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Abstract
Location data from mobile devices is a sensitive yet valuable 
commodity for location-based services and advertising. We 
investigate the intrinsic value of location data in the context 
of strong privacy, where location information is only avail-
able from end users via purchase. We present an algorithm 
to compute the expected value of location data from a user, 
without access to the specific coordinates of the location 
data point. We use decision-theoretic techniques to provide 
a principled way for a potential buyer to make purchasing 
decisions about private user location data. We illustrate our 
approach in three scenarios: the delivery of targeted ads 
specific to a user’s home location, the estimation of traffic 
speed, and the prediction of location. In all three cases, the 
methodology leads to quantifiably better purchasing deci-
sions than competing approaches.

1. INTRODUCTION
As people carry and interact with their connected devices, 
they create spatiotemporal data that can be harnessed by 
them and others to generate a variety of insights. Proposals 
have been made for creating markets for personal data1 
rather than for people either to provide their behavioral 
data freely or to refuse sharing. Some of these proposals are 
specific to location data.6 Several studies have explored the 
price that people would seek for sharing their GPS data.5, 13, 9 
However, little has been published on determining the value 
of location data from a buyer’s point of view. For instance, a 
Wall Street Journal blog says10:

“What groceries you buy, what Facebook posts you ‘like’ and 
how you use GPS in your car:
Companies are building their entire businesses around the 
collection and sale of such data. The problem is that no one 
really knows what all that information is worth. Data isn’t 
a physical asset like a factory or cash, and there aren’t any 
official guidelines for assessing its value.”

We present a principled method for computing the value 
of spatiotemporal data from the perspective of a buyer. 
Knowledge of this value could guide pursuit of the most 
informative data and would provide insights about poten-
tial markets for location data.

We consider situations where a buyer is presented with a 
set of location data points for sale, and we provide estimates 
of the value of information (VOI) for these points. Because 
the coordinates of the location data points are unknown, 
we compute the VOI based on the prior knowledge that is 
available to the buyer and on side information that a user 
may provide (e.g., the time of day or location granularity). 
The VOI computation is customized to the specific goals of 

The original versions of this paper were “On the Value of 
Spatiotemporal Information: Principles and Scenarios” 
published in the Proceedings of the 26th ACM SIGSPATIAL 
International Conference on Advances in Geographic 
Information Systems, (Nov. 2018) and “To Buy or Not to 
Buy: Computing Value of Spatiotemporal Information” 
published in ACM Transactions on Spatial Algorithms and 
Systems 12 (Sept. 2019). 

the buyer, such as targeting ad delivery for home services, 
offering efficient driving routes, or predicting a person’s 
location in advance. We account for the fact that location 
data and user state are both uncertain. Additional data pur-
chases can help reduce this uncertainty, and we quantify 
this reduction as well.

In the next section, we introduce a decision-making 
framework with a detailed analysis of geo-targeted adver-
tising. We focus on the buyer’s goal of delivering ads to 
people living within a certain region. We show that our 
method performs better than alternate approaches in 
terms of inferential accuracy, data efficiency, and cost. In 
Section 3, we apply the methodology to a traffic estimation 
scenario using real and simulated spatiotemporal data. 
We present our last scenario in Section 4, where we show 
how to make good data-buying decisions for predicting a 
person’s future location.

Our contributions are as follows:

•	 We present a methodology to calculate the expected mon-
etary value of a user’s location coordinates, even when the 
detailed coordinates are unknown to the buyer a priori.

•	 We provide an algorithm for a buyer to make purchasing 
decisions about location data that may be sold by owners 
of the data, despite the specific location uncertainty.

•	 We demonstrate how the algorithm behaves in three 
scenarios: targeted ad delivery, crowdsourced traffic 
information, and location prediction.

To the best of our knowledge, this is the first principled method 
to compute the value of unseen crowdsourced location data 
from a buyer’s point of view.

2. SCENARIO 1: HOME TARGETED ADS
Our first illustrative scenario is called “Home Targeted Ads” 
because it focuses on a business that wants to deliver ads to 
people who have homes within a certain geospatial region. 
For instance, a local roofing business may be licensed only in 
a certain geographic area and wish their ads to only be deliv-
ered to people who live in that area. A mobile dog grooming 
service may want to limit its advertising to a region that they 
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can reach efficiently. We will refer to this target region as R. 
The region can be any closed region on the ground, such as 
the boundary around a particular area.

