(drug) represents a
correlation discovered between use of drug and successful
treatment of some condition c (treatSucc). Note that the
number of patients or the definition of difference from the
average success rate is not included in the definition of cor-
relation. This is because the correlations observed by a doc-
tor in the current model are often based on a limited number
of cases. The spark of intuition in advance of more intensive
research can emerge from very few patients; statistical anal-
yses are done at a later stage. Once a correlation is noticed,
the researcher will refer to relevant research and pharma-
ceutical and biological knowledge in search of supporting
work or explanations. If the researcher is persuaded that the
premise is strong enough, the next step is devising an obser-
vational study (lines 5-7 in Algorithm 1). The final step is
the pursuit of a formal clinical trial (lines 8-10 in Algorithm
1). Since the initial premise of the research is devised “in-
dividually” (i.e. by a single researcher or team), this model
is prone to be influenced by individual belief, local medi-
cal protocols, and recent popular research. In this work, we
propose and augmented model which uses comprehensive
observational data and textual knowledge to overcome these
shortcomings.

3 Data-Driven Medical Model
While there have been many benefits of the Medical Com-
munity Model to date, we suggest that automated tools pow-
ered by knowledge graphs mined from a comprehensive cor-
pus of biomedical literature and probabilistic analysis can
accelerate discovery. Figure 1 describes the overall frame-
work for identifying candidates for drug repurposing. In an
initial stage of analysis, a large store of electronic health
records (EMR) are systematically scanned, and correlation

Algorithm 1 Medical Community Model
corr(drug) := Correlation(drug, treatSucc) ≥
threshould

2: sup(drug) := ExistsSupportingResearch(drug)
reas(drug) := ExistsTheoreticalReasoning(drug)

4: if (corr(drug) and (sup(drug) or reas(drug))) then
if ObservationalStudyPossible(drug) then

6: observRes := ObservationalStudy(drug)
end if

8: if observRes then
InterventionStudy(drug)

10: end if
end if

Medical Community Model algorithm. A correlation is dis-
covered between successful treatment of some condition c and
treatment with drug drug. If supporting research or theoretical
reasoning exists, and observational study is conducted. Followed
by a clinical study is the results are sufficient.

studies are employed to identify as repurposing candidates
the set of drugs prescribed for patients for whom improve-
ments are observed in off-drug conditions. Next, a subset
of these candidates is selected as having higher potential
based upon biological processes. This phase of analysis is
performed via use of a biomedical knowledge graph1. We
construct a knowledge graph based on the academic publi-
cation data. A repurposing candidate is represented as a pair:
a drug and the medical condition it might effect. For each re-
purposing candidate, the system searches the graph for paths
between the candidate drug to the medical condition. The
output of the framework is a collection of candidates and a
list of possible reasoning paths for each candidate.

Figure 1: Re purposing framework

3.1 Electronic Medical Records Repository
In our experiments, we relied on a large electronic medi-
cal data-set provided by Maccabi healthcare - a large health-
care provider currently caring for over two-million patients.
From this data-set, we mined possible drugs to be repur-
posed based on correlations. The data in our repository has

1our code is freely available at https://github.com/
TechnionTDK/repurposing. For legal reasons we can-
not supply the repository data. PubMed data is available
for researchers through https://www.nlm.nih.gov/bsd/
pmresources.html



been collected for over ten years for more than 1.5 mil-
lion patients. The data-set contains an inventory of all pre-
scription and non-prescription pharmaceuticals dispensed
by their pharmacies. The drugs are categorized according to
286 “treatment groups”. We regard these treatment groups
as the drug types to be tested. The treatment groups vary in
size and generality. For example, the “Paracetamol” group
is rather specific. It includes all paracetamol brands and
dosages. The “gynecological” group on the other hand, is
much larger and less specific. This issue is partially con-
trolled for by using matching and goodness of fit criteria
described in Section 3.3. Treatment groups that are too ab-
stract will not pass the goodness-of-fit criteria. We identified
drugs taken by patients via prescription purchase records.
This minimizes compliance issues as patients who purchase
the drug are more likely to take it.

