
Clustering for set partitioning with a case study in ridesharing

Cathy Wu, Ece Kamar, Eric Horvitz

Abstract— By exploring alternative approaches to combinato-
rial optimization, we propose the first known formal connection
between clustering and set partitioning, with the goal of identi-
fying a subclass of set partitioning problems that can be solved
efficiently and with optimality guarantees through a clustering
approach. We prove the equivalence between classical centroid
clustering problems and a special case of set partitioning
called metric k-set partitioning. We discuss the implications
for k-means and regularized geometric k-medians, and we give
several future extensions and applications. Finally, we present
a case study in combinatorial optimization for ridesharing, in
which we use an efficient Expectation Maximization (EM) style
algorithm to achieve a 69% reduction in total vehicle distance,
as compared with no ridesharing.

I. INTRODUCTION AND COMBINATORIAL OPTIMIZATION
PROBLEMS

Set partitioning is the optimization form of exact cover,
one of Karp’s 21 NP-complete problems, and it arises
commonly in planning applications where it is used to
identify the best partition of a set of objects. Examples
include scheduling airline flight crews [1], [2], sharing rides
[3], and kidney swapping programs [4] [5]. Optimizing for
the best set partitioning solution is NP-hard, and classical
combinatorial optimization methods are cumbersome (e.g.
integer programming [6], branch-and-cut [1]), restricted (e.g.
triangle-packing approximation [7], [8], m-sets [9], [10]),
or do not provide guarantees (e.g. simulated annealing [11],
genetic algorithms [12], metaheuristics [13]). At the same
time, clustering methods also solve a partitioning problem,
and although the underlying optimization problem is again
NP-hard, methods in common use provide efficient iterative
procedures that offer probabilistic guarantees and that are
amenable to parallelization. On the other hand, while clas-
sical combinatorial optimization approaches are suitable for
extremely general and expressive problems, clustering meth-
ods are typically restricted to specific models and objectives.

We are interested in the following questions:
• What optimization problems can be expressed at the

intersection of the two approaches?
• How can these problems benefit from the formalism of

one and the methods of the other?
We formalize the connection between set partitioning and
clustering, with the goal of identifying a subclass of set
partitioning problems that can be solved efficiently and
with optimality guarantees through a clustering approach.
We offer a demonstrative example of the connection: we

UC Berkeley, EECS, cathywu@eecs.berkeley.edu; this work was
done during an internship at Microsoft Research

Microsoft Research
Microsoft Research

Fig. 1. Set partitioning problem.

demonstrate the correspondence between a restricted setting
of set partitioning and classical centroid-based unsupervised
clustering methods, for instance the k-means algorithm [14].

A. Set partitioning

First, consider the problem of set partitioning (see Fig-
ure 1), where the goal is to find the best disjoint cover
within some collection S ⊆ 2U , where U is the universe of
elements. This is a restricted setting of set packing, where
feasible solutions must cover the whole universe, rather than
a subset. Best is defined as minimizing the overall cost in
terms of weights assigned to each subset. We denote the
cost of each subset S ∈ S by cS . We denote the solution
vector x = (xS)S∈S , where xS = 1 indicates that S is in
our set partitioning solution. Then, the problem is defined as
follows:

opt = min
x

∑
S∈S

cSxS (1)

subject to ∑
S:u∈S

xS = 1, u ∈ U (2)

xS ∈ {0, 1} S ∈ S (3)

B. Metric k-set partitioning and centroid-based clustering

Now, we specialize to the special case of metric spaces
and k-covers (covers of exactly size k). We let S = 2U , and
we endow universe U with a metric space (X , d) such that
U ⊆ X and define the cost of a subset to be minimal relative
to a centroid point, that is cS := minx∈X

∑
s∈S d(s, x).