The buyer in this case could be the business itself or an 
advertising specialist who can find the best recipients for 
the ads. In either case, the buyer seeks to find the home loca-
tions of potential ad recipients. There are multiple ways to 
find a person’s home location: a telephone directory usu-
ally gives names and addresses, and many people give their 
home city as part of their social media profiles. However, the 
telephone directory can be incomplete or out-of-date, and 
social media profiles usually give only city-level resolution. 
Location measurements, such as those from GPS, are usu-
ally very precise, and they can be used to infer the location of 
a person’s home. In this scenario, the buyer will seek to buy 
a small number of time-stamped location measurements 
from potential ad recipients and use the measurements to 
decide who should receive the ad.

2.1. Decision to deliver an advertisement
In this scenario, a buyer must choose whether or not to 
deliver an ad to a potential recipient, and the crux of this 
decision depends on whether or not the potential recipient 
lives in the targeted region. We model the costs to the buyer 
with a payoff matrix. The matrix describes the monetary 
gain or loss depending on the decision of whether or not to 
deliver an ad to the potential recipient and depending on 
whether or not the recipient lives in the region R, as shown 
in Table 1. The buyer always has some uncertainty about the 
home location of the potential ad recipient.

The four cases in Table 1 represent the following scenarios:

•	 Ad not delivered when home is not in region R (payoff 
b11): This is a neutral outcome, because an ad was cor-
rectly withheld from a person who does not live in the 
targeted region. The cost (and benefit) is normally zero 
in this case; thus, b11 = 0.

•	 Ad not delivered when home is in region R (payoff b12): 
This is a negative outcome, because the ad should have 
been delivered, but was not. The cost is the lost oppor-
tunity and the possibility that a competitor may acquire 
the person as a customer; thus, b12 ≤ 0.

•	 Ad delivered when home is not in region R (payoff b21): 
This is a negative outcome, because the ad was mistakenly 
delivered to a person whose home is not in the target 
region. The cost is the wasted cost of the ad plus the 
annoyance caused to the targeted person, so b21 ≤ 0.

•	 Ad delivered when home is in region R (payoff b22): This is 
a positive outcome, because it could generate a purchase 

from the business. The value would be the expected profit 
from a successful ad minus the cost of the ad, so b22 ≥ 0.

We assume the payoff matrix values are given or can be 
learned.11

Based on location data collected from the potential ad recipi-
ent, the buyer computes a probability distribution PH(h), 
where h is a two-dimensional vector, [x, y]T, that describes 
the location of the potential recipient’s home. In Aly et al.,2 
we give a method to compute this distribution based on 
time-stamped location measures, such as the ones a buyer 
would purchase. From this distribution, we can compute the 
probability p

R
 that the home is inside the targeted region R:

� (1)

Based on this, we can compute the expected value of the rev-
enue, V, given our decision on ad delivery:

The advertiser would choose whichever alternative has the 
largest expected revenue:

� (2)

2.2. Decision to buy a GPS point
We consider the case where the buyer is presented with a list 
of points to evaluate buying, where each of these points has 
been recorded at a different time. The buyer is allowed to see 
the time stamps, but not the points’ spatial coordinates.

The buyer will compute VOI to decide whether or not to 
buy a measured location point, having knowledge of only 
the point’s time stamp. The buyer has already purchased n 
points, denoted by the random variables L1, L2, …, Ln or as 
the collection . An instance of this random location vari-
able is li = [xi, yi, ti, σl, ci]

T, which is a 5D vector with [xi, yi]
T 

representing the point’s 2D location at time ti and the loca-
tion precision represented as the standard deviation σl. We 
could optionally represent a varying precision for each mea-
surement, but we assume all the users have similar location 
sensors with the same precision. The price of the point is ci, 
which is the amount the buyer would have to pay the seller 
(potential ad recipient) to know (xi, yi). This price is deter-
mined by the seller. Using these points, the buyer computes 

, which is a probability distribution of the home 
location based on location measurements 1 through n. We 
give a method for this computation in Aly et al.2 The buyer 
then computes the probability that the home is in the target 
region (Equation (1) ) and the expected revenue , as 
described above.