3.2 Biomedical Knowledge Graph
PubMed is a database and search engine for accessing all
MEDLINE (Kilicoglu et al. 2012) citations and several other
resources2. It is a literary repository of over 27 million
citations and abstracts for biomedical academic literature.
As such, it represent detailed professional peer-reviewed
medical knowledge. The Semantic MEDLINE Database
(SemMedDB) (Kilicoglu et al. 2012) contains, among oth-
ers, semantic predications (subject-predicate-object triples)
extracted from PubMed citations. These predications were
created by a text analysis tool called SemRep (Rindflesch
and Fiszman 2003) which performs text processing of
the PubMed abstracts, including named entity recognition,
matching each entity with its UMLS representation, and re-
lation extraction for relations between these entities. Each
relation is extracted from a single sentence in a PubMed ab-
stract.

A predication consists of a subject, object and a relation
between them. For example: hand PART OF human, spleen
LOCATION OF gangrene, Urethane TREATS Multiple
Myeloma. We construct a graph based on SemMedDB pred-
ications by creating a node in the graph for each subject
and object, and a link for each relation. The PubMed graph
contains 90M edges. This is due to the high granularity
of the PubMed data. We therefore perform filtering both
on the relation types and entity types. We limit the rela-
tions we use, avoiding general relations (e.g. LOCATION
OF,DIAGNOSES) as they have low value for explaining re-
positions. The semantic types are filtered according to their
generality as explained in Section 3.4.

3.3 Discovering Candidates by Correlation
Algorithm 2 describes an augmented method to the one de-
scribed in Section 2 (Medical Community Model model).
We use large medical and textual knowledge data-sets for
discovering repurposing candidates rather than rely on an in-
dividual clinician’s experience, thus improving the prospect
of positive trial outcomes and effectiveness of the entire pro-
cess.

2for the sake of simplicity, we refer to this repository as
PubMed in this paper

Algorithm 2 Data-Driven Medical Model
for all d ∈ Drugs do

2: corr(d) := CohortCorrelation(d, treatSucc) ≥
threshould
sup(d) := ExistsSupportingResearch(d)

4: reas(d) := CohortReasoning(d)
if corr(d) and ((sup(d) or reas(d)) then

6: current := d where corr(d) := max{corr(d)}
if ObservationalStudyPossible(current) then

8: observRes := ObservationalStudy(current)
end if

10: if observRes then
IterventionStudy(current)

12: end if
remove current

14: end if
end for

Data-Driven Medical Model algorithm. All drugs in electronic
medical records data set are tested for correlation with treatment
success. In addition to searching for supporting research, reason-
ing for the correlation is extracted from a medical literature data
repository.

As opposed to Algorithm 1, in line 2 of Algorithm 2, in-
stead of identifying a potential drug by noticing a correla-
tion on a limited number of cases, we mine a large medi-
cal database and extract the correlations from it. In line 4,
we mine a large knowledge base to extract reasoning to the
correlations found in line 2. The process is repeated for all
drugs in the medical database. In our augmented mode, both
drug correlations and reasoning are discovered methodolog-
ically using a large data or knowledge base, allowing for
diverse and high quality results. We provide experimental
results and analysis of our model in Section 4.3.

The CohortCorrelation algorithm (described in Algo-
rithm 3) overcomes challenge of false positive or spurious
correlations with the following two steps:

1. Discover correlations in medical data repository via simi-
lar control group identification.

2. Correct for multiple testing.

Given a specific disease, we iterate over all pharmaceutical
groups in our data-set. We create a matched group of un-
treated patients and use Pearson’s chi-squared test to iden-
tify if the treated and untreated patients differ in their treat-
ment success rate. We then consider the correlated drugs and
make sure the statistical difference holds after correcting for
multiple testing.

Algorithm 4 details the process of finding a matched
group. We use Propensity-score-matching (ROSENBAUM
and RUBIN 1983; Pearl 2000; 2010) to create a matched
control group, matching over age, weight, BMI and sex. We
additionally perform a Kolmogorov-Smirnov (KS) goodness
of fit test (Chakravarti and Laha 1967) for each feature as
seen in Algorithm 4. Finally, we correct for multiple tests
using Bonferroni correction (Dunn 1959).



