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Abstract

Summary: How do nuances of scientists’ attention influence what they discover? We pursue an
understanding of the influences of patterns of attention on discovery with a case study about confirmations
of protein-protein interactions over time. We find that modeling and accounting for attention can help us to
recognize and interpret biases in large-scale and widely used databases of confirmed interactions and to
better understand missing data and unknowns. Additionally, we present an analysis of how awareness of
patterns of attention and use of debiasing techniques can foster earlier discoveries.
Availability: The data is freely available at https://github.com/urielsinger/PPI-unbias.
Contacts: urielsinger@cs.technion.ac.il, kirar@cs.technion.ac.il, horvitz@microsoft.com

1 Introduction
Indian Philosopher Jiddu Krishnamurti has said, “the finding is not in the
future–it is there, where you do not look.” (Krishnamurti, 2018). In the
spirit of Krishnamurti’s reflection, we investigate how patterns of attention
in scientific discovery can influence the state of knowledge in a discipline
in ways that may not be recognized. Systematic biases of attention in the
formulation and confirmation of hypotheses by investigators is especially
important for understanding the nature and limitations of knowledge
encoded in large, general-purpose databases that see wide use as general
tools. In biology and other fields, large-scale multi-use databases of
findings have become the lenses on what is known. Patterns of attention,
guided by the flow of interests and curiosities, and enabled by available
experimental methods and laboratory set-ups, can introduce systematic
biases in databases of findings. We focus on the illustrative example of the
growing fund of knowledge on interactions among proteins. We have found
via the analysis of graphical representations of the flow of confirmations,
that patterns of exploration and confirmation have become embedded and
implicit in the protein-protein interaction database.

The protein-protein interactions (PPI) database is a uniquely rich
artifact for studying biases of attention and influences on discovery
per its importance, size (Zhu et al., 2007), and the accessibility of its
temporal evolution. Decades of research have yielded large databases of
protein-protein interactions. These databases have played a critical role
in biomedicine, enabling the construction of biochemical cascades and
larger protein interaction networks. The interaction data and resulting
representations of metabolic, structural, and regulatory processes have
been critical in understanding the etiologies of diseases and in identifying
promising therapies, including efforts to prioritize pharmacological targets

(Monod et al., 1965; Krogan et al., 2006; Prelich et al., 1987; Collins et al.,
2007; LaCount et al., 2005; Pu et al., 2007; Komurov and White, 2007;
Strong and Eisenberg, 2007; Wells and McClendon, 2007).

In Figure 1, we display a network representation of the evolution of
confirmed interactions among Homo sapiens proteins over time, where
nodes are proteins and arcs represent confirmed interactions. We introduce
analysis over snapshots of confirmed PPI over time that reveal that
discoveries about protein interactions are rooted in scientists’ attention
to recent findings. Such biases may be rooted in several factors, including
the sequencing of attention to specific sets of biochemical pathways of
interest, and pursuit of understanding of these systems via PPI testing
when one or more proteins are already known to be interacting with one
another.

For any two proteinspi, pj , we represent the probability of a confirmed
interaction over a period of time as P

(
pi ↔ pj). This probability of

interaction can be expressed as a chain of two probabilities: (1.A) the
probability that the proteins will be found to interact, given the experiment
is carried out, and, (1.B) the probability of an experiment being performed
to check the interaction during the period. Thus, taking both probabilities
into consideration, the likelihood of an interaction being confirmed can be
rewritten as follows:

P
(
pi ↔ pj) =

(1.A)︷ ︸︸ ︷
P
(
pi ↔ pj |Check pi, pj) ·

(1.B)︷ ︸︸ ︷
P
(
Check pi, pj) (1)

Our knowledge of protein interactions is constrained by the keyhole of
sets of decisions made over time to perform experiments. Computing
P
(
pi ↔ pj) requires consideration of the probability that a protein-

protein interaction is examined, P
(
Check pi, pj). This probability can

be further divided into two more probabilities: (2.A) the probability that
© Uriel Singer, Kira Radinsky, and Eric Horvitz 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

https://github.com/urielsinger/PPI-unbias
mailto:urielsinger@cs.technion.ac.il
mailto:kirar@cs.technion.ac.il
mailto:horvitz@microsoft.com