The buyer has the option of buying another location mea-
surement Ln+1. The VOI can then be defined as the gain in 
revenue by receiving the n + 1th location Ln+1 = n+1:

� (3)

 Home location

Not in region In region

Ad Do not deliver b11 (0) b12 (β)

Deliver b21 (γ) b22 (1.0)

Table 1. The payoff matrix for home targeted ads.

The values in parentheses are used for our experiments.
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expected profit from Equation 4 over all the available points 
from the user. The buyer repeatedly buys the point with the 
maximum expected profit (Equation 4) as long as at least 
one point has an expected profit greater than zero, and as 
long as the number of points purchased does not exceed a 
preset threshold. When there are no more profitable points, 
or if the threshold has been exceeded, the buyer harnesses 
the information collected to decide whether or not to send 
the ad according to Equation 2.

2.4. Evaluation experiments
To evaluate the proposed decision framework, we used a GPS 
dataset of 66 participants living in Seattle, Washington, USA. 
The trajectories were collected for an average of 40.12 days 
(σ = 24.43) and have an average sampling rate of 0.77 samples/
minute. The trajectories represent data offered by the user to 
the data buyer. We define three regions to test our framework. 
We have 13, 14, and 18 users living in regions R1, R2, and R3, 
respectively. To find the ground truth home location for each 
user, we leverage each user’s full trajectory and the American 
Time Use Survey12 (ATUS). ATUS points out that users are most 
likely to be at their homes at midnight. Thus, we apply den-
sity-based clustering (DBSCAN) on the user’s time-stamped 
location trajectory. Then, the largest collection of data points 
(cluster) at midnight is identified as the user’s home.8

We have compared the described methods to two other 
techniques that represent simple, practical methods to 
decide whether or not to send an ad to a user. For the first 
of these techniques, the advertiser simply makes a random 
decision to send the ad or not, with the probability of send-
ing the ad set to 0.5. We call this technique “No points.” 
In the second comparison technique, the data requester 
buys a number of points from the user at random times of 
day. Then, the ad is sent to the user only if the majority of 
the purchased points are inside the region. This method 
reflects an assumption that users tend to spend most of 
their time around their homes. Using our default price of 
0.01 per point, our new, proposed method recommends 
buying no more than 20 points in about 85% of the cases, 
when the expected profit per point reaches zero. Thus, in our 
second comparison method, we have the data requester buy 
20 points regardless of their expected benefit. We call this 

The location of this new point is unknown to the buyer, 
but it follows a distribution . This distribution is 
the buyer’s guess about where the unseen point Ln+1 may be. 
We give a principled way to compute this in Aly et al.2 It is 
based on experimental data about how a person’s distance 
from home varies over the day. In the middle of the night, 
people are normally close to home, but they are normally 
farther away at noon. Because of the uncertainty surround-
ing the location of the new point, the buyer is reduced to 
computing the expected VOI. This comes from Equation 3, 
but it includes an expectation integral over , which 
is the probability density of all possible locations of the new 
point. This expected VOI is .

The decision to buy the n + 1th point will be based 
on whether the value of the point in expectation, that is, 

, is larger than the cost of the point, cn+1. 
Thus, we will buy the point that maximizes the expected 
profit:

� (4)

Here we assume that the potential ad recipients have placed 
a price on their location data. This price could also be set by a 
location broker who acts as a representative of the potential 
ad recipient. We note that although this equation accounts for 
the price of the location point, the price of the ad has already 
been accounted for in the values of the payoff matrix.

If we assume zero expected profit for the buyer, Equation 4 
can be rearranged to show a fair price for the location point as

� (5)

Note that the price is independent of the actual location of 
the data. However, as the seller knows the location, a deeper 
analysis could adjust the price based on location. However, 
this price adjustment could in turn convey extra informa-
tion to the seller about the potential value of the point, that 
is, if it is near the seller’s home.