Algorithm 3 Cohort Correlation
for drug ∈ Drugs do

2: treated = group of treated with drug
unTreated := Match(treated,d)

4: if ExistsMatch() then
pval := ChiSquare(treated, unTreated)

6: MatchedDrugs+ = drug
end if

8: end for
for drug ∈ MatchedDrugs do

10: if CorrectedPValue(MatchedDrugs, drug) then
return drug

12: end if
end for

Cohort Correlation algorithm. Foreach drug in the EMR and
each group of patients that received the drug, create a matched
group of patients that did not receive the drug. If the treatment
success in the two groups is statistically different - return the drug
as a repurposing candidate.

Algorithm 4 Match
for f ∈ features do

2: pval := KS(treated,unTreated)
if 0.001 ≥ pval then

4: return false
end if

6: end for
return true

Match. Go over all features and preform a Kelmogorov-Smirnov
goodness of fit test.

3.4 Correction by Reasoning
So far we have described how we produce research can-
didates based on correlations discovered in a medical data
repository. In Section 4 we show that merely relying on these
candidates is not enough. Spurious correlations of drugs still
exist.

Doctors often try to identify feasible biochemical and
physiologic mechanisms to explain potential effects to re-
duce the chances of spurious correlations. We now present
an algorithm for correcting the potential drug discoveries us-
ing external knowledge bases. Relying solely on statistical
analysis of electronic medical databases is insufficient for
several reasons:

1. Partial representation. As comprehensive as our database
may be, it still only holds “discrete evidence” of the com-
plex biological processes composing the human body. We
would not want to ignore the vast amount of medical
knowledge that is present outside of this database. Fur-
thermore, medical professionals presented with the results
of correlation findings may be left to find support via per-
sonal reflection or research, a process which is prone to
the disadvantages of the individual model described in
Section 2.

2. Bias. In contrast to data collected from randomly con-
troller trials, in observational medical data treatment is

not randomly assigned to patients. Rather, treatment is
a result of the patient’s overall medical condition. Other
factors such as the rarity of the medical condition, choice
of doctor and local treatment protocols can also intro-
duce biased data (Hammer, du Prel, and Blettner 2009).
As much as we try to correct for this bias, we will most
likely not eliminate it completely. Consider the matching
method for example. We will probably find a match that is
close enough for each treated patient but is not completely
identical in all parameters.

3. Algorithmic parameterization. The algorithms we present
rely on several parameters such as thresholds or choice
of statistical correction. There will always be a trade-off
between the values chosen for these thresholds and the
accuracy of the results.
As an additional measure, we can consider causal support

for the discovered correlations in knowledge graphs con-
structed from the text of biomedical literature. In the knowl-
edge graph, each term is a node and edges between them
represent relations between the nodes. We search for paths
leading from the correlated drug to the disease under inves-
tigation (Algorithm 6). We limit the length of the path and
the nodes constructing it with the following assertions (Al-
gorithm 5):

1. Path length. The longer the path, the less likely it is to be
informative.

2. Node generality. The more general a term is, the less
likely the path will be informative.
Consider the following path:

Statin → Vitamins → United States → Blood Pressure

The path is comprised of very general terms: “Vitamins”
and “United States” which add little information for explain-
ing the mechanism of the statin drug family to the hyperten-
sion medical condition. The path:

Statin → Pharmaceutical preparations → Blood Pressure

is shorter but still contains general terms that do not con-
tribute to explaining the relation between statins and blood
pressure. The path:

Proton-pump inhibitor → Serotonin Uptake Inhibitors
→ Contraceptives, Oral → Blood pressure

is composed of less generic terms but is instead a rather long
list of associations producing a somewhat weak association
between proton-pump inhibitors and blood pressure. In con-
trast, the following is an example of a more informative path:

Statin → Atrial Natriuretic Paptide → Blood Pressure

The reasoning provided by this path is that statins may
have an effect on the ANP hormone which cause increases
renal sodium excretion and reduces blood pressure.

Limiting General Nodes Experiments with the auto-
mated use of the knowledge graph to find causal path-
ways between candidate medications and conditions demon-
strated that invalid pathways contained one or more nodes



Algorithm 5 Filter Reasoning Paths
allPaths := FAP(drug, condition, limit

2: for path ∈ allPaths do
for node ∈ path do

4: if generality(node) ≥ threshold then
allPaths.remove(path)

6: end if
end for

8: end for
return allPaths

Filter Reasoning Paths. Remove reasoning paths that contain
nodes that are too general.