Additionally including a k-set constraint, we then have the
following optimization problem, which we call the metric

k-set partitioning problem:

min
x

∑
S∈S

min
x′∈X

∑
s∈S

d(s, x′)xS = min
x

∑
S∈S

∑
s∈S

d(s, µS)xS

(4)

subject to ∑
S:u∈S

xS = 1, u ∈ U (5)

∑
S∈S

xS = k (6)

xS ∈ {0, 1} S ∈ S (7)

where we define the subset centroids µS :=
argminx∈X

∑
s∈S d(s, x). Note that under a metric,

without the size k constraint, the optimal solution would be
all the singleton sets. This is true for clustering as well.

Constraint (5) implies that each element is measured with
respect to exactly one centroid (and in fact, the closest one,
due to the objective) and Constraint (6) encodes that there are
exactly k centroids (and in fact, they minimize the distance
with respect to the elements assigned to it, due to the ob-
jective). With these observations, the previous optimization
problem then collapses neatly into the following well-studied
optimization problem for centroid-based clustering:

min
(T1,T2,...,Tk)

k∑
j=1

∑
x∈Tj

d(x, µj) (8)

subject to
∪j∈[k]Tj = U (9)

Ti ∩ Tj = ∅, ∀i 6= j (10)

µj = argmin
x∈X

∑
s∈Tj

d(s, x) (11)

When the metric d(·, ·) is restricted to the sum of squares
loss, also knowns as k-means clustering, the resulting opti-
mization problem may be solved efficiently and with proba-
bilistic guarantees with k-means++ initialization [15] and
the k-means algorithm. Thus, the metric k-set partitioning
problem, an instance of set partitioning, benefits tremen-
dously from a clustering approach. We now prove the result.

II. A FORMAL CONNECTION BETWEEN CLUSTERING AND
SET PARTITIONING

Proposition 1 (Equivalence): Metric k-set partitioning
and centroid-based clustering are equivalent. That is, Prob-
lem (4)-(7) and Problem (8)-(11) are equivalent.

Before proving the proposition, we first make the follow-
ing definition and claim:

Definition 1 (k-partition): If P is a k-partition constraint
of U , then P = (P1, P2, . . . , Pk) ⊆ S such that:

Pi ⊆ U , ∀i⋃
i

Pi = U

Pi ∩ Pj = ∅, ∀i 6= j

Claim 1 (k-partition constraint): The constraints of Prob-
lem (4)-(7) is a k-partition constraint.

Proof: [of claim] (→) : We first show that we may
construct such a partition P from a solution x = (xS)S∈S
satisfying the constraints of Problem (4)-(7). Define P :=
{S : xS = 1, S ∈ S}. By construction, ∀P ∈ P, P ∈ S =⇒
P ⊆ U . Constraint (6) (

∑
S∈S xS = k) implies that |P| =

k. Constraint (5) (
∑

S:u∈S xS = 1, u ∈ U) implies both
coverage and mutually disjoint conditions. Thus, x may be
represented as a k-partition P .

(←) : Now we show that a partition P may be used to
construct a solution x = (xS)S∈S satisfying the constraints
of Problem (4)-(7). We define x ∈ {0, 1}|S| such that

xS :=

{
1 if S ∈ P
0 otherwise

Then ⋃
i

Pi = U =⇒
∑

S:u∈S
xS ≥ 1, u ∈ U

Pi ∩ Pj = ∅, ∀i 6= j =⇒
∑

S:u∈S
xS ≤ 1, u ∈ U

Together, this implies Constraint (5) (
∑

S:u∈S xS = 1, u ∈
U). Constraint (6) is trivially satisfied by construction. Thus,
P may be represented as a length-|S| binary vector satisfying
the constraints of Problem (4)-(7). Finally, we conclude that
the constraints of Problem (4)-(7) are equivalent to that of a
k-partition.