2.3. Algorithm for decisions
The final algorithm followed by the data requester, and illus-
trated in Figure 1, consists of repeated computations of the 

Figure 1. Proposed data-sharing mechanism and decision framework: users offer their passively crowdsourced, time-stamped data with a 
certain location accuracy for a fixed price, while hiding the actual coordinates. Data buyers estimate the value of the offered data, buy points 
with the maximum expected profit, and make a business decision based on the points they have purchased.
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The other two algorithms actually lose money in some regions 
of the payoff matrix, whereas the “VOI decision” algorithm is 
always positive. Specifically, “VOI decision” relatively improves 
the TPR on average by 80.2% and 20.9% and up to 107.9% (when 
γ = 0 and β = −0.6) and 43.7% (when γ = 0) as compared to the 
“No points” and “20 points,” respectively. Also, “VOI decision” 
relatively improves the FPR on average by 38.2% and 15.8% and 
up to 91.1% (when γ = −0.9 and β = 0) and 78.7% (when γ = −0.9 
and β = 0) as compared to the “No points” and “20 points,” 
respectively. Moreover, “VOI decision” reduces the number of 
points bought to make the decision on average by 60% as com-
pared to “20 points.”

3. SCENARIO 2: TRAFFIC STATE ESTIMATION
We now focus on a second scenario, which is a service that 
provides traffic state estimates for a given road segment using 
crowdsourced spatiotemporal data. In particular, the traffic 
state estimator service buys time-stamped location data from 
people traveling through the road network and uses it to esti-
mate their speed. Then, this uncertain speed estimate is used 
to infer the road segment’s discrete traffic state. For instance, 
we assume three levels for a highway road segment: green rep-
resenting free flow/smooth traffic with speed greater than 
60 km/hr, red representing congested traffic with speed less 
than 30 km/hr, and yellow representing medium congested traf-
fic with speed between 30 and 60 km/hr. The service uses the points 
it buys to decide which level to assign to the road segment.

For clarity of illustration, we assume that the vehicle is on 
a single road segment for the duration of the analysis. The 
procedure described here can be generalized to the use of 
data from multiple vehicles traversing multiple road seg-
ments. In steady state, we assume the service has at least one 
previously purchased location measurement from the vehi-
cle. This purchased data is used to place the vehicle on the 
road segment of interest, and it means that any subsequent 
point purchased from the vehicle can be used to estimate 
the speed of the segment using the points’ time stamps. 
The service provider must decide whether or not to buy a 
new location point from the vehicle as well as which point 
to buy with only knowledge of the points’ time stamps and 
location precision. Although crowdsourcing traffic speeds is 
a familiar idea, we show how to choose intelligently which 
points to buy and to compute their value. Throughout the 
rest of the section, we will describe how the service provider 
will use the proposed framework to make two decisions: (1) 
congestion-level descriptor (color) for the road segment and 
(2) whether to buy a new point from travelers.

second technique “20 points.” In addition, for our proposed 
new method, we set a maximum threshold of 20 points in 
the evaluation to represent a realistic case where the buyer 
is interested in buying a bounded amount of data. We refer 
to our proposed method as “VOI decision.”

Evaluation metrics.  To evaluate the proposed decision 
framework, we employ three metrics: (1) The true positive rate 
(TPR) measures the proportion of correctly sent ads (i.e., ads 
sent to people with homes in the region); (2) the false positive 
rate (FPR) measures the proportion of incorrectly sent ads 
(i.e., ads sent to people with homes outside the region); and 
(3) the revenue ratio measures the ratio of the revenue gained 
to the maximum revenue the advertiser can gain by making 
perfectly correct decisions about which users should receive 
the ad without buying any location points.

Results.  To test our proposed framework for different 
payoff matrices, we created a payoff matrix with the values 
in parentheses as shown in Table 1. Here, we have b11 = 0, 
which represents the neutral result of not sending an ad to 
someone whose home is outside the region R. To reduce 
the size of the parameter space, we normalize by setting b22 
= 1, which represents the reward for correctly delivering an 
ad to someone whose home is inside the region. The other 
two outcomes are negative: b21 = γ represents the penalty for 
delivering an ad to someone not in the region, and b12 = β 
represents the penalty for not delivering an ad to someone 
who does live in the region. We let both γ and β vary over 
[0.0, −0.9]. These normalizations mean we can show results 
over just two payoff parameters (γ and β) rather than four.