Algorithm 6 Find All Paths (FAP)
current := source

2: current.discovered := true
neighbors := current.neighbors

4: if path.length() = cutoff then
path := path.dropLast()

6: return
end if

8: for all n ∈ neighbors do
if n = target then

10: allPaths := allPaths.append(path)
path := path.dropLast()

12: return
end if

14: if n.discovered = false then
path := path.append(n)

16: return FAP(n, target, path, allPaths, cutoff)
end if

18: end for

Find All Paths. Preform a depth first search for all paths from
source to target. Path length is limited by cutoff .

that Relying on structural graph properties such as central-
ity or page rank (Page et al. 1999) to define node generality
is not sufficient in our case due to the size and structure of
the PubMed graph. Therefore we rely on the semantic prop-
erties of the nodes, excluding nodes that belong to a general
semantic type according to the unified medical language sys-
tem (UMLS) (Bodenreider 2004). UMLS contains an ontol-
ogy of biomedical concepts and relationships between them.
The UMLS semantic networks consists of a large set of se-
mantic types which consistently categorize biomedical con-
cepts. There are over 100 semantic types in UMLS ranging
from specific types such as “Nucleic Acid, Nucleoside, or
Nucleotide” to more general ones such as “Physical Object”.
We limited the group of semantic types used for our analy-
sis according to their generality and excluded any paths that
contained concepts from these groups.

4 Experimental Evaluation

In this section, we outline our experimental methodology
and results.

4.1 Baselines
Using a large medical data-set, we identify patients receiv-
ing first time treatment for a given medical condition and
collect all drugs prescribed to these patients. Our aim is to
find concomitant drugs that contribute to treatment success.
We compare our method (Section 3) to a correlation discov-
ery baseline that identifies drug treatment groups with sta-
tistically significant result. The baseline uses the Pearson’s
Chi-squared test with statistical significance of 5% to reject
the null hypothesis that the response to a treatment is iden-
tical in the treated and untreated group. For example, ex-
perimentally selecting a random sampling of 1500 patients
shows this group will have a treatment success rate of 1.5%
around this average, i.e. 41%, 39% etc. The baseline ap-
proach to finding correlation will be selecting any drug with
success rate different than 40% (the average success rate
in treating hypertension) using a standard chi-squared test.
Specifically, we test for two baselines: one which identifies
deviations of 3% and more, and one that identifies deviations
of 5% and more.

4.2 Experimental Methodology
We now compare the Medical Community Model to the
Data-Driven Medical Model based on the number of corre-
lating drugs (i.e. research candidates) they produce and their
diversity. We specifically show our results on two medical
conditions: hypertension and diabetes.

Hypertension Hypertension is a prevalent condition af-
fecting roughly 20 percent of the world population3. It is
a leading cause of mortality and morbidity in the general
population. We identified first-time drug treatment of hy-
pertension using the first hypertension diagnosis reported in
the patient record and first anti-hypertensive drug purchase
for patient. The success criteria was defined as blood pres-
sure lower than 140/90 within 90 days of treatment where
there are at least two blood pressure (BP) measurements in
that period. The resulting data-set contained 30,705 patients.
Treatment success rate was found to be 40%.

Type II Diabetes Type II diabetes is a very common
medical condition with sever and often fatal complications
(Shi and Hu 2014). There are 15,893 diabetic patients in
our database. These patients were already identified in our
database by the health-care provider. We use a glycolated
haemoglobin (HbA1c) lab test result for defining treatment
success. HbA1c values under 6.5 in the period between 90
and 365 days following first diagnosis are considered suc-
cessful treatment. Under this definition, the success rate in
our database is 53%.

Metric and Gold Standard Validating these kind of re-
sults via a full clinical trial is a long and expensive task. In
this work, we validate the results via: (1) PubMed publica-
tions of small trials and (2) opinion of medical experts in
the field that review the drugs recommended by the different
algorithms.

3http://www.who.int



If a relevant publication reports positive results or an ex-
pert in the field found the discovery plausible, we consider
these to be positive signs that further exploration of this drug
is appropriate and the drug is a good candidate for repur-
posing. The small clinical trials information was extracted
from PubMed. We evaluated the relevant papers supporting
or negating our findings.