2 Singer et al.

Fig. 1. Homo sapiens protein-protein interactions represented as a graph where nodes
are proteins and edges are interactions. The data was drawn from (López et al., 2015)
as explained in Section 4.1. From top to bottom, expansion of the protein-protein
interaction graph over the years 1990, 1995, and 2005.

scientists are interested in performing a specific experiment to validate
or invalidate a hypothesis about an interaction and (2.B) the probability
that they have the required scientific tools, experimental resources, and
affordances:

P
(
Check pi, pj) =

(2.A)︷ ︸︸ ︷
P
(
Attention pi, pj) ·

(2.B)︷ ︸︸ ︷
P
(
Tools pi, pj) (2)

Decomposing the overall likelihood of a hypothesis into a chain of
probabilities can provide a lens on the current state of knowledge, the
influence of enabling tools, and on recurrent patterns of attention in
different areas of science. We find that P

(
Check pi, pj) captures, via

patterns of confirmation of protein interactions over time in the PPI
database, the influences of attention on discovery for interactions. The

influences of biases of attention are typically implicit, and are not overtly
considered in interpretations of confirmed, invalidated, or unknown protein
interactions. We suspect that findings about systematic biases introduced
by such attentional considerations may generalize to systematic patterns
of confirmations and unknowns encoded in other large-scale scientific
databases. We focus in this work on interactions among proteins in homo
sapiens. While the human genome encodes approximately 30,000 proteins
(Venter et al., 2001), defining a space of nearly a half billion potential
interactions, only ∼ 300, 000 interactions for ∼ 17, 000 proteins have
been confirmed to date. To map the influence of attention, we consider
the database of all known protein interactions at the end of each calendar
year. For each year, we represent the protein-interaction database as a
topological graph where nodes stand for proteins and edges for interactions
that are confirmed by the end of the respective period. Within each annual
PPI graph, we define the protein distance as the length of the shortest chain
of nodes connecting pairs of proteins that interact (see Section 4.1 for more
details on the database creation).

We have found that new discoveries about protein interactions in
a consecutive year are highly skewed towards protein interactions with
small distances in the PPI graph for the current year. Figure 2 describes
the distribution of protein distance a year before interaction discovery,
normalized by the distribution of all possible edge distances, creating a
probability graph. We had first discovered this phenomenon during our
unpublished precursory work centering on the use of machine learning
from a database of confirmed interactions to predict future interactions.
During these investigations, we were surprised and intrigued to discover
that the variable with the greatest evidential power to predict the next
year’s discoveries was the proximity of proteins in the PPI graph. This
phenomenon has been corroborated by other studies (Han et al., 2005;
Tanaka et al., 2005; Lima-Mendez and van Helden, 2009; Fraser and Hirsh,
2004; Saeed and Deane, 2006).

We, nor expert colleagues we consulted with, could identify a
biological explanation to explain the skew of discoveries based on
adjacencies. We hypothesized that the observations of protein interactions
are founded in the focus of attention of scientists who continue to explore
certain proteins and processes that have been most recently studied. In the
absence of such attentional influences, we would expect a more uniform
distribution in distances among proteins that are found to interact in the
next year. While the phenomenon of new interactions being linked to
recent findings may not be unexpected, such biases on discovery, persisting
in a widespread manner over long periods of time, can have significant
influences on confirmed, disconfirmed, and unexplored hypotheses in a
large database. We set out to characterize such attentional effects and their
influences on the sequencing of PPI discoveries. We believe that unearthing
and characterizing such biases in research on protein interactions will be
valuable for interpreting distributions of knowns and unknowns at different
points in time with the refinement of knowledge that comes with ongoing
experimentation.

