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Numerous advances in biomedicine have provided the methods and tools needed to 

mount a fast-paced response to the COVID-19 pandemic. With unprecedented speed, 

understandings of the structure and function of the SARS-CoV-2 virus were developed, 

followed by the design of promising therapeutics and vaccines. Within weeks of its 

detection in Wuhan, the sequence of the single-stranded RNA virus was published. Two 

months later, critical details of the virus’ structural and non-structural proteins were 

identified and the virus’ mode of entry into human cells was decoded as an interaction 

between the SARS-CoV-2 spike protein and the human ACE2 receptor. Over the next 

several months, promising vaccines and therapeutics were designed and testing was 

commenced of vaccine safety and efficacy.  

The response of the scientific community to the pandemic has been impressive in the 

context of the history of vaccine design. Still, many hundreds of thousands of people 

perished and many more suffered from the direct and indirect influences of COVID-19. 

Now, at the one-year mark, as we celebrate the start of the worldwide distribution of 

efficacious vaccines, a challenge comes to mind: How might we go from detection to the 

development of an effective therapy or vaccine in months or even weeks versus a year? 

I believe that we can significantly reduce the time from the detection of a rising 

respiratory viral threat to developing understandings of structure and mechanism to 

producing and fielding mitigations.  While multiple advances will contribute to a speed-

up, AI technologies will play a significant role—particularly supervised and unsupervised 

machine learning with deep neural networks (DNNs).  

Advances in DNNs have already been complementing more traditional methods for 

identifying protein structure. Current mainstays include imaging of protein structure 

through cryo–electron microscopy, performing biophysical simulations to identify 

feasible conformations of proteins via considerations of energies and constraints, and 

molecular dynamics calculations to build insights about conformational dynamics of 

proteins as they interact. DNN methods have been developed to predict protein structure 

from amino acid sequences and to learn representations that link protein function to 

sequence and structure. These capabilities will play an increasingly important role in 

helping biomedical researchers to gain understandings of the operation of viruses more 

quickly by identifying sets of hypotheses about protein structure and function.  



Beyond understanding natural proteins, machine learning methods will be critical in 

enabling faster and lower-cost generation and prioritization of sets of protein candidates 

considered in de novo protein design. To date, protein design efforts in synthetic biology 

must grapple with large combinatorial spaces, relying on cycles of analysis that require a 

time-consuming intermixture of computation and wet-lab experimentation to screen 

computationally identified candidates. For example, the design process involved in the de 

novo creation of small, stable minibinder proteins targeting the SARS-CoV-2 Spike 

protein [1] required (1) generating millions of candidate proteins, (2) identifying 

synthetic genes for a promising subset of ~100,000 candidates, and then (3) the 

experimental screening of these candidates for binding activity. The candidates with 

highest binding activities were then refined via (4) additional computation-driven 

refinements and (5) additional cycles of experimental testing.  More accurate designs can 

reduce the time and costs and raise the yield of these cycles.  

Another promising direction is to harness machine learning and decision-theoretic 

inference in the guidance of computation and wet-lab experimentation. The allocation of 

scarce computing and experimentation resources can be directed via considerations of 

current uncertainties about protein structure and function. There is great promise in 

harnessing machine learning methods to compute well-calibrated uncertainties in sets of 

predictions about protein structure and function to guide computation and 

experimentation. Whether uncertainties are epistemic (due to limitations of the models) 

or aleatoric (per intrinsic noise or incompleteness in observations), estimates of 

uncertainty can be harnessed to determine the expected value of additional computational 

analyses and the expected value of information of specific wet-lab experiments.  Such 

expectations consider how uncertainties can be expected to be reduced via computation 

or experimentation, with a goal of minimizing time or costs to achieving goals of 

therapeutics or vaccines.  
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