We compared the performance of our method to other 
methods in Figure 2. Figure 2 shows the average results over 
the three regions for the different payoff matrices for a GPS 
point cost of 0.01. The two comparative methods (“No points” 
and “20 points”) TPR and FPR are independent of the payoff 
matrix values, because they are neither considering the costs 
and benefits of buying points nor making ad decisions. The 
algorithm “No points” (red surface) has a TPR and FPR of 
around 0.5. The algorithm “20 points” (yellow surface) gener-
ally performs better for both TPR and FPR, but comes with the 
penalty of buying 20 points for every decision. Our price sensi-
tive “VOI decision” algorithm (blue surface) is superior to both 
the comparison algorithms for TPR. For FPR in Figure 2(b), 
the “VOI decision” algorithm (blue surface) is superior over 
most of the payoff range. Its FPR rises dramatically when γ is 
zero, where the penalty for sending an ad outside the region is 
zero. Finally, Figure 2(c) shows the revenue ratios of the three 
methods, where “VOI decision” is again significantly superior. 
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Figure 2. Home targeted ads (Scenario 1) experiment results using the proposed framework (“VOI decision”) as compared to two other 
methods (“No points” and “20 points”).
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The fundamental method is a Kalman filter, which gives the 
probability distribution PU(u) representing the speed estimate 
and its uncertainty as well as a distribution giving a prediction 
of the speed in the future, which gives a buyer an idea of what 
the next speed value will be. The next section discusses how to 
make decisions about the location points to buy.

3.2. Decision to buy a GPS point
The buyer must decide whether to buy a new point based on 
its time stamp and accuracy. In this scenario, we formulate the 
decision as one of buying a new speed estimate. We leverage 
VOI to compute the value of knowing the traveler’s unknown 
speed and use it to make the buying decision. Having already 
purchased n speed estimates, this data forms a list of speeds, 
denoted by the random variables U1, U2, …, Un or as . Using 
these speeds, the data requester uses a Kalman filter to com-
pute , which is a probability distribution of the road 
segment speed based on speed measurements 1 through n. 
The buyer also computes their expected revenue ,  
as described in section 3.1, using  as 
the speed distribution. The mean  and variance  of 
this normal distribution are predicted by the Kalman filter. 
Because we are assuming the user is traveling at a locally 
constant speed, the Kalman estimate serves as the antici-
pated distribution of the as yet unknown next speed that the 
buyer is considering.

The value of information at time n can then be defined as 
the gain in revenue by receiving the n + 1th speed measure-
ment Un+1 = un+1:

� (6)

Hence, the expected value of information for the n + 1th 
speed is given by the expected value of (6):

� (7)

where u ∈ R and the integral is taken over the full domain of u.
The decision to buy the n + 1th speed will be based  

on whether the value of the point in expectation, that  
is, , is larger than the cost of the speed 
(cn+1):

� (8)

Here, we are assuming that the driver/data provider has placed 
a price on their location (speed) data.

We give results of detailed experiments in the next section. 
To build intuition about these computations, we present 
results of a simple simulation experiment in Figure 3. For 
different vehicle speeds, Figure 3 displays the number of 
points purchased using the methodology. Note that we buy 
more points whose speeds are near the congestion level 
thresholds, that is, 30 and 60. In effect, the method is trying 
to resolve the ambiguity of speeds near the speed boundar-
ies to avoid the cost of mistakes as expressed in the payoff 
matrix. In addition, as the location precision σl decreases, 
the method buys more points as needed to resolve the speed 
uncertainty.

3.1. Congestion level decision
As in the first scenario, we model the decision costs of the 
data buyer using a payoff matrix. The matrix describes the 
monetary gain and loss depending on the provider’s choice 
of which color to display and the road segment’s actual traf-
fic state, as shown in Table 2. There are nine different pos-
sible cases: brr, byy, and bgg represent positive outcomes where 
the service provider is choosing the correct traffic congestion 
level (red, yellow, and green, respectively); thus, brr, byy, and bgg 
> 0. The remaining cases represent negative outcomes as the 
service provider is choosing a wrong congestion level descrip-
tor. For example, payoff bgr represents choosing smooth traf-
fic (green) although actually it is congested (red). Thus, these 
payoffs are less than brr, byy, and bgg and are generally less than 
zero. When the actual road speed is red (severely congested), 
choosing green (free-flowing) would have a relatively large 
cost, bgr < 0, because it could mistakenly entice drivers toward 
the segment only to find slow speeds. We assume the payoff 
matrix is given or can be learned.11

To choose the congestion level from the noisy location data, 
we again employ decision theory principles.11 Specifically, the 
service provider uses the purchased location data to model 
their belief about the traffic segment’s speed. This distribu-
tion is PU(u), where u represents the vehicle’s speed. We give 
a method to compute this distribution in Aly et al.2 From this 
distribution, we can compute the probability that the road 
segment’s congestion level is green as follows:

where R(g) represents the range of speeds for the green road 
coloring, which is [60, ∞] in our scenario. Similar equations 
are used to compute the probabilities of the yellow and red 
states, py and pr.