2 Characterizing and Countering Attentional
Influences

We now pursue the means for recognizing, characterizing and countering
the influence of a bias of attention in discoveries of protein interactions. We
study the effect of proximity in the PPI graph on the inferred probability of
future discoveries by employing statistical models that predict interactions
between untested pairs of proteins—should they be studied. We first
explore the ability of these predictive models to forecast future discoveries
when they are trained on data of previously confirmed protein interactions.
Next, we build and consider uses of predictive models that do not rely
on graph proximity and, thus, are less influenced by biases of attention
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Fig. 2. Probability that a protein interaction will be confirmed in the next year as a
function of the distance between two proteins in the PPI graph in a current year. Each
color represents a different year.

encoded via proximity. We consider hypothetical uses of these unbiased
models to guide decisions about experiments and confirmations on protein
interactions.

By definition, proteins at distance d = 1 are confirmed as
interacting. We seek to compare the growth in knowledge about previously
unconfirmed interactions between proteins at d = 2 versus proteins
that are separated by greater distances in the topological graph. Proteins
confirmed at d = 2 are those that are nearest in proximity to those proteins
participating in a currently known interaction pair. The comparison of
growth in knowledge about protein interactions at d = 2 versus greater
distances can reveal the potential for alternate sequencing of discoveries
of protein interactions where attentional biases are not at play. We perform
this analysis via a counterfactual study based on matching (Ho et al., 2007).

We seek to understand how the protein interaction database might grow
differently if the influences of proximity in the protein interaction graph
were removed or minimized. To do this, we build statistical models that can
predict protein interactions solely from attributes or features of proteins.
We consider two sets of features and build a predictive model for each. The
first approach is based on biological properties of proteins. We apply an
embedding technique inspired by Dubchak et al. (1995) where we generate
a vector for each protein by considering the protein’s sequence of amino
acids. We build the vectors by concatenating three types of descriptors,
including composition (C), transition (T), and distribution (D) attributes
(see Section 4.2 for details on the biological features). In a second approach
to predicting protein interactions, we calculate a feature vector for each
protein by using a neural graph embedding learning method (see Section
4.3 for more details). This approach is of special interest due to the graph
topology that is shaped in part by attentional influences as captured in the
sequence of confirmed interactions. For both approaches, the feature vector
of an edge linking two proteins is calculated as the absolute differences
of the protein feature vector of each of the linked proteins. Following
the computing of vectors for each edge, a matching analysis is applied on
edges with distance d > 2 (“original edges”) to edges with distance d = 2

(“matched edges”), by selecting the specific set of features and distance
metric. Using the matching method enables us to answer the question:
“What if the protein distance was 2 instead of n?”. Answering such a
question can help us interpret the causal effect of the protein distance and
normalize the skew shown in Figure 2 (see Section 4.4 for more details).

Based on the graph embedding, we train a logistic regression model
on edges included in the PPI graph in the year 2017, while false edges are

distance Biased Unbiased - graph embedding Unbiased - amino acid Random

2 0.664 0.664 0.664 0.506

3 0.693 0.720 0.482 0.503

4 0.730 0.752 0.464 0.516

5 ≤ 0.830 0.851 0.473 0.396

all 0.797 0.825 0.564 0.503

Table 1. AUC results for different distances in the protein interaction graph for
each method. Boldfaced results indicate a statistically significant difference.

sampled at random. We use the trained model to infer the probability that
an edge will appear as an interaction in the following period, 2018–2019.
We compare four sets of prediction methods:

1. Biased: Predictions considering the original edges in the PPI graph,
without applying the matching analysis.

2. Unbiased - graph embedding: Prediction on matched edges via graph
embedding with a Euclidean distance metric (see Section 4.5.1 for
details on the Euclidean distance metric).

3. Unbiased - amino acid: Prediction on matched edges via biological
features using a Canberra distance metric (see Section 4.5.2 for details
on the Canberra distance metric).

4. Random: Prediction on random matched edges. Matching is applied
between the original edges at d > 2 to edges at d = 2 by random
sampling. The random method is necessary in order to eliminate false
insights from the data.

We build four predictive models, employing each of the different
methods and we test the power of each to predict future discoveries
of interactions. As a performance metric, we report the area under the
receiver-operator characteristic curve (AUC) of each model.