When consulting medical experts we used two phases.
First we presented the drug-disease correlation results with-
out the reasoning and then we added the reasoning provided
by our system. This was done to better compare the methods
from a statistical point of view without biasing their opin-
ion. We present results of the top 10 drugs identified by the
algorithms and provide the results via Precision@2, Preci-
sion@5 and Precision@10 metrics.

4.3 Key Results on Drug Repurposing
We now present experimental results for the Data-Driven
Medical Model as compared to the baseline method. We test
these models on two test cases: hypertension and type II di-
abetes. Table 1 summarizes the results.

The table shows the significant advantage of our algo-
rithm as compared to the results of the baselines. The num-
ber of treatment group candidates produced by the algo-
rithm is smaller in magnitude than the baselines approach
and provides a more manageable set of candidates for fur-
ther investigation. The candidates produced by the baselines
were mostly found to be either irrelevant (e.g. “anti-vertigo
treatment”) or too general (e.g. “gynecological”). The Data-
Driven Medical Model produced fewer candidates. Most of
the candidates were validated with relevant medical research
of small clinical trials. Our algorithm found two candidates
for the hypertension test case: “statins” and “proton-pump
inhibitors”. “statins” were easily accepted by the medical
researches as there is a large body of work confirming the
positive effects of statins on hypertension. ‘Proton-pump in-
hibitors’ were considered more cautiously. The reservations
were mediated by the supporting PubMed path analysis and
further investigation by a supporting clinical trial (Muoz-
Torrero et al. 2014).

For diabetes the group titled ”Prostate drugs” was found
as a candidate. This group contains alpha blockers. Search-
ing for reasoning paths for alpha blockers, a few publications
were found supporting the repurposing of alpha blockers to
diabetes treatment, including work reporting results from the
omics data mining system, which focuses on proteins and
target sites (Zhang et al. 2015).

4.4 Effect of Path Length
We consider biological processes via reasoning with the
biomedical knowledge graph to support influences between
candidate medications and the conditions of “hypertension”
and “diabetes,” respectively. Table 2 summarizes the num-
bers of paths found for each treatment group candidate for
the hypertension and diabetes test cases. Three length cutoff
were employed in the tests: 2,3,4. Cutoff@2 and Cutoff@3
are presented in the table. As should be expected, the num-
ber of paths produced for each cutoff increased significantly.
Cutoff@4 produced a very large number of paths, that was

hard to handle computationally for some groups. We present
for each cutoff the original number of paths and the num-
ber of paths that passed a pagerank based generality filter
(marked as “gen. filter” in the table).

5 Related Work
Traditionally, systematic testing of known drugs for a spe-
cific disease is done via laboratory analysis, either by in-
vitro (Singh et al. 2013) or in-vivo testing 4, or compu-
tational models and simulations (in-silico) (Hurle et al.
2013; Dudley, Deshpande, and Butte 2011; Siavelis et al.
2016; Dai et al. 2015). (Chong and Sullivan 2007) ad-
dressed the difficulties in composing an accessible library
of all known drug compounds for such exhaustive research.
These challenges include patent restrictions and syntheses
of compounds. The NCGC Pharmaceutical collection (NPC)
(Huang et al. 2011) is a publicly accessible collection of
drugs which is attempting to fill this need. Additional dif-
ficulties also stem from defining the drug (Chong and Sulli-
van 2007; Huang et al. 2011). (Xu et al. 2015) used medical
data-sets to validate results of drug repurposing predictions
made using biochemical computations.