With these probabilities, we can compute the expected 
revenue V for any congestion level display choice from the 
payoff matrix in Table 2. This is as below for the decision “r”, 
and the decisions “g” and “y” can be evaluated similarly.

We assume the service provider will choose to display the 
congestion level that gives maximum revenue, and thus the 
expected revenue ( ) will be

In Aly et al.,2 we discuss how the service provider computes 
PU(u) from individual time-stamped location measurements. 

 Actual traffic state

Red Yellow Green

Traffic Red brr bry brg

State Yellow byr byy byg

Decision Green bgr bgy bgg

Table 2. Payoff matrix for traffic state estimation.
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3.3. Evaluation experiments
We evaluated our proposed framework in two ways: First, we 
used simulation studies to evaluate the effect of points’ cost 
on the performance of the proposed methodology across the 
entire speed spectrum (0–140 km/hr). In addition, we show 
the effect of the payoff matrix on the accuracy and compare the 
performance to a mean filter with different window sizes as 
our baseline technique. For each speed in a range from 0 to 
140 km/hr with an increment of 1 km/hr, we ran 500 experiments. 
We estimate speeds from noisy location data with precision 
σl as described in the experiments, and we sample locations 
every 3 seconds. We report the average results of the experi-
ments for each speed in the experimental range. The default 
payoff matrix is [brr bry brg; byr byy byg; bgr bgy bgg] = [1 −0.1 −0.1; 
−0.1 1 −0.1; −0.1 −0.1 1], and the default point cost is ci = 0.001. 
We show the effect of the point cost, point precision, and the 
decision-maker’s payoff matrix on the proposed framework as 
compared to the baseline technique. Second, we test the per-
formance of our framework against real driving traces.

Effect of point cost and precision.  Using simulated data, 
Figure 4 shows the effect of the point cost on the perfor-
mance of the proposed framework in terms of congestion 
level decision accuracy for different location precisions, 
that is, σl ∈ {3m, 10m, 20m} in parts a, b, and c of Figure 4, 
respectively. The blue bars show the percentage of correct 
speed interval inferences. We see that less expensive points 
lead to higher system accuracy, because the blue bars grow 
as the points become less expensive. This is because the sys-
tem is more willing to buy additional points. As the price of 
the location points exceeds their value, the buyer refrains 
from buying. Comparing parts a, b, and c of Figure 4, we 
also see that lower precision (larger σl) leads to more error, 
as the blue bars generally shrink from a to b to c. In Figure 
4, the error assigned to choosing the correct speed interval 

for the road segment is zero, represented by the blue bars. 
Choosing an adjacent interval (e.g., red instead of yellow) 
has an error of one, and choosing the interval at the other 
end of the spectrum (e.g., green instead of red) has an error 
of two.

Comparative analysis.  Figure 5(a) compares the per-
formance of our framework to the mean window filter over 
different window sizes (baseline technique). The bars in 
Figure 5 show the error rates in the same way as shown in 
Figure 4. We also show the mean number of points pur-
chased in these figures as small, black boxes. For relatively 
accurate location points (with precision σl varying uniformly 
at random from 3 to 20 m), Figure 5(a) shows that our pro-
posed framework identifies the exact traffic congestion level 
at least 84.6% of the time (“VOI decision-3” bar in the figure); 
this is better than the baseline technique with window size 
4 points by 3.4% and with a reduction in the average num-
ber of purchased points by 20%. In addition, our approach 
has comparable performance to the baseline technique with 
window sizes 8 and 35 points along with a reduction in the 
number of purchased points by 60% and 90.9%, respectively.