In Table 1, we show the AUC for predicting the interactions discovered
in 2018–2019 for each distance and for each type of prediction method.
We find that using graph-based matching as a predictive tool significantly
improves the forecast of new discoveries. We note that, in the most recent
years, interactions appear to be discovered via more advanced techniques
and tools, resulting in a weakening of the influence of attention-centric
biases in the test set as compared to earlier years. We train the predictive
model on a biased training set and predict on a less biased test set. We
hypothesize that checking interactions is less dependant on having the
right tools or laboratory setup in later years. Assuming weak dependence
on tools, and recalling Equations 2 and 1, the probability that an interaction
between two proteins will be confirmed becomes dependent mainly on the
attention of scientists on those specific proteins. By using graph-based
matching, we strive to debias the model by normalizing the attention
to potential interactions. The new techniques and tools still show bias,
indicating that the graph-based matching of today’s known PPI could
provide guidance on studies aimed at identifying protein interactions. We
attempt to weaken biases of attention by applying graph-based matching
rather than use the original ’biased’ edges of 2017.

While our focus has been to elucidate attentional influences on the
sequence of PPIs, we foresee that such predictive models could provide
exploratory directions, with promise for helping scientists to recognize
and address attentional biases of proximity.

3 Defining Bias of Attention
We can further define attentional bias by using the unbiased graph
embedding method from Section 2 and comparing the individual edge
scores between the original and matched edges. This method starts with
matching all edges at distance d = n to their closest matches at distance
d = 2. After matching, we calculate an individual treatment effect (ITE),
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defined as the difference between the original edge score and the matched
edge score for the test period 2018–2019: yi(P2(i) − Pn(i)). In each
potential edge (i), Pn(i) is the probability of the original edge being
discovered in later years, P2(i) is the matched edge probability, and yi
is the true label of the original edge, where yi = 1 if an edge forms an
interaction between the proteins by the end of year 2019, and yi = −1 if
not.

The value of yi(P2(i) − Pn(i)) varies between −1 and 1, where −1
is assigned if an edge is predicted correctly between the original edge at
d > n but incorrectly for the matched edge at d = 2. Alternatively, 1 is
assigned if an edge is predicted correctly between the matched edge but
incorrectly for the original edge, and 0 if there is no difference between
the probabilities. We then calculate the average treatment effect (ATE) for
each distance:

ATE =
1

N

N∑
i=1

yi(P2(i) − Pn(i))

Observing ATE > 0 means that the matched edges are more successful
in predicting interactions than the original edges. The closer the value of
ATE is to 1, the better the predictions of the matched edges over the
original edges. Similarly, the closer the value ofATE is to−1, the poorer
the predictions of the matched edges will be over the original edges. We
propose that the ATE provides a valuable characterization of attentional
bias for the discovery of protein interactions.

As displayed in Figure 3, the matched edges perform better than the
original edges at d > n. We observe that the larger the distance, the larger
the effect of the matching analysis. The only exception is distance 5, which
we attribute to the small number of samples (see Section 4.6 for analysis
of additional years).

As a final analysis, we seek to understand whether the use of unbiasing
method techniques could have led to earlier discoveries. We continue using
the same notations, Pn(i) as the probability of the original edge being
discovered in later years, and P2(i) as the matched edge probability using
the graph embedding method. We further define tn(i) as the year that the
original edge was discovered minus 2017, and Pn(i)−P2(i) as the score
difference of the sample i. Given k ∈ [0, 100], we average over tn(i) for
samples with a top k% score difference. We display in Figure 3 the finding
that, for smaller values of k, we would tend to discover an interaction at
earlier times.
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Fig. 3. Average number of years to discovery for the top k% score difference.

4 Methods

4.1 Data

The protein interaction information used in the study was drawn from
HitPredict (López et al., 2015). HitPredict contains a list of all protein
interactions, where each interaction includes a list of all published articles
where it is mentioned. We perform a preprocessing phase, where we filter
to retrieve studies with H.sapiens proteins and then identify the interaction
discovery date as the publication date of the earliest associated article.
Once established, we create a topological graph that includes all
interactions with their first publication dates. By using this method, we
construct a graph that evolves over time. Protein interactions with no
associated articles are not included in the graph. In the experiments, the PPI
graph of year y includes all interactions among proteins that are confirmed
by the end of year y.