The field of literature-based discovery (Swanson 1986) at-
tempts to identify new relations in existing knowledge by
mining academic publications. Traditionally, this is done by
linking two “unrelated” concepts A and B through a third
concept C which co-appeared with the previous in medi-
cal publications. This approach and its variations have been
successfully used for medical and biomedical discoveries
(Swanson and Smalheiser 1999; Spangler et al. 2014). Span-
gler et al.(Spangler et al. 2014) applies text mining tech-
niques to identify entities and relations relevant to a spe-
cific query. Our work differs by building a single reason-
ing graph that is used for all queries and by utilizing UMLS
concepts and relations. DiseaseConnect (Liu et al. 2014) is
a web based system for analysis of disease connectivity. It
is aimed at genome and mechanism-based connectivity and,
unlike our work, is limited to a small sub set of UMLS
semantic types. Other works focused on disease networks
(Goh et al. 2007) , again limiting the scope of the knowledge
represented. More closely to our work, MOLIERE frame-
work (Sybrandt, Shtutman, and Safro 2017), allows a user
to mine potential connections between two medical key-
words. The results are related academic paper abstracts shar-
ing common topics which are candidates for the connecting
the two queried keywords. Our work differs in several as-
pects: (1) the system presented in this paper is not aimed
at exploratory general medical research but rather on the
specific task of drug re-positions and drug-disease explana-
tions. (2) our system does not provide a search interface but
rather surfaces candidates from mining external electronic
medical records and validates them via literature-based dis-
covery techniques to reduce spurious correlations. (3) We
do not limit our explanations to a single connecting entity.
Specifically, for drug re-positioning simple similarities be-
tween the repurposed drug usually require several hops in

4Such in-vivo testing is provided by companies like Melior Dis-
covery http://www.meliordiscovery.com



Table 1: Results of the different algorithms on the medical test cases
Test Case Algorithm #Candidates Precision@2 Precision@5 Precision@10

Hypertension

Medical Community Model Baseline@3 70 0% 0% 40%
Medical Community Model Baseline@5 48 0% 0% 40%
Our Algorithm (Section 3.3) 2 100% - -
Our Algorithm + Reasoning (Section 3.4) 2 100% - -

Diabetes

Medical Community Model Correlation Baseline@3 3 0% 0% 33%
Medical Community Model Correlation Baseline@5 3 0% 20% 33%
Our Algorithm (Section 3.3) 1 50% 20% -
Our Algorithm + Reasoning (Section 3.4) 1 50% 20% -

Table 2: PubMed Reasoning Paths
Test Case Source Target Cutoff@2 Cutoff@2 gen. filter Cutoff@3 Cutoff@3 gen. filter

Hypertension Statins Blood Pressure 241 45 > 161000 > 42000
Proton pump inhibitors Blood Pressure 41 15 > 38000 > 15000

Diabetes Alpha blockers Diabetes 151 124 > 47000 > 31000

explanation. (4) We also do not take into account topic simi-
larity or abstract relatedness to allow for more innovation in
explanation. Specifically, for drug re-positioning purposes
textual similarities between the repurposed drug and disease
are very low, as usually they are not known to be linked. (5)
lastly, the system presented in our paper was developed and
is in use by medical researchers.

EMR data can also be used to discover drug repurpos-
ing (Dang, Ouankhamchan, and Ho 2016; Xu et al. 2015).
This approach utilizes the large amounts of data collected
on patients to discover correlations and connections between
drugs and the medical parameters of the patients. While the
observational data collected in electronic medical records is
valuable as it is contains “real” data (as opposed to theo-
retical data that is often found in literature) it also contains
much bias and confounding variables. In addition, any dis-
coveries based on it will lack any explanation or reasoning.
Explanations are typically added at a later stage by experts
based on the literature (or their belief and knowledge). The
literature repository on the other hand, will be much better at
providing reasoning but will lack empirical evidence. To the
best of our knowledge, this is the first attempt at combining
these two aspects to identify drug repurposing candidates.

6 Conclusions and Discussion
We presented a novel methodology that produces candidates
for drug repurposing research by jointly leveraging knowl-
edge from a knowledge graph of biological processes that
is constructed from PubMed and a large medical records
database. The approach identifies correlations in large med-
ical data repositories and supporting reasoning for a large
literature knowledge base (PubMed).

We constructed an interactive system that produces high-
quality hypotheses by methodically searching through a
large number of candidates and providing biological path-
ways to support the influence of the candidate medications
on conditions.

Our system is currently in use for research in Israel’s sec-
ond largest health care provider, Maccab healthcare, and
provides the medical researcher with both knowledge and

data based information supporting the drug repurposing can-
didate. Our experience so far demonstrates the usefulness
and effectiveness of providing text-based reasoning to algo-
rithmic findings. The reasoning paths help eliminate spuri-
ous correlations and increase clinical experts’ trust in the
framework.

We see promising future research around developing new
kinds of interfaces and visualizations that support interactive
analyses and study by researchers. We foresee the methods
as providing a foundation for a new form of interactive clin-
ical research tool for drug repurposing studies.
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