For more noisy location estimates (with σl varying uni-
formly at random from 3 to 100 m), our proposed framework 
estimates the exact traffic congestion level at least 63.9% of 
the time (“VOI decision-3” bar), as shown in Figure 5(b). This 
is better than the baseline technique with windows sizes 
4, 8, and 35 points by 7.3%, 7.10%, and 10.8%, respectively. 
Moreover, this comes with a reduction in number of pur-
chased points of 15%, 57.5%, and 90.2%, respectively. Our 
framework gives higher accuracy with fewer location points. 
Figure 5 also shows that varying the payoff matrix resulted 
in a small change in the accuracy and the average number 
of purchased points as seen in the first three bars. With a 
larger penalty for making a wrong decision, the framework 
buys more points and gives higher accuracy.

Validation experiments with real data.  Using the 
same GPS data as we did for the experiments in Section 
2.4, we extracted 20 traces from drivers on the I-90 inter-
state highway and State Route 520 in Seattle, WA, at differ-
ent dates and times of day. All 20 traces had more than 8 
points on the road in order to compare with a mean filter 
with window size 8. The traces’ speeds varied from 10 to 
133 km/hr (m = 89.4 km/hr and σ = 36.5), covering the three 
congestion levels. We estimate the road congestion level 
ground truth by applying an alpha-trimmed filter to remove 
speed outliers and estimate the speed from the full traces. 
Using the default payoff matrix, our framework was able 
to identify the road segment’s congestion levels accurately  

Figure 3. Average number of points bought at different possible 
speeds for location points with an accuracy of 3 m, 10 m, and 20 m. The 
model buys more points near the traffic state boundaries. The payoff 
matrix is [1 −0.1 −0.1; −0.1 1 −0.1; −0.1 −0.1 1], cost = 0.01 and Dt = 3 s.
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(with zero error) 95% of the time and within one level error 
100% of the time. This is better than the mean filter, which 
gave accurate predictions (with zero error) 90% of the time. 
In addition, the model recommends purchase of 50% fewer 
points as compared to the mean filter.

4. SCENARIO 3: LOCATION PREDICTION
A third scenario centers on location prediction. The buyer 
in this case is interested in the future location of someone. 
For example, the buyer may want to know if a person will be 
near the buyer’s business place, which may prompt an ad 
delivery. A traffic authority may want to anticipate demand 
for the road network. In addition to introducing a new sce-
nario, this section demonstrates a different form of the pay-
off matrix where the states and actions are continuous.

4.1. Location prediction
There are many existing techniques for predicting a person’s 
location based on location history. These include methods 
based on a Markov model4 and based on efficient driving 
and other cues.7 We introduce a new technique here that 
produces a continuous probability distribution over future 
locations, which meshes with our mathematical framework.

Using a single historical point i taken at time ti, the pre-
dicted location for a future time tf is f , given by the normal 
distribution:

This implies that the normal distribution of future locations 
is centered around the measured location i with a variance  
of . This variance is a function of the current time 
ti and the offset time into the future, tf − ti. Parameterizing 
the variance this way is intended to model the facts that (1) a 
person’s future location is a strong function of their current 
location, especially for the near future, and (2) prediction 
uncertainty changes with the current time and the time off-
set into the future. We computed a tabular approximation of 

 from the data of all our test users, discretizing 
both ti and tf − ti to 30-min intervals.

Predicting f from multiple purchased points  gives a 
mixture of Gaussians:

� (9)

Here, g(x|µ, σI) represents a two-dimensional Gaussian, 
centered at µ with a diagonal 2x2 covariance matrix σ2I. The 
accuracy of this prediction technique is given in Section 4.4.

Computing the VOI depends on anticipating the location 
of the next purchased point, Ln+1. We make a direct prediction 
of the location of the next purchased point, which is conve-
niently given by Equation 9, notated as .

4.2. Payoff and decision
We introduce a generic, continuous payoff function that 
depends on the distance between the predicted and actual 
future locations. If the buyer decides that the predicted loca-
tion is , but the actual location is f, then the payoff for 
this decision is . Here, b2 is some base payoff 
for making an exact prediction, and the payoff decreases as 
the prediction error grows. This payoff function leads to a 
closed form for the expected revenue.