4.2 Biological Features.

The protein amino acid code used in the study was drawn from Ensembl
(Zerbino et al., 2018). For each protein, three different calculations were
applied to its amino acid code, and then concatenated to create one
biological feature vector:

1. Composition: We calculate the probability of appearance for each
attribute in the amino acid code, and create a list of the probabilities
for each possible attribute.

Ci =

∑
k CODEk = i

L

were CODEk is the kth attribute in the code, L is the code length,
and Ci is the probability of appearance for attribute i.

2. Transition: We calculate the probability of a consecutive appearance
for each couple of attributes in the amino acid code.

Ti,j =

∑
k CODEk = i ∧ CODEk+1 = j

L

where CODEk is the kth attribute in the code, L is the code length,
andTi,j is the probability of a consecutive appearance of i and j. After
calculating Ti,j , we flatten the upper triangle of the two-dimensional
array.

3. Distribution: The distribution of an attribute along the sequence of
amino acids is described by a vector of size five. The values of the
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distribution are the locations in the amino acid code for the first, 25%,
50%, 75%, and 100% appearances of the given attribute. For example,
given the code ABBABBBBBAAAABBBABABBBBBAA of length
26, and attribute ’B’, which appears 16 times in the code:

• The first appearance is at index 2: 2/26 = 7.7%

• The 16 · 25% = 4 appearance is at index 6: 6/26 = 23.1%

• The 16 · 50% = 8 appearance is at index 14: 14/26 = 53.8%

• The 16 · 75% = 12 appearance is at index 20: 20/26 = 76.9%

• The last appearance is at index 24: 24/26 = 92.3%

Therefore, the distribution of the attribute ’B’ will be: [7.7, 23.1,
53.8, 76.9, 92.3]. We do the same for each attribute and concatenate
the results.

4.3 Node2vec

We chose to work with node2vec as our graph embedding methodology,
an approach introduced by Grover and Leskovec (2016) with state-of-
the-art performance on multiple benchmarks including predicting PPIs.
Much research has since been done using node2vec to predict protein
interactions (Grover and Leskovec, 2016; Singer et al., 2019; Yue et al.,
2020; Zhong and Rajapakse, 2019; Ata et al., 2018; Zhang et al., 2019;
Goyal and Ferrara, 2018; Ma et al., 2018). Node2vec is based on
word2vec (Mikolov et al., 2013), which is a method for learning features
of a representation of words. Word2vec takes as input a text corpus and
outputs an embedding vector for each word. By trying to predict words’
neighbors, word2vec creates an embedding that provides a representation
of semantic relationships among words. Node2vec generalizes word2vec
for the graph domain where, intuitively, each node is regarded as a word.
The algorithm creates the equivalent of sentences by performing random
walks on the graph starting at each node (i.e., each node that is sampled in
the random walk is a word in the constructed sentence).

One of the key contributions of node2vec is the generalization that
differentiates between space and structure. In other words, one can select
whether to embed a node based on other nodes that are closer in space (i.e.,
same cluster) or based on nodes with a similar role in the structured graph.
From a graph algorithm perspective, this can be explained as selecting
whether to perform random walks with a breadth-first or depth-first search
bias. Given a random walk from node u to node v, node2vec formulates
this bias strategy by defining two hyperparameters, p and q, which help to
adjust the transition probability αpq(u, x) from node u to some node x,
where dux stands for the distance between node u and node x:

αpq(u, x) =


1
p

if dux = 0

1 if dux = 1
1
q

if dux = 2

In this way, node2vec can bias the random walk closer or further away
from the source node, creating different types of embeddings. For example,
setting p< q biases the random walk to nodes closer to one another. This in
turn causes nodes from the same cluster to be embedded closer and nodes
from different regions to be embedded further away. Setting p>q, biases
the random walk to embed nodes of the same graph characteristics (e.g.,
same role in a social graph) closer together while others are embedded
further away. We note that in the special case of p=q=1, the algorithm
operates in a similar manner to DeepWalk (Perozzi et al., 2014). We
believe that representing proteins in the PPI graph as node2vec vectors
takes advantage of more comprehensive structural features that can boost
a model’s ability to predict interactions (we used the implementation
published by the authors: github.com/aditya-grover/node2vec).