Proof: [of proposition] We perform a change in variable
in Problem (4)-(7) from x = (xS)S∈S to P (established in
Claim 1), taking P := {S : xS = 1, S ∈ S}.

min
x

∑
S∈S

min
x′∈X

∑
s∈S

d(s, x′)xS = min
P

∑
S∈P

min
x′∈X

∑
s∈S

d(s, x′)1

+
∑

S∈S\P

min
x′∈X

∑
s∈S

d(s, x′)0

= min
P

∑
S∈P

min
x′∈X

∑
s∈S

d(s, x′)

subject to the k-partition constraint. We observe that our sum
is reduced from |S| terms to k terms. To make the size of
P more explicit, we may write equivalently,

min
P=(P1,P2,...,Pk)

k∑
i=1

min
x′∈X

∑
s∈Pi

d(s, x′)

Finally, we define µi := argminx′∈X
∑

s∈Pi
d(s, x′), and

we arrive at a common form of the centroid-based clustering
problem (as in Problem (8)-(11)):

min
P=(P1,P2,...,Pk)

k∑
i=1

∑
s∈Pi

d(s, µi)

subject to

Pi ⊆ U , ∀i⋃
i

Pi = U

Pi ∩ Pj = ∅, ∀i 6= j

Since all operations are reversible (equivalences), we have
established equivalence of the two problems.

Some examples of centroid-based clustering problems
include the k-means problem, the k-median problem, and
the geometric k-median problem. Under equivalence given
by Proposition 1, the algorithms for one problem may apply
also to the other. We now present several special cases and
extensions, and then we present an application that makes
use of these settings.

A. Special case: k-means

A special case of the equivalence is the k-means objective
[16], where d(s, x) = minx∈X

∑
s∈S ‖s− x‖

2
2.

Corollary 1 (k-means++ for set partitioning): When re-
stricted to sum of squares loss, k-means++ attains a
O
(
log k

)
-approximate solution in expectation to the metric

k-set partitioning problem k-means++.
By examining the operations of the k-means algorithm,

we may gain intuition on how the steps translate back into
context of the set partitioning problem.
Atomic operations of Lloyd’s algorithm: Lloyd’s algorithm
for k-means clustering is an iterative method with two main
steps [17]:

1) Assignment step:

P
(t)
i =

{
s :
∥∥∥s− µ(t)

i

∥∥∥ ≤ ∥∥∥s− µ(t)
j

∥∥∥ ,∀j ∈ [k]
}
(12)

where each s ∈ U is assigned to exactly one P (t)
i .

2) Update step:

µ
(t+1)
i =

1∣∣∣P (t)
i

∣∣∣
∑

sj∈P (t)
i

sj (13)

In the context of set partitioning, the two steps have the
following interpretation:

1) Assignment step: Select a (better) feasible binary so-
lution vector x = (xS)S∈S . Recall that a feasible x
implies that x satisfies a k-partition constraint.

2) Update step: Update the objective to reflect the cost
of the selected subsets, i.e. update

∑
S∈S cSxS by

computing cS for each selected subset S.
The algorithm terminates when no change is made during

the assignment step; that is, a better feasible binary solution
vector cannot be found by the algorithm. We observe that,
after each iteration of Lloyd’s algorithm (after the update
step), the algorithm maintains a feasible solution to the
corresponding set partitioning problem. This observation
also motivates related methods for solving set partitioning
problems, such as local search methods, which maintain
feasible solutions at each iteration.

B. Extension: regularized centroid-based clustering

We can now discuss our first extension beyond the classi-
cal centroid-based clustering to the regularized setting.

Definition 2 (Relative cost): We call cS,r a relative cost if
it takes the form

cS,r := min
x∈X

∑
s∈S

d(s, x) + r(x)

where r : X → R denotes a relative term.
Corollary 2 (Regularization is relative-cost): Denote reg-

ularizer r : X 7→ R. Then adding
∑k

j=1 r(µj) to the
objective of centroid-based clustering (Problem (8)-(11))
and the corresponding definition of µj is equivalent to
the k-set partitioning problem (4)-(7) with the relative cost
cS,r := minx∈X

∑
s∈S d(s, x) + r(x). That is, the regular-

ized centroid-based clustering problem is equivalent to the
relative-cost metric k-set partitioning problem.

C. Extension: k-median on graphs

Instead of embedding our universe U in a metric space, we
can embed it in a graph G = (V, E). Then, set partitioning
has an equivalence to clustering according to graph distance
instead of a metric. We define an analogous cost called graph
median.