After some mathematics, detailed in Aly et al.3, it becomes 
apparent that the expected revenue for deciding a future 
location of  then simplifies to

� (10)

The buyer will want to maximize expected revenue by choos-
ing the best value for . Differentiating the expected reve-
nue in Equation 10 with respect to  and setting it to zero 
gives the optimal location prediction as

This shows the predicted location is simply the mean of the 
already purchased location points. Although this is a very 
simplistic location prediction, the key is choosing which 
points i to buy for making an accurate prediction, which we 
describe next.

4.3. Value of information
By making the optimal prediction above, the expected revenue 
from previously purchased points  would be

This shows that the expected revenue decreases with larger 
prediction variances and when the purchased points are 
more dispersed from their mean.

Figure 5. The black squares show the average number of points bought while users are driving at different possible speeds for location points 
with randomly varying precision in the range 3–20 m and 3–100 m. This is compared to a mean filter with window sizes of 4, 8, and 35 location 
points. The payoff matrix for VOI decision-1 is [brr bry brg; byr byy byg; bgr bgy bgg] = [1 −0.9 −0.9; −0.9 1 −0.9; −0.9 −0.9 1], for VOI decision-2 is [1 −0.4 
−0.9; −0.4 1 −0.9; −0.9 −0.4 1], and for VOI decision-3 is [1 −0.1 −0.1; −0.1 1 −0.1; −0.1 −0.1 1].
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has noticeably smaller error than the random technique, after 
which the two techniques are approximately equal in error. 
Predicting ahead 0–30 min, the VOI technique reduces predic-
tion error by 54%, 47%, and 40%, respectively for 1, 2, and 3 pur-
chased points. This large reduction in error shows that the VOI 
technique is much better at choosing which location points to 
buy for increased location prediction accuracy.

5. CONCLUSION
We presented a principled method for buyers of location 
data to compute the value of users’ unseen location data. 
The approach relies on algorithms that consider prob-
ability distributions over locations based on data that 
has already been purchased, as well as the buyer’s pay-
off matrix, to anticipate the value of future, as yet unpur-
chased data. As a by-product of the quantitative valuations, 
the methodology identifies which unseen data is likely 
the most valuable for the buyer. We considered three sce-
narios, home-targeted ads, traffic congestion inference, 
and location prediction, to illustrate how we estimate the 
value of location data obtained from end users in different 
settings. These techniques work significantly better than 
competing inference approaches, both by using less data 
and inferring more accurate results. We believe this work 
fills a gap in the pricing of location data and that the pre-
sented methods can help inform decisions by buyers and 
sellers of location data.�

The VOI of an additional point n+1 is

�

(11)

Two of the main terms in the equation above are independent 
of n+1, that is,  and .  
The other two main terms depend on n+1 and thus affect the 
choice of which is the best point to buy next. The first of these 
terms, , encourages buying points that 
have a small associated prediction variance, .  
The second of these terms, , 
encourages buying points that help reduce the dispersion of 
the purchased points.

4.4. Evaluation experiments
To test our prediction scenario, we used GPS data from the 
same 66 subjects as the ad delivery scenario described in 
Section 2.4. We used the temporal first half of each person’s 
data to compute one set of prediction variances, ,  
that pertain to all subjects. We represented ti as the amount 
of time since the day’s previous midnight, discretized into 
30-min intervals. The quantity tf − ti represents the amount 
of time predicted into the future. We limited this to 24 hours 
and also discretized it to 30-min intervals.

For each subject, we randomly selected 100 test location 
points to predict from the temporal last half of their data. 
For each of these points, we randomly chose 20 prior points 
that were within our 24-hour prediction window as candi-
dates for buying. With 66 subjects and 100 test predictions 
per subject, we tested our algorithm on 6600 different loca-
tion prediction tasks.

Our primary test is to see if the algorithm is choosing good 
points to buy for making predictions. The next best point to 
buy is the one that maximized the expected VOI. As a com-
parison technique, we chose points randomly from the 20 
available for each trial, repeating this 10 times for each of 
the 6600 prediction tasks.

Figure 6 shows the mean prediction error based on buying 
1, 2, and 3 points. The solid lines show the VOI approach, and 
the correspondingly colored dashed lines show the random 
approach. From 0 to 7 hours into the future, the VOI technique 

Figure 6. Using VOI to choose points to purchase is generally better 
than random choices in terms of prediction accuracy.
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