4.4 Causal Inference and Matched Sets

To provide intuition about the matching methods, we cast the method in a
medical context. Assume we have two patients, where patient A receives
treatment a and patient B receives treatment b and outcomes are recorded.
We wish to understand what would have happened if patient A had received
treatment b rather than treatment a). As we cannot change history, to
perform the counterfactual treatment of b, we would have to find patient
A’s twin or doppelganger. An analogy between the health domain and the
PPI domain can be constructed by looking at potential edges as patients,
the treatments as the distances between proteins in the protein interaction
graph, and the outcomes as interactions confirmed in the future. We apply
the matching techniques to the PPI domain and answer the question raised
at the beginning of this section. Ho et al. (2007) demonstrated the power
of matching. They describe two groups that differ in the treatments they
received, and for each individual in the first group find its closest match in
the second group. By identifying these matches, we are able to estimate the
ITE as the difference in the value of the outcome of the original treatment
minus that of the outcome associated with the matched twin. In order to
compute the ATE, we average the ITEs over all individuals. We can apply
matching to the PPI domain by finding for each edge with distance d > 2

its match with distance d = 2 and calculate the distance effect.

4.5 Distance metrics

4.5.1 Euclidean
Euclidean distance is a classic and widely used metric calculated as the
distance between two points in the Euclidean n-space. The Euclidean
distance is a generalization of the Pythagorean theorem. If x and y are
vectors, their Euclidean distance d is defined as:

d(x, y) =

√∑
i

(xi − yi)2

4.5.2 Canberra
If x and y are vectors, their Canberra distance d is defined as:

d(x, y) =
∑
i

|xi − yi|
|xi|+ |yi|

Notice that each element is normalized by itself. This functionality is
important when pursuing an equal value for each element in the vector
regardless of its scale.

4.6 Average Treatment Effect for Additional Years

We performed ATE analyses for different years. We trained a logistic
regression model on edges included in the PPI graph up to a specific year
while testing on edges from the following year, up to the year 2019. In
Figure 4, we observe the ATE for the years 2015 and 2016. Beyond an
anomaly for a distance of four, we observe the same correlation where the
larger the distance, the larger the effect of matching analysis.

5 Conclusion
We examined the sequence of confirmations of protein-protein interactions
over time and found evidence of an attentional bias: Scientists tend to focus
the formulation and confirmation of hypotheses in the direction of recently
confirmed PPIs. The bias has shaped the progression of knowledge about
protein interactions, represented as the join of findings available at different
times in the widely used PPI database. The systematic biases, based in the
natural pursuit of hypotheses and the ongoing evolution of experimental
methods, have influenced the completeness of data and the patterns of “dark
matter” of undiscovered findings. We believe that awareness of attentional

https://github.com/aditya-grover/node2vec
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Fig. 4. Average treatment effect (ATE) as a function of the distance of matched
edges. For each year, the ATE is calculated up to the maximum distance in the graph
(’≥’ represents the distance, including the infinite distance—proteins from different
connected components in the PPI graph).

biases in discovery will help us to better understand limitations in the PPI
dataset and other databases. Biases of attention based on temporal and
conceptual proximity highlight the potential value of adding to research
portfolios the formulation and pursuit of hypotheses that make more distant
leaps in conceptual spaces. We believe that biases of locality can be
addressed by nurturing research practices that promote exploration of more
distant conceptual relationships and of making serendipitous discoveries
(Board, 2018) beyond the frontier of current knowledge. Opportunities
for future work include studies of biases of attention in other biological
domains such as pursuing understandings of interactions between homo
sapien proteins and proteins expressed by viruses (Lasso et al., 2019).
The findings for the PPI database frame questions about other systematic
biases of exploration, confirmation, and discovery. We suspect that similar
attentional factors have influenced the content of multiple widely used
databases. We hope this study will stimulate efforts to identify systematic
biases of attention in other areas. Characterization of attentional biases
can provide valuable insights about the structure and implications of
unexplored hypotheses and missing data across the sciences.
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