Definition 3 (Graph median): Given a graph G = (V, E),
v ∈ V is the graph median of a subset S ⊆ V if

v = argmin
u∈V

∑
s∈S

d̃(s, u)

where d̃(s, u) denotes the shortest path distance between
nodes s and u.

Claim 2 (Median on graphs): The graph median for
a subset S of cardinality m can be computed in
O
(
log(m(|V |+ |E|) log |V |))

)
.

D. Embeddable cost substructures

In the more general setting of metric set packing, where
the solution need not cover the entire universe, we may
draw a connection to how clustering methods handle outliers.
Additionally, by making use of recent advances in semi-
supervised clustering and spectral clustering, we propose to
further identify a subclass of set partitioning problems that
may be embedded in a cluster learning framework for effi-
cient computation and probabilistically optimal set partition-
ing. When we characterize set partitioning problems in terms
of their underlying cost structure and additional constraints,
we conjecture a formal parallel between set partitioning
and clustering with the following embeddable substructures:
metric spaces, relative cost, pairwise affinity, m-sets, and
singleton sets. For each embeddable substructure, we plan
to prove the equivalence to their clustering counterpart and
give an example efficient and often parallelizable algorithm.
We also discuss when the substructures and algorithms may
be combined and study clustering methods beyond centroid-
based methods, and we hope to contribute a unifying theory
of semi-supervised clustering in terms of the underlying
optimization problems.

Fig. 2. Ridesharing meetup problem. 100 normally distributed users, with
a single destination at the origin (0, 0).

III. CASE STUDY: RIDESHARING MEETUP PROBLEM

We have been studying the cluster learning approach to
solving a large-scale ridesharing problem. The ridesharing
problem is classically formulated as a set partitioning or
set cover problem [18], with complex costs dependent on
a road network and the constraints of the participants. When
these costs are decomposed into embeddable substructures,
we hope to demonstrate the ability of fast clustering methods
to solve classically combinatorial problems.

We first study a simplified setting of sharing rides when
commuting to work in the morning. We restrict to a single
destination area. Consider the setting where users in a ride
share group agree to meet up at a location, the users travel
there individually, and then they share a single vehicle from
the meetup point to work. We formally define the ridesharing
meetup problem (see Figure 2):

Definition 4 (Ridesharing meetup problem): Let U de-
note the universe of users u ∈ U , who live in X = R2

and work at the origin (0, 0) ∈ X . Let S be the collection of
possible ride shares. We wish to select the ride share groups
and their respective meetup points that minimize the total
vehicle distance.

This is very naturally a set partitioning problem. The
cost of each subset S ∈ S can be written as cS =
minx∈X

∑
s∈S ‖s− x‖2 + ‖x‖2. The first term is the total

distance traveled by each member of the ride share to the
meetup point, and the second term is the distance traveled
by one shared vehicle. Assume (for now) that vehicles have
infinite (or large) capacity. By Corollary 2, we observe that
we have a relative cost that is equivalent to an `2-regularized
loss in the clustering optimization.

Then, by Proposition 1 and Corollary 2, we formulate this
problem as a regularized geometric k-median problem, which
takes the following objective

min
(T1,T2,...,Tk)

k∑
j=1

∑
x∈Tj

‖x− µj‖2 + λ ‖µj‖2 (14)

When λ = 1, this formulation exactly minimizes the total
vehicle distance. Thus, we can solve the ridesharing problem

Fig. 3. Regularized geometric k-median for the ridesharing meetup problem
results in 26 ride share groups from 100 users.

with an Expectation Maximization (EM) style method. We
present preliminary results in Figure 3, resulting in 69%
less vehicle distance (compared against singleton sets, i.e.
no ridesharing). We may further extend the ride share
meetup problem to networks (instead of Euclidean space)
by Claim 2.

IV. CONCLUSION

We have presented the first formal connection between
set partitioning and clustering, with the goal of identifying
a subclass of set partitioning problems that can benefit from
algorithms and theoretical guarantees for clustering prob-
lems. We prove that classical centroid clustering problems
are equivalent to metric k-set partitioning, and we present
a simplified ridesharing problem that uses this formalism to
achieve fast algorithms for a classical combinatorial opti-
mization problem.

In reality, the constraints and costs of a large-scale
ridesharing problem will be significantly more complicated
than the setting we studied in this article. As suggested
above, distances will be non-Euclidean, there will be mul-
tiple destinations and time windows, and participants will
have different preferences about time, money, and social
factors, as well as different types of constraints. A real-
world ridesharing system may have extrinsic properties such
as monetary incentives by means of payments between
participants or time incentives by means of high-occupancy
vehicles (HOV) lanes. In some settings, a linear pickup order
may make more sense than a participant meetup scheme.

Moving forward, one promising approach is to decom-
pose the complex overall ridesharing problem into simple
problems such as those studied in this article, as a way
to both compose principled building blocks for complex
system design and achieve theoretical guarantees. Further
investigation is needed to determine how solutions of the
decomposed problems might be merged together meaning-
fully to solve the overall problem. In another direction of
work, we seek to understand how multiple complex cost
structures and embeddable substructures can be supported
within the combinatorial optimization framework such that

efficient algorithms are still admissible.

REFERENCES

[1] Karla L Hoffman and Manfred Padberg. Solving airline crew schedul-
ing problems by branch-and-cut. Management Science, 39(6):657–682,
1993.

[2] Hai D Chu, Eric Gelman, and Ellis L Johnson. Solving large scale
crew scheduling problems. In Interfaces in Computer Science and
Operations Research, pages 183–194. Springer, 1997.

[3] Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky,
Steven Strogatz, and Carlo Ratti. Taxi pooling in new york city: a
network-based approach to social sharing problems. arXiv preprint
arXiv, 310, 2013.

[4] Péter Biro, David F Manlove, and Romeo Rizzi. Maximum weight
cycle packing in directed graphs, with application to kidney ex-
change programs. Discrete Mathematics, Algorithms and Applications,
1(04):499–517, 2009.

[5] RR Vemuganti. Applications of set covering, set packing and set parti-
tioning models: A survey. In Handbook of combinatorial optimization,
pages 573–746. Springer, 1999.

[6] Manfred W Padberg. On the facial structure of set packing polyhedra.
Mathematical programming, 5(1):199–215, 1973.

[7] Refael Hassin and Shlomi Rubinstein. An approximation algo-
rithm for maximum triangle packing. Discrete Applied Mathematics,
154(6):971–979, 2006.

[8] Jianxin Wang and Qilong Feng. An o*(3.523 k) parameterized
algorithm for 3-set packing. In Theory and Applications of Models of
Computation, pages 82–93. Springer, 2008.

[9] Esther M Arkin and Refael Hassin. On local search for weighted k-set
packing. Mathematics of Operations Research, 23(3):640–648, 1998.

[10] Barun Chandra and Magnus M Halldorsson. Greedy local improve-
ment and weighted set packing approximation. Journal of Algorithms,
39(2):223–240, 2001.

[11] Kathryn A Dowsland. Some experiments with simulated annealing
techniques for packing problems. European Journal of Operational
Research, 68(3):389–399, 1993.

[12] Xavier Gandibleux, Xavier Delorme, and Vincent T’Kindt. An ant
colony optimisation algorithm for the set packing problem. In Ant
Colony Optimization and Swarm Intelligence, pages 49–60. Springer,
2004.

[13] Xavier Delorme, Xavier Gandibleux, and Joaquin Rodriguez. Grasp
for set packing problems. European Journal of Operational Research,
153(3):564–580, 2004.

[14] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. Applied statistics, pages 100–108, 1979.

[15] David Arthur and Sergei Vassilvitskii. k-means++: The advantages
of careful seeding. In Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 1027–1035. Society
for Industrial and Applied Mathematics, 2007.

[16] Hugo Steinhaus. Sur la division des corp materiels en parties. Bull.
Acad. Polon. Sci, 1(804):801, 1956.

[17] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions
on information theory, 28(2):129–137, 1982.

[18] Ece Kamar and Eric Horvitz. Collaboration and shared plans in the
open world: Studies of ridesharing. In IJCAI, volume 9, page 187,
